AUTHOR=Velmurugan Sindhu , Chou Tsung-Han , Eastwood Jeremy D. , Porciatti Vittorio , Liu Yuan , Hauswirth William W. , Guy John , Yu Hong
TITLE=Comparison of different gene-therapy methods to treat Leber hereditary optic neuropathy in a mouse model
JOURNAL=Frontiers in Neuroscience
VOLUME=17
YEAR=2023
URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1119724
DOI=10.3389/fnins.2023.1119724
ISSN=1662-453X
ABSTRACT=IntroductionTherapies for Leber hereditary optic neuropathy (LHON), in common with all disorders caused by mutated mitochondrial DNA, are inadequate. We have developed two gene therapy strategies for the disease: mitochondrial-targeted and allotopic expressed and compared them in a mouse model of LHON.
MethodsA LHON mouse model was generated by intravitreal injection of a mitochondrialtargeted Adeno-associated virus (AAV) carrying mutant human NADH dehydrogenase 4 gene (hND4/m.11778G>A) to induce retinal ganglion cell (RGC) degeneration and axon loss, the hallmark of the human disease. We then attempted to rescue those mice using a second intravitreal injection of either mitochondrial-targeted or allotopic expressed wildtype human ND4. The rescue of RGCs and their axons were assessed using serial pattern electroretinogram (PERG) and transmission electron microscopy.
ResultsCompared to non-rescued LHON controls where PERG amplitude was much reduced, both strategies significantly preserved PERG amplitude over 15 months. However, the rescue effect was more marked with mitochondrial-targeted therapy than with allotopic therapy (p = 0.0128). Post-mortem analysis showed that mitochondrial-targeted human ND4 better preserved small axons that are preferentially lost in human LHON.
ConclusionsThese results in a pre-clinical mouse model of LHON suggest that mitochondrially-targeted AAV gene therapy, compared to allotopic AAV gene therapy, is more efficient in rescuing the LHON phenotype.