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Intelligent sensor systems are essential for building modern Internet of Things

applications. Embedding intelligence within or near sensors provides a strong

case for analog neural computing. However, rapid prototyping of analog or

mixed signal spiking neural computing is a non-trivial and time-consuming task.

We introduce mixed-mode neural computing arrays for near-sensor-intelligent

computing implemented with Field-Programmable Analog Arrays (FPAA) and Field-

Programmable Gate Arrays (FPGA). The combinations of FPAA and FPGA pipelines

ensure rapid prototyping and design optimization before finalizing the on-chip

implementations. The proposed approach architecture ensures a scalable neural

network testing framework along with sensor integration. The experimental set up

of the proposed tactile sensing system in demonstrated. The initial simulations are

carried out in SPICE, and the real-time implementation is validated on FPAA and FPGA

hardware.

KEYWORDS

computing arrays, field programmable analog arrays, leaky integrate and fire neuron, tactile
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1. Introduction

Field-Programmable Analog Arrays (FPAA) are the analog counterparts to the more popular

Field-programmable gate arrays (FPGA) (Farsa et al., 2019; Azghadi et al., 2020; Yu et al.,

2020). The ability to program and configure FPGAs has resulted in numerous applications being

developed in a short period. In this modern era, reconfigurable computing largely considers only

the digital VLSI implementations and the fact is that mostly people turn a blind eye toward the

possibilities with analog computing (Azghadi et al., 2020; Yu et al., 2020; García Moreno et al.,

2021). In contrast, most sensors detect signals in the analog domain and require analog interface

circuits for further processing. Furthermore, the progress in edge artificial intelligent computing

has forced the inclusion of more computingmodules next to sensors for efficient data processing.

This makes a strong case for considering analog computing as a natural approach to be used next

to sensors.

The FPAA processors consist of a set of reconfigurable analog circuit blocks (Sekerli and

Butera, 2004). These blocks consist of switched capacitor logic that can be programmed to realize

various analog computing operations. Such a system can easily build multipliers, adders, and

integral and differential operations. FPAA applications that involve signal processing or data

converters can find immediate applications to be used in conjunction with sensors. Another

possibility is to implement intelligent data processing using analog neural networks.

Various neural networks and neuronmodels are implemented with FPAA (Rocke et al., 2005;

Maher et al., 2006; Schlottmann and Hasler, 2011). Commercially available FPAA AN221E04

was used to build a 2-input, 1-output, 5-intermediate neuron model in Rocke et al. (2005)

and Maher et al. (2006). A feed-forward neural network trained with the MNIST dataset

is implemented using the AN231E04 FPAA Anadigm in García Moreno et al. (2021). The

implementation of FPAA of neuron models such as Hodgkin Huxley and FitzHugh-Nagumo

neurons was successfully tested in the past (Zhao and Kim, 2007; Joubert et al., 2012; Khanday

et al., 2019; Natarajan and Hasler, 2019). These success stories indicate the wide possibilities with

FPAA-based computing.
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This paper explores the combined use of FPGA and FPAA arrays

as a prototyping tool to test an integrated solution for real-time

tactile sensing, recognition, and classification. This uses the popular

neuronmodel, “Leaky Integrate and Fire,” for the first neural network

layer implemented on FPAAs. The remaining neural network layers

are implemented in the digital domain using FPGAs. This takes the

best of both worlds, where the sensing layer is analog while the

remaining layers responsible for classification are implemented in

FPGAs. The major contributions of the work are (1) to convey the

practical demonstration of the use of tactile sensing with FPAAs, (2)

to show a unique scalable array architecture built with FPAAs for

near-sensor computing, and (3) to exhibit the possibilities of mixed-

signal pipelines sequentially built on FPAA and FPGA to create

large-scale neural networks next to sensors.

2. Tactile sensing with mixed-mode
neural computing

Figure 1 shows the overall block diagram of the proposed system.

The input layer of the neural network representing the sensory

neurons is implemented with a touch sensor and FPAA, while the rest

of the dense neural layers are implemented with an FPGA module.

The block diagram representation of the proposed sensor-neuron

submodule is shown in Figure 2.

