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Objective: The motor imagery (MI)-based brain–computer interface (BCI) is

one of the most popular BCI paradigms. Common spatial pattern (CSP) is

an effective algorithm for decoding MI-related electroencephalogram (EEG)

patterns. However, it highly depends on the selection of EEG frequency bands. To

address this problem, previous researchers often used a filter bank to decompose

EEG signals into multiple frequency bands before applying the traditional CSP.

Approach: This study proposed a novel method, i.e., transformed common spatial

pattern (tCSP), to extract the discriminant EEG features from multiple frequency

bands after but not before CSP. To verify its effectiveness, we tested tCSP on a

dataset collected by our team and a public dataset from BCI competition III. We

also performed an online evaluation of the proposed method.

Main results: As a result, for the dataset collected by our team, the classification

accuracy of tCSP was significantly higher than CSP by about 8% and filter bank

CSP (FBCSP) by about 4.5%. The combination of tCSP and CSP further improved

the system performance with an average accuracy of 84.77% and a peak accuracy

of 100%. For dataset IVa in BCI competition III, the combination method got

an average accuracy of 94.55%, which performed best among all the presented

CSP-based methods. In the online evaluation, tCSP and the combination method

achieved an average accuracy of 80.00 and 84.00%, respectively.

Significance: The results demonstrate that the frequency band selection after CSP

is better than before for MI-based BCIs. This study provides a promising approach

for decoding MI EEG patterns, which is significant for the development of BCIs.

KEYWORDS

brain–computer interface (BCI), electroencephalography (EEG), motor imagery (MI),
common spatial pattern (CSP), transformed common spatial pattern (tCSP)

1. Introduction

Brain–computer interfaces (BCIs) are systems that directly measure brain activities
and convert them into artificial outputs. BCIs can replace, restore, enhance, supplement,
or improve the natural central nervous system outputs (Birbaumer et al., 2008; Wolpaw
and Wolpaw, 2012; Chaudhary et al., 2016; Coogan and He, 2018; Xu et al., 2021;
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Ju et al., 2022). Currently, scalp electroencephalogram (EEG)
is the most popular brain signal for BCIs due to its relatively
high temporal resolution and low cost (Park et al., 2012; Xu
et al., 2018, 2020; Meng et al., 2020). Among all BCI paradigms,
motor imagery (MI)-based BCI is considered more natural than
others, which depends on decoding sensorimotor cortex activation
patterns induced by imagining movements of specific body parts
(Pfurtscheller and Neuper, 2001; Wolpaw et al., 2002).

Event-related desynchronization/synchronization (ERD/ERS)
is the most typical EEG feature related to the brain movement
intention, which shows a power decrease/increase in specific
frequency bands (Pfurtscheller and Da Silva, 1999). For MI-BCIs, it
is a key issue to accurately detect the ERD/ERS features. Currently,
there are three main categories of MI-BCI algorithms (Herman
et al., 2008; Brodu et al., 2011; Lotte et al., 2018), i.e., deep learning-
based, Riemannian geometry-based and traditional filtering-based
methods. Deep learning (Craik et al., 2019; Zhang et al., 2019) and
Riemannian (Fang et al., 2022) methods are recently developed
algorithms, both showing good classification performance in MI-
BCIs. Deep learning techniques aim to uncover most of the valuable
discriminative information within datasets for good classification
performance (Goodfellow et al., 2016; Al-Saegh et al., 2021). Both
effective features and classifiers are jointly learned directly from
the raw EEG. The idea of the Riemannian method is to map
the EEG data directly onto a geometrical space equipped with a
suitable metric (Barachant et al., 2010, 2012; Yger et al., 2017).
Due to its intrinsic nature Riemannian method is robust to noise
and provides a good generalization capability (Waytowich et al.,
2016; Zanini et al., 2018). The filtering-based methods first filter
EEG data in both time and spatial domains and then extract
the discriminative features. As a kind of filtering-based method,
common spatial pattern (CSP) has been widely used for MI-BCIs
due to its conciseness and effectiveness (Ramoser et al., 2000; Lotte
et al., 2018). CSP is one of the most efficient and popular methods
to extract band-power discriminative features (Ramoser et al., 2000;
Blankertz et al., 2007; Chen et al., 2018; Wang et al., 2020). This
study aims further to improve the performance of CSP in MI-based
BCIs.

The idea of CSP is to maximize the variance of one class
and minimize that of the other class simultaneously (Blankertz
et al., 2007; Grosse-Wentrup and Buss, 2008; Li et al., 2016;
Wang et al., 2020). However, the performance of CSP heavily
depends on the selection of EEG frequency bands. It would
degrade with inappropriate frequency bands. Previous studies
have demonstrated a great deal of ERD/ERS variability among
subjects regarding their frequency characteristics (Pfurtscheller
et al., 1997; Guger et al., 2000). To address this problem, researchers
have proposed several advanced versions of CSP to optimize the
selection of frequency bands before applying CSP. For example,
Lemm et al. (2005) designed the common spatio-spectral pattern
(CSSP) algorithm, which could individually tune frequency filters
at each electrode position. However, the frequency filter setting in
CSSP is inflexible (Dornhege et al., 2006). Dornhege et al. (2006)
proposed the common sparse spectral spatial pattern (CSSSP),
which could simultaneously optimize a finite impulse response
(FIR) filter and a spatial filter to select the individual-specific
frequency bands automatically. It yielded better performance than
CSSP, but the optimization process of CSSSP is complicated and
time-consuming. Later, Novi et al. (2007) tried to decompose the

EEG signals into sub-bands using a filter bank instead of temporal
FIR filtering, called sub-band common spatial pattern (SBCSP).
SBCSP could mitigate the time-consuming problem of the fine-
tuning process during the construction of BCI classification
models. In 2008, the filter bank common spatial pattern (FBCSP)
was proposed by Kai Keng et al. (2008), which had the best
performance in frequency band selection (Ang et al., 2012).

Besides, the regularization method has also been studied to
further boost the performance of CSP. Lu et al. (2009) proposed
the regularized common spatial pattern (R-CSP), which regularized
the covariance matrix estimation for typical CSP. Park and Lee
(2017) utilized principal component analysis (PCA) to extract
R-CSP features from all frequency sub-bands, called sub-band
regularized common spatial pattern (SBRCSP). Later, Park et al.
(2017) proposed the regularized filter bank common spatial pattern
(FBRCSP), which combined R-CSP with the filter bank structure.
Both SBRCSP and FBRCSP showed better performance than CSP,
FBCSP, and R-CSP.

This study proposed a novel algorithm called transformed
common spatial pattern (tCSP) to further improve the selection
of optimal frequency bands. Unlike traditional approaches that
optimize the frequency selection before CSP filtering, the proposed
tCSP selects the subject-specific frequency after CSP filtering. Two
offline datasets and an online evaluation were employed to verify
the effectiveness of tCSP.

2. Materials and methods

2.1. Dataset description

This study uses two offline datasets to evaluate the performance
of the proposed algorithms. One is the dataset (not publicly
available) from an experiment performed by our team. This
experiment is called experiment one in this paper. The other is
the Dataset IVa of BCI Competition III (Blankertz et al., 2006),
which is always used for testing CSP-based algorithms. Moreover,
we performed the second experiment, i.e., experiment two, to assess
the effectiveness and suitability of the proposed algorithm in the
online operation.

2.1.1. The dataset of experiment one
The dataset contains EEG signals from eleven healthy subjects

aged 21–26 years. In the experiment, they were required to
perform two different MI tasks of left- and right-hand movements.
Figure 1A shows the timing of a trial paradigm. An electrode placed
on the nose served as the reference, and the ground electrode was
placed on the forehead. The data were acquired by a SynAmps2
system with a 64-channel EEG quick-cap, and 60 channels were
measured at positions of the international 10/20-system. The data
were sampled at 1000 Hz, band-pass filtered between 0.5 and
100 Hz. A notch filter with 50 Hz was also used to remove the
power grid noise during the data acquisition. The experiment was
composed of 10 blocks, and each block consisted of 8 trials (4 trials
for each hand). The sequence of cues for different MI tasks was
presented randomly in each block. The experiment was approved
by the ethical committee of Tianjin University.
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FIGURE 1