The neural network’s input layer consists of the sensor-neuron

module in a weighted crossbar array configuration. The weighted

FIGURE 1

Block diagram representation of the proposed mixed signal developmental kit for tactile sensing system, where DIO and AIO denote digital input/output

and analog input/output respectively of FPGA. N1 = N+M.

summation is done based on the combination of a transistor as a

switch, a memristor for non-volatile programmable memory, and a

touch sensor-neuron module, forming a node in a crossbar array

configuration. The first layer (Figure 1) consists of the nodes with

sensor neurons, memristors, and transistors that can perform dot-

product computations on the crossbar. The sensor-neuron output is

weighted and summed, and the output is read across the horizontal

and vertical lines of the crossbars.

FIGURE 2

Block diagram representation sensor neuron subsystem, sensor array

and LIF neuron model implemented on FPAA.
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FIGURE 3

(A) FPAA equivalent circuit model of LIF system and (B) current to voltage converter (I2 V).

Neural networks extensively use weighted summation operations,

where the weights are optimized against an objective error function.

Minimizing errors is essential to maximize recognition accuracy.

This optimization is referred to as neural network training, and

the most popular approach is to use gradient descent implemented

through the backpropagation algorithm. Training is performed on

the cloud server using custom-made Python scripts that use data

from crossbar arrays. The trained parameters of the neural network

are extracted, and subsequent dense layers are implemented in

the FPGA.

2.1. Crossbar array

The Leaky Integrate and Fire Neuron Model (neuron model) is

a well-known neuron model to emulate the action potentials in a

neuron (Nahmias et al., 2013; Dutta et al., 2017). The neuron model

represents a neuron as a parallel combination of a leaky resistor, a

capacitor, and a current source. A current source I(t) in the neuron

model is used as the input of synaptic current to charge the capacitor

to produce a potential V(t). The current equations in the neuron

model are given by Dutta et al. (2017).

I(t) = C
dV(t)

dt
+

(V(t)− Vrest)

R
(1)

Where C is the membrane capacitance, V(t) represents the

membrane potential at time t, R is the membrane resistance and I(t)

is the input current. If the membrane potential exceeds Vref , then

a spike is generated after releasing the spike, and V(t) is reset to

a resting potential Vrest = Vt − Vref . These equivalent circuits are

implemented using Configurable Analog Modules (CAMs) in FPAA.

The desired results were obtained by setting the chip clock frequency

to 4 MHz and the CAM frequency to 62.5 kHz.

Figure 3 shows the equivalent FPAA blocks proposed for the

neuron model. The proposed neuron model in FPAA consists of four

CAMs, sum/difference, integrator, comparator, and differentiator.

Sum/difference collects the sum of input signals, Va(t). Here,

the sensor voltage will act as a reference voltage changing the

threshold voltage from 0 to Vref . Va(t) is passed through a

low-pass filter, and these signals are integrated over time. This

CAM functionality is similar to that of the Soma part of the

neuron. The integrated signals Vb(t) are fed to a comparator

that compares with a threshold voltage, Vref (t), from the tactile

sensor. Vref (t) is obtained as a result of the sensation of touch

in the tactile sensor. This signal is considered the reference

signal. The output of the comparator can be mathematically

represented as:

Vc(t) =

{

Vb(t), Vb(t) > Vref

−Vb(t), Vb(t) < Vref

}

(2)

The signalVc(t) is differentiated to generate the spikes that trigger

the sensation of touch similar to the human body. In summary, the

spikes were generated by human contact with the touchpad of the

sensor. The signal from the sensor is directly fed to the neuron model

as the reference voltage (Vref ).

Figure 1 shows the implementation of crossbar arrays that

incorporate a sensor-neuron submodule. Each cell of the proposed

sensor-neuron crossbar array consists of a sensor-neuron module, a

memristor for weighted multiplication of sensor-neuron output, and

2 transistors. The two transistors avoid sneak path currents in the

horizontal and vertical lines and enable readouts in the vertical and

horizontal lines. The read-out currents can be calculated as follows:

ix(t) =
∑

j,k

{

aj,k + bj,k
}

gj,kVc(t) (3)

Where j and k denote the row and column number, respectively.

aj,k, bj,k ∈ {1, 0} represents the switching of the transistor.

For horizontal readouts,
{

aj,k = 1, bj,k = 0
}

and for vertical

readouts
{

aj,k = 0, bj,k = 1
}

. The weighted summation of currents

i1, i2, ...iM+N give unique representation of each tactile sensation.

Readout currents are converted to voltages using current-to-

voltage converters, as shown in Figure 3. The memristor in the

sensor-neuron crossbar arrays can be reprogrammed based on

tactile applications. This experiment employs a fully integrated

memristive model in Jin and Cui (2019). The FPAA equivalent

circuit implementation is shown in Figure 4A, which emulates the

characteristics of a fully integrated memristive model. Figure 4B

shows the pinched hysteresis curve of the memristive model with

device parameters RON = 1K� and ROFF = 100K�. The output of

the LIF circuit is given as the input to this memristive model, and

the output of these memristors is read out using the FPAA crossbar.

As shown in Figure 1, the horizontal and vertical read-outs of the

crossbar form the input to the next dense layer.
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FIGURE 4

(A) FPAA equivalent circuit model of fully integrated memristive model (Jin and Cui, 2019) and (B) The pinched hysteresis characteristics of the memristive

model.

FIGURE 5

Experimental setup of sensor-LIF tactile sensing system (1) NI myRIO

1900, (3) Anadigm FPAA board with AN231E04 Chip, (2), (3), (4)

Sensor-LIF crossbar array, and (5) USB Oscilloscope.

2.2. FPGA implementation of dense layers

For detection, the sensed data is used to train dense layers

using Python scripts. The measured current values from sensor-

neuron crossbar arrays are prone to different types of noise, and a

small variation in any of the current values can lead to incorrect

classification. In order to avoid the noise effect on the current values,

the measured values are prepossessed to a normalized value using

the mean filter. It removes unwanted boundary values and takes

the average among the whole sample. These values are used for

training the dense layers using Python scripts and programmed

on-to FPGA.

The neural computations of each dense layer are calculated

using the formulas Y = XW + B, where X and W are the input

and the weight values of sizes M1 × N1 and N1 × P, respectively.

B is the bias, and Y is the output, both of which have a size

of M1 × P. Here, X is the output of sensor-neuron crossbar

array, i.e., X =
{

Vo1,Vo2...VoM1N1

}

. The trained weights, W, and

the bias, B, are stored in memory. The X and W are converted

from the matrix to arrays of sizes 1 × (M1N1) and 1 × (N1P)

using the reshape array block. The single layer of ANN can be

implemented in myRIO FPGA using LABVIEW using the steps

listed in Table 1. The LABVIEW implementation consists of real-

time FPGA target applications. The real-time target application

provides an interactive environment to start running FPGA VI

and with the desktop computer. The Analog Input/Output (AIO)

data read, memory read, FIFO definition, start, and close of FPGA

VI target are done in the real-time target application. Whereas

FPGA target application synthesizes the circuit on FPGA and

generates the bitstream file. The dense layer computations are done

in FPGA VI.

3. Results and discussions

The proposed mixed-mode neural computing is experimentally

demonstrated on a system for identifying braille and morse code

symbols (Figure 5). The sensor-neuron crossbar array’s input layer

acts as a tactile patch for blind users to press the braille and

the morse code characters. In the Braille system, each character is

represented by 6 points (D1, D2, D3, D4, D5, D6) (Chithra et al.,

2022). Some of the braille symbols have the same representations.

For example, the character A and the number 1 have the same

representations. Hence, we use two additional dots (D7, D8) to

differentiate them. Thus, we represent 125 braille characters. In the

case of Morse code, the repetitive combination of dots and dashes

forms alphabets and numbers. Here, 10 dots are used for representing

morse code each column representing either dots or dashes. The

selection dots (D11, D12) represent braille and morse code selection.

The designed system implemented 62 characters (capital letters,

small letters, and numbers) for morse code. Hence the data set

consists of 40 instances of 187 different symbols of braille and morse

code. Hence, the tactile sensing system is implemented using a

sensor-neuron crossbar size of 6 × 2. Each dot represents one cell

in the sensor-neuron crossbar array. Table 2 shows the characters

implemented in the proposed tactile sensing system. The difference

in character implementations of braille and morse code are presented

in Table 3.
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TABLE 1 Steps for implementing a single dense layer in myRIO FPGA using

LABVIEW.