(A) Timing of a trial paradigm of experiment one and experiment two. A white circle is displayed for 2 s at the beginning, then a red circle appears 2 s
later, reminding the subject to be prepared for an experiment task. From the 4 to 8 s, the subject performs the MI task. A hand pointing to the left
indicates the left-hand MI task and pointing to the right indicates the right-hand MI task. In the test phase of experiment two, subjects were
informed of the output after each MI task. Finally, the subject is asked to keep a resting state for 2 s. (B) Experiment phases of experiment two. We
use the proposed methods to train a classifier in the training phase, then evaluate its performance in the test phase.

TABLE 1 The number of training and test trials for each subject of
the dataset IVa.

Subject Training trials Test trials

aa 168 112

al 224 56

av 84 196

aw 56 224

ay 28 252

2.1.2. Dataset IVa of BCI competition III
The Dataset IVa of BCI Competition III was recorded from

five healthy subjects. This dataset contains two MI tasks, i.e., the
right-hand and right-foot movements. The data were captured by a
BrainAmp amplifier system with a 128-channel Ag/AgCl electrode
cap, and 118 EEG channels were measured at positions of the
extended international 10/20-system. The data were sampled at
1,000 Hz and then band-pass filtered between 0.05 and 200 Hz.
There were 280 trials for each subject, namely 140 trials for each
task. Table 1 shows the number of trials for training and test data
for the five subjects. In each trial, a visual cue was shown for
3.5 s, and the subjects performed the MI task. The presentation
of target clues was intermitted by periods of random length from
1.75 to 2.25 s so that the subjects could take a short break. In this
dataset, the training and test sets consisted of different sizes for each
subject.

2.1.3. Online evaluation
The most effective BCI research usually incorporates offline and

online evaluations (Wolpaw and Wolpaw, 2012). We performed
the experiment two to evaluate the performance of the proposed
algorithm in the online operation. Ten right-handed and healthy
subjects (four males and six females, aged 22–32) participated in

the experiment. Four subjects had no prior experience with MI-
based BCIs. All the subjects signed a consent form in advance. The
purpose and procedure of the experiment were clearly explained to
each subject before the EEG recording. The study was approved by
the ethical committee of Tianjin University.

Figure 1A shows the timing of a trial paradigm, which is the
same as experiment one. A hand pointing to the left indicates the
left-hand MI task, and pointing to the right indicates the right-
hand MI task. During the experiment, subjects were seated in a
chair about 1 m from a monitor that displayed the task cues on
a black background. The subjects were required to perform left-
and right-hand MI tasks. Experiment two consisted of training
and test phases (Figure 1B), containing forty trials. The training
phase contained 30 trials (15 for each hand) used as the training
dataset to generate individual classification parameters. The data
in the test phase, containing five trials for each hand, was used
as the test dataset to evaluate the performance of the proposed
method. The BCI system operated in real-time in experiment two.
In the test phase, subjects were informed of the output after each
MI task so that they could adjust their brain signals to ensure
that the correct intent could be continuously accomplished in the
following MI tasks. The sequence of cues for different tasks was
presented randomly in the training and test phases. An electrode
placed on the vertex served as the reference, and the ground
electrode was placed on the forehead. The EEG data were acquired
by a Neuroscan SynAmps2 system with a 64-channel quick-cap
using the international 10–20 system, and data were sampled at
1,000 Hz.

2.2. Preprocessing

First, the EEG data were subjected to a band-pass FIR
filter to remove slow signal drifts and high-frequency noise and
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FIGURE 2

Flow chart of the proposed tCSP. tr indicates training data, ca
indicates calibration data, te indicates test data, H indicates the
concatenated time-frequency data, Corr. indicates Pearson
correlation, yt indicates the tCSP feature, Fa indicates the optimal
frequency point, f1(·) and f2(·) indicate decision functions.

down-sampled to 100 Hz. Then, the data were processed by the
common average reference (CAR) and extracted to form an epoch.
Finally, we divided each dataset into training, calibration and test
data.

For the datasets from experiment one and experiment two,
the EEG data were band-pass filtered from 8 to 32 Hz. The data
between 0.5 and 3.0 s, with respect to cue onset, were extracted
for classification. For Dataset IVa, we filtered the data from 7 to
30 Hz and extracted the data between 0.5 and 2.5 s with respect
to cue onset for classification. For evaluating the performance of
the proposed algorithm, we used a 10-fold cross-validation method
for the dataset of experiment one and a 5-fold cross-validation
method for Dataset IVa. For experiment one, eight-tenths of the
data were used as training data and the remaining two-tenths
were divided equally as calibration and test data. For Dataset IVa,
three-fifths of the data were used as training data, one-fifths as
calibration data and the remaining one-fifths as test data. We used
a 10-fold cross-validation method for the training classifier in the
training phase of experiment two. Nine-tenths of the data from the
training phase were used as training data and the remaining data
were used as calibration data. The data from the test phase were
used as test data.

2.3. CSP filtering

We performed spatial filtering using the CSP on the
preprocessed data. The CSP filter W can be obtained using the
training data of two classes. The EEG data can be presented as
a matrix Ein ∈ RN = T , where i denotes the i-th trial, n (i.e., 1,2)

denotes each of the two MI tasks, N is the number of channels, and
T is the number of samples per channel. The CSP method can be
summarized using the following steps.

Firstly, the data were decentered as follows:

Ein = Ein − En (1)

where n = 1,2 and En is the average over the trials of each group.
Secondly, we calculated the normalized spatial covariance of Ein,

which can be obtained from:

Cn =
1
I

∑I

i

Ein · (E
i
n)
′

trace(Ein · (Ein)′)
(2)

where (·)’ denotes the transpose operator, trace(X) is the sum of the
diagonal elements of X and Cn∈ RN = T denotes the average spatial
covariance of all trials for class n. The composite spatial covariance
is given as:

Cc = C1 + C2 (3)

where the subscript c is short for composite. Thirdly, we calculated
the whitening transformation matrix. The process of eigenvalue
decomposition on Cc is shown below:

Cc = VcDcV ′c (4)

where Vc is the matrix of eigenvectors and Dc is the diagonal
matrix of eigenvalues sorted in descending order, and the whitening
transformation matrix is presented as:

P = −
1
2
√
DcV ′c (5)

Fourthly, we performed a whitening transformation:

Sn = PCnP′ (6)

then S1 and S2 share the same eigenvectors, and they can be
factored as:

Sn = B3nB′ (7)

where B is the matrix of eigenvectors and 3n (n = 1,2) is the
diagonal matrix of eigenvalues, which are sorted in descending
order. The eigenvectors with the largest eigenvalues for S1 had the
smallest eigenvalues for S2 and vice versa. The spatial filter can be
expressed as:

W = B′P (8)

Finally, with the spatial filter W, the original EEG can be
transformed into uncorrelated components:

Zi
= W′Ei (9)

where i denotes the i-th trial. For each of the two imagery
movements, the variances of only a few signals that correspond to
the first and last M eigenvalues are most suitable for discrimination.
Hence, after spatial filtering, we got the data Zi

∈ R2M = T . We
selected the first and last four eigenvectors of the W for feature
extraction, i.e., the M was set to 4 in this paper. The CSP features
are calculated as:

σp = log

(
var(zp)∑2M

p = 1 var(zp)

)
, p = 1, 2, · · · , 2M (10)

where Z denotes the transformed data in Equation 9, and the log
transformation, i.e., the log(·) in Equation 10, approximates the
normal distribution of the data. We finally get 2M features for one
trial, forming a feature vector yc.
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FIGURE 3

Time-frequency maps on C3 and C4 channels of experiment one. Left indicates the left-hand MI task, and right indicates the right-hand MI task.
Blue indicates the ERD, red indicates the ERS, and black dashed lines indicate the task onset. (A) Time-frequency maps averaged across trials of all
subjects. The left-hand MI task induces a stronger mu-band ERD on C4 than on C3, and the right-hand MI task induces a stronger ERD on C3.
(B) Time-frequency maps averaged across trials of subject S4, showing little ERD patterns when performing MI tasks.