Real-time target application

1 Open While loop

2 ReadW and B from the memory

3 Capture the data from AIOs and write to an array X

4 Reshape X,W, and B from matrix to arrays

5 Define 3 FIFOs of type Host to Target DMA for X,W, and B

6 Define 1 FIFO of type Target to Host DMA for Y

7 Open FPGA VI reference

8 Write X,W, and B arrays to the DMA FIFOs from the host VI

using FIFO.Write (Invoke Method)

9 Read Y of the DMA FIFO using FIFO.Read (Invoke Method)

10 Reshape Y to matrix and display

11 Close FPGA VI reference

12 Close While loop

FPGA target application

13 Open Single cycle timed loop

14 Read X,W, and B using Read (FIFO method)

15 Perform U = X ×W using matrix multiply function

16 Build matrix B with the same size as U

17 Perform Y = U + B using high throughput ADD function

18 Split Y and write to FIFO using write (FIFO method)

19 Close Single cycle timed loop

TABLE 2 Braille and morse code character implementation on LIF-neuron

crossbar array, 1/0 denotes touch sensor is pressed/not pressed.

{D11,D12} {D7,D8} Characters

0, 0 0, 0 Braille alphabet capital (27 symbols)

0, 0 0, 1 Braille small (26 symbols)

0, 0 1, 0 Braille words (46 words)

0, 0 1, 1 Braille numbers, punctuation & symbols (26

symbols)

1, 1 Morse alphabet capital (26 symbols)

0, 1 Morse Small (26 symbols)

1, 1 Morse code numbers (10 symbols)

3.1. Training—Simulations

The preliminary neuron circuit is simulated using SPICE tools

and the equivalent circuit of the same is implemented in FPAA

using different CAMs. The real-time implementation of neuron

sensor crossbar arrays for the Braille character recognition system

uses a cluster of 12 FPAA chips. The weighted summation of the

current from each cell is taken through the HL and VL lines.

The input layer consists of 6 preneurons and 8 postneurons. The

programming of weights requires training the neurons taking into

account hardware variability. Simulations are carried out using

TABLE 3 Braille and morse character implementation using the sensor array

patch, 1/0 denotes touch sensor is pressed/not pressed.

Character {D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12}

Braille characters

A {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

a {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}

1 {1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0}

Morse code

A {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1}

a {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}

1 {1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1}

equivalentmodels to estimate the weight values. This experiment uses

a capacitive touch sensor module (TTP223 touch-sensing IC) and

fully integrated memristive model. The generated dataset is used to

train the subsequent dense layers using Python program.

The measured values of FPAA crossbar output are prone to

different types of noise. The noise in the measured data affects the

boundary points of 187 class of symbols of braille and morse code.

Any small deviations will lead to change in the whole feature set

combination. Hence amin-max scalar based preprocessing technique

is adopted to remove the noise factors that might be affected at

the boundary points. In min-max normalization, the noisy data

is scaled up/down using a range based on averaging. Figure 6

shows the first column current values for characters A and B,

respectively. For each character, we take 40 samples. The measured

data is normalized into a symmetric range after preprocessing.

For example, the data range of the measured value of character

A is between 2.5 and 3.1, as shown in Figure 6. With min-max

preprocessing, the data range for character A is limited between

2.7 and 2.9. This helps to remove the noise factors affecting the

boundary points.

The training for the FPAA crossbar data is done with and without

preprocessing technique. The dataset consists of 7480 samples of

braille andmorse code, i.e., 40 samples of 187 symbols. The generated

data set is used to train the subsequent dense layers using the Python

program. The trainedmodel consists of 2 hidden layers and an output

layer. The first layer has 8 × 14 nodes with relu activation function.

The output layer uses a softmax activation function of 187 node size.

The trained parameters of the dense layer are then implemented on

myRIO FPGA for the real-time implementation.

3.2. Inference—Hardware implementation

The proposed design is implemented on the commercially

available Anadigm AN231E04 IC. The parasitic capacitance of the

hardware components introduces noise in the output of each of

the CAM modules, as shown in Figure 7. Hence, the output spikes

have noise content in them as shown in Figure 7D. The chip clock

frequency is 4 MHz, and each CAM clock frequency is 62.5 KHz.

The spikes occur only when someone touches the touchpad of the

tactile/touch sensor. This reference potential acts as a trigger for the

sensor neuron model to generate a spike.
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FIGURE 6

Min-max normalized data for i1 readout of LIF-TMS crossbar array for (A) Character A and (B) Character B.

FIGURE 7

Hardware implementation output of LIF FPAA implementation with an o�set of 1 V: (A) Sum/Di� CAM output, (B) integrator CAM output, (C) the

Comparator CAM output with a reference voltage of 0.3 V, and (D) the final output of the sensor-LIF module.

The layer1 output is read through AIO pins on the myRIO.

The output of the sensor-neuron crossbar array is measured and

used to train the dense layers to perform the classification. The

noise in the measured data from the sensor-neuron crossbar array

affects the boundary points of 187 classes of symbols of braille

and morse code. Any small deviations will lead to a change in

the whole feature set combination. Hence a min-max scalar-based

preprocessing technique is adopted to normalize the measured values

(more details in the Supplementary material). Training of the sensor

data is done with andwithout noise removal. The trained ANNmodel

contains five dense layers with input, hidden, and output layers. The

relu activation function is used for all layers, and the output layer

uses the softmax activation function (Krestinskaya et al., 2020; Newns

et al., 2020).

The trained model is then implemented on myRIO FPGA

for real-time implementation. As discussed in Table 1, the

implementation consists of real-time target VI and FPGA target

VI. The LABVIEW application of real-time target VI and FPGA

target VI is shown in Figure 8. The open FPGA VI reference will

cause FPGA VI to start running (Table 1). The while loop makes the

system run continuously for real-time applications. The single-cycle

timed loop structures are always used in an FPGA VI, which will
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FIGURE 8

Single dense layer implementation on LABVIEW application. (A) Real-Time target VI and (B) FPGA target VI.

execute all functions within one tick of the clock, here we use a

40 MHz global clock. The linear algebra matrix multiply function

block and high-throughput add function block work only inside

the single-cycle timed loop. For dense layer1, M1 = 1, N1 = 8

and P = 14. Correspondingly, the FIFO depths are 8, 112 and 14,

respectively, for X,W, and B. The output of the linear algebra matrix

multiply function block is a column vector. Hence, the bias values

read from the FIFO are converted to arrays of size M1 × P, here

1 × 8. The bias addition is done using the high-throughput add

function block. The output of the present layer forms the input to the

subsequent layers. The graphical programming of real-time target VI

and FPGA VI is presented in Figure 8.

Table 4 shows the average relative error, REavg of hardware

dense layer output in comparison with software results. REavg can

be calculated as 1
P1

∑P1
l=1

|Ysl−Yhl|
Ysl

, where Ysl and Yhl denote the

software and hardware results of the output layer. The table shows

the relative output error for varying FIFO integer length on myRIO.

Each symbol in the braille alphabet has different combinations of

dots, i.e, for braille character “A” all the FPAA array output is zero

except Vo1 and Vo3. This creates sparsity in the subsequent dense

layers and output layer. Whereas for braille character “Y,” only Vo7
andVo8 are zeros (according to Table 2). Hence there are variations in

REavg for different symbols as shown in Table 4. The results show that

16 bits representation shows comparable performance with software

results. Hence the FIFOs for FPGA implementation are defined

for a word length of 16 bits. The system testing accuracy is 65%

for braille characters and 75% for morse characters with hardware

noise (Table 5). With the preprocessed input data using Min-Max

normalization, the performance accuracy is improved to 96 and 98%,

respectively, for braille and morse code character detection. Table 5

TABLE 4 Average relative error, REavg, of hardware dense layer output in

comparison with software results with varying FIFO integer length.

Integer word length

Symbol 2 bits 4 bits 8 bits 12 bits 16 bits

A 0.13 0.03 0.01 0 0

D 0.46 0.34 0.23 0.13 0.03

I 0.43 0.22 0.11 0.06 0.01

T 0.89 0.56 0.34 0.19 0.06

Y 1.05 0.72 0.46 0.26 0.09

shows the values of precision (P), recall (R), and F1 score (F1) for

5 characters.

4. Discussions

4.1. Scalability in rapid prototyping

The proposed mixed-signal development kit is a rapid

prototyping solution for different neural computing applications.

The paper presents the implementation of braille character

and moorse code recognizing system using the same prototype

designed. The system can be easily scaled up by adding

FPAA arrays and reprogramming the FPGA. This makes

the system more flexible in implementing other neural tactile

sensing applications.
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TABLE 5 Testing accuracy of Braille and morse recognition system with sensor-neuron crossbar array.