FIGURE 4

(A) Concatenated time-frequency maps averaged across trials of subject S9. After CSP filtering, we obtain eight channels’ data with a time window
of 2.5 s. We transform the CSP-filtered data into the time-frequency domain and get eight time-frequency data segments. Then we concatenate the
eight time-frequency data segments, forming the concatenated time-frequency data of 20 s. (B) Waveforms of the templates at the optimal
frequency point (11.87 Hz) of subject S9. After data concatenation, the optimal frequency points for classification are selected through the method of
section “2.5.3. tCSP feature selection”. The templates are calculated using training concatenated time-frequency data at the optimal frequency point.

2.4. Data transformation and
concatenation

After CSP spatial filtering (Equation 9), we transferred the data
Zi to the time-frequency domain with Morlet wavelet to present
more discriminative information. The time-frequency transferred
data can be presented as a matrix Gi

∈R2M × J × T , where J
denotes the number of frequency points. Then we concatenated
the transferred data in the time dimension, i.e., the data Gi was
reconstituted to a matrix Hi

∈ RJ × Tw , where Tw = T× 2M.

2.5. Feature extraction and pattern
classification

In this section, we first extracted tCSP features from
the concatenated data Hi at all frequency points. Then we
selected the optimal frequency point for classification by the
calibration procedure, which was a process of data-dimension
reduction to remove redundant frequency information for

each subject. Furthermore, CSP features were extracted and
combined with tCSP features to further enhance the classification
performance of BCI systems.

2.5.1. tCSP feature extraction
Transformed common spatial pattern feature consists of

Pearson correlation coefficients ρ. To extract tCSP features, we
first selected the data at frequency point j from the matrix Hi of
training data, which can be presented as a vector Ki,j

∈ RTw . Then
we calculated the templates according to:

templatejn =
1
I

I∑
i = 1

Ki,j
n,tr, n = 1, 2 (11)

where I denotes the number of training-data trials, i denotes the
i-th trial, n denotes each of the two MI tasks, tr denotes the training
data. Finally, we calculated tCSP features of all data according to:

ρi,j =

[
corr(templatej1, Ki,j)

corr(templatej2, K
i,j)

]
(12)
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FIGURE 5

Feature visualization of different methods using t-SNE. Orange dots indicate samples of left-hand MI tasks, blue dots indicate right-hand MI tasks.
The training processes used 40 samples (A) and eight (B).

FIGURE 6

The classification performance in the calibration process of experiment one. We calculated the classification accuracies using calibration data at all
frequency points. The frequency points with the highest classification accuracy are selected as the optimal frequency points for each subject.

where corr(·) is Pearson-correlation calculating, ρi,j denotes the
tCSP features of the i-th trial at the frequency point j.

2.5.2. Fisher discriminant analysis
In this paper, fisher discriminant analysis (FDA) (Mika et al.,

1999) was used for pattern classification. FDA is a classical classifier
that maximizes the ratio between inter-class and intra-class

variance. FDA classifier is mainly based on the decision function
defined as follows:

f (y) = U ′y+ ω0 (13)

where y is the feature vector obtained from the above steps, U is a
weight vector, and ω0 is a threshold. The values of the weight vector
and the threshold are identified by employing fisher’s criterion
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TABLE 2 The classification accuracies (%) of all subjects from experiment one using CSP, FBCSP, tCSP and the combination method.

Subjects CSP FBCSP tCSP CSP+FBCSP tCSP+FBCSP tCSP+CSP

S1 68.75 65.00 65.00 56.25 65.00 71.25

S2 82.50 88.75 96.25 90.00 96.25 96.25

S3 83.75 97.50 98.75 98.75 97.50 98.25

S4 42.50 56.25 53.75 56.25 54.50 55.25

S5 62.50 65.00 61.25 63.75 62.50 66.25

S6 76.25 88.75 96.25 92.50 97.50 97.50

S7 91.25 91.25 93.75 90.00 90.00 95.00

S8 56.25 61.25 66.25 58.75 68.75 65.25

S9 71.25 72.50 90.00 72.50 81.25 90.00

S10 97.50 98.75 100 100 100 100

S11 97.50 86.25 98.75 98.75 100 97.50

Av. 75.45 79.20 83.64 79.77 83.02 84.77

Std. 17.39 15.46 17.97 18.33 17.28 16.67

The best result of each subject is set in bold.

FIGURE 7

The variation trend of average classification accuracies with
different training sample sizes. The classification accuracies rise
with the increase of training samples for all methods. The proposed
methods achieve better classification performance than the others,
even in small-sample setting conditions.

on the training data. The classification process is based on the
separation by the hyperplane as described in the following:{

f (y) > 0, yε D1

f (y) < 0, yε D2
(14)

where D1 and D2 are two different classes. In this study, the method
of N-fold cross-validation was applied to evaluate the classification
performance of the proposed method.

2.5.3. tCSP feature selection
We utilized the calibration data to find out the subject-

specific optimal frequency points for classification. Concretely, the
calibration features were used as the inputs of an FDA classifier,
which was trained by training data, and then we got a classification
accuracy matrix Q∈RA × J , where A indicates the number of
subjects, and J indicates the number of the frequency points. To
get stable and reliable results, we applied 10-fold cross-validation

to calculate the classification accuracy at each frequency point. We
used a sparse matrix F∈RA × P to select the optimal frequency point
Fa as:

Fa = Q · F′ (15)

In the sparse matrix F, the elements where the highest classification
accuracies occur in the calibration process were set to one for each
subject, and the others were set to zero. Then the training and test
features at Fa were extracted. Finally, we got a tCSP feature vector
yt for each subject.

2.5.4. Feature combination
To further improve the performance of the MI-based BCI, we

combined the selected tCSP features and CSP features, getting a
fusion feature vector Y =

[
yt,yc

]′, to provide more discriminative
information for classification. The fusion features were used to
evaluate the performance of the proposed method.

The main processes of the method are illustrated in Figure 2,
and the pseudocode of tCSP is shown in the Appendix.

3. Results

3.1. ERD patterns of left- and right-hand
MI tasks

The mu (8–14 Hz) and beta (14–30 Hz) ERDs reflect the
brain oscillation patterns induced by MI. Event-related spectral
perturbation (ERSP) measures the mean dynamic changes from
baseline in terms of the power spectrum over time in a broad
frequency range (Makeig, 1993; Delorme and Makeig, 2004; Makeig
et al., 2004). It can provide detailed information on ERD/ERS
patterns. Hence, we first analyzed the ERD patterns between the
frequency range of 8–32 Hz and the time range of−1 to 5 s for each
MI task by ERSP. The baseline is the mean of the data ranging from
−1s to 0 s. The average ERSP values of electrodes C3 and C4 are
compared for the left- and right-hand MI tasks.
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TABLE 3 Comparison of the classification performance for dataset IVa in BCI competition III.

References Feature extraction Classification method Accuracy (%)

aa al av aw ay Av.

Song and Epps, 2007 CSP, dynamic features SVM 91.50 99.20 70.90 96.90 94.70 90.60