Braille characters Morse code

With noise

Acc = 65%

With filter

Acc = 96%

With noise

Acc = 75%

With filter

Acc = 98%

P R F1 P R F1 P R F1 P R F1

A 1.0 1.0 1.0 1.0 1.0 1.0 0.12 1.00 0.22 0.60 1.00 0.57

D 0.33 1.0 0.50 0.5 1.0 0.67 0.38 1.00 0.55 1.00 1.00 1.00

J 0.0 0.0 0.0 0.22 1.00 0.36 0.40 1.00 0.50 0.8 1.00 0.89

T 0.56 1.0 0.71 1.0 1.0 1.0 0.6 0.58 0.88 1.00 1.00 1.00

Y 1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00

Avg 0.58 0.69 0.60 0.90 0.922 0.88 0.71 0.72 0.72 0.92 0.96 0.95

P, R, F1, and Acc denote precision, recall, F1 score, and accuracy, respectively.

TABLE 6 Mixed signal development kit for tactile application: a comparison

with the existing implementation methods.

Number of neurons

Method Hidden
layer1, N1

Hidden
layer2, P

Output
layer, P1

FPAA (García Moreno

et al., 2021)

12 19 187

FPGA (Azghadi et al.,

2020)

12 19 187

Proposed

(FPAA+FPGA)

8 14 187

4.2. Neural architecture optimization

The proposed mixed signal processing helps to reduce the

required power consumption by optimizing the neural architecture.

In the conventional method, the sensed data from each sensors are

transmitted for neural computing. i.e., for anM rows and N columns

sensor array, the conventional method takesM×N inputs for neural

processing. Whereas, our proposed method shown in Figure 1 only

needsM + N inputs for neural processing. The reduction in number

of inputs directly reduces the size of neural network architecture.

Table 6 demonstrates the neural architectural comparison of existing

mixed signal prototyping with the conventional implementation

techniques using either FPAA or FPGA. The results in the table show

there is approximately 30% reduction in the neural architecture size

for the mixed signal implementation to achieve the same accuracy

of 96% for the braille and 98% for the morse code character

recognition system.

5. Conclusion

The mixed signal hardware for a neural network based on

sensor-neuron crossbars using an FPAA and FPGA cluster is the

focus of the study in the article. The sensor-neuron crossbar neural

network shows the analog domain computation for the input

layer and the digital domain computation for dense layers. An

equivalent LIF circuit is designed using CAM and is implemented

on Anadigm AN231E04 ICs. The proposed sensing module is

then used to implement a tactile sensing application for a Braille

and Morse character identification system. The simulation results

show that the proposed model is accurate and power-efficient

in the temporal domain. The FPAA platform enables complex

circuit design much more easily using configurable analog modules.

The proposed prototyping approach helps to optimize the mixed-

signal sensor-neural network designs before being deployed for on-

chip implementations.

6. Experimental methods

This experiment uses the TTP223 capacitive touch sensor

module. Each sensor in the system is connected to the LIF neuron

model implemented on the AN231E04 chip. The equivalent circuit

model of the LIF neuron module is designed on the FPAA module

using the Anadigm QuadApex development board. Each board has

4 AN231E04 Dynamically Reconfigurable Analog Signal Processors

(dpASP) and operates with a clock frequency of 4 MHz. Each

dpASP is programmed using AnadigmDesigner 2 EDA software. The

dynamically reconfigurable analog signal processor operates from a

3.3 V power supply.

The equivalent circuit of the LIF model is designed using

CAM modules in Anadigm Designer 2 EDA software. In AD2

software, analog circuits can be implemented using a library of

configurable analog modules (CAMs) by setting the chip clock

frequency to 4 MHz and the CAM frequency to 62.5 KHz

(Joubert et al., 2011).

The dense neural network is implemented on the NI myRIO

FPGA processor Xilinx Zynq-7010. LABVIEW FPGA is the software

tool used to graphically implement various digital circuits on the

FPGA chip. The trained model is then programmed to the NI

myRIO-1900 FPGA target. The FPGA target is programmed using

LABVIEW FPGA, a software add-on model to the LABVIEW

graphical software development environment. LABVIEW FPGA

is used to graphically implement various digital circuits on the

FPGA chip. MyRIO hardware consists of an ARM microcontroller

(real-time target) and a Xilinx Zynq-7010 (FPGA processor).

The myRIO is connected to the host computer via USB or

Wireless 802.11b,g,n.
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