Song and Epps, 2007 CSSP SVM 85.40 97.70 67.70 96.50 94.00 88.26

Song and Epps, 2007 CSSSP SVM 88.40 97.90 68.20 93.50 89.50 87.50

Novi et al., 2007 SBCSP, Bayesian SVM 89.30 98.60 70.40 95.70 95.70 90.00

Yong et al., 2008 SCSP LDA 57.50 86.90 54.40 84.40 84.30 73.50

Kai Keng et al., 2008 FBCSP MIBIF − − − − − 90.30

Meng et al., 2009 CSP, channel selection SVM 82.40 98.60 76.80 94.00 96.60 89.68

Lu et al., 2010 R-CSP Aggregation 76.80 98.20 74.50 92.90 77.00 83.90

Park et al., 2017 FBRCSP ensemble method 91.07 94.64 75.00 76.78 93.65 86.23

Park and Lee, 2017 SBRCSP FLD 86.81 98.21 63.78 89.05 77.78 82.69

Park and Chung, 2019 LRFCSP SVM 98.93 93.21 81.79 93.21 97.50 92.93

This work tCSP FDA 87.06 97.39 75.56 96.67 100 91.33

This work tCSP, FBCSP FDA 85.88 97.39 77.78 96.67 100 91.54

This work tCSP, CSP FDA 88.24 100 86.67 96.67 100 94.31

The best result of each subject is set in bold.

FIGURE 8

The classification accuracies of different methods in experiment two. The mean indicates the average classification accuracies across all the
subjects. tCSP or tCSP+CSP achieves the highest classification accuracies for most subjects.

Figure 3A presents the averaged time-frequency maps of C3
and C4 across all the subjects of experiment one. The EEG power
decreased after the zero-time point when the subjects performed
the MI tasks, especially in the frequency range of 8–14 Hz, which
refers to ERD. In addition, the phenomenon of contralateral
dominance is distinctly observed in Figure 3A. The ERD of the
mu band (8–14 Hz) is more significant at C4 than C3 for the left-
hand MI task. On the contrary, the right-hand MI task induces
lower ERD at C3. However, not all the subjects show distinguishable
ERD patterns, such as the time-frequency patterns of subject 4 in
Figure 3B.

3.2. tCSP feature extraction

After CSP filtering and time-frequency transformation, we
obtained eight time-frequency data segments with a time window
of 2.5 s. Figure 4A shows the concatenated time-frequency maps

averaged across trials of subject S9. The four segments before 10 s
correspond to the first four eigenvectors of CSP filter W, and
the last four segments correspond to the last four eigenvectors of
W. The frequency ranges from 8 to 32 Hz. We can observe the
spectral power increase in the mu band induced by the left- and
right-hand MI tasks. Figure 4B shows waveforms of the templates
at the optimal frequency point of subject S9. The templates are
calculated according to Equation 10. The templates show a distinct
discriminative ability for the left- and right-hand MI tasks.

We also visualized the features to understand the proposed
method’s effect further. Figure 5 displays the feature distribution
maps transformed by t-SNE (Van der Maaten and Hinton, 2008)
for subjects S2, S6, and S9 from experiment one. The features
were extracted by CSP, FBCSP, and tCSP with 40 training samples
(Figure 5A) and 8 training samples (Figure 5B) for each subject.
The tCSP features of different MI tasks are more diverse than those
of CSP and FBCSP. The two tasks could be better separated with
more training samples for all methods.
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3.3. Optimal frequency points selection

We transferred the data ranging from 8 to 32 Hz to the
time-frequency domain with a step of about 0.8 Hz, generating
32 frequency points for each subject. In the calibration process,
we first calculated the classification accuracies of all frequency
points for each subject using the calibration data with a 10-
fold cross-validation approach. Figure 6 shows the classification
performance for all subjects of experiment one. The darker red
color denotes higher classification accuracy. Then we selected the
frequency points with the highest classification accuracy as the
optimal frequency points Fa for each subject. Finally, we tested the
performance of the proposed methods using the test data at Fa.
Figure 6 shows that most optimal frequency points are distributed
in the mu and beta bands with individual variation.

3.4. Classification performance of
experiment one

Table 2 summarizes the classification accuracies of CSP, FBCSP,
tCSP, and the combination methods. All the methods shared the
same parameters, such as the frequency band and time window
for feature extraction. To get reliable experimental results, we
used a 10-fold cross-validation approach. The highest classification
accuracy was highlighted in bold for each row in the table. One-way
repeated measures ANOVAs were employed to indicate whether
the accuracy differences among methods reached the statistical
significance level.

Mauchly’s test indicated that the assumption of sphericity
was violated. Hence, Correction was done using the Greenhouse–
Geisser criterion. The results revealed that the accuracy differences
were significant for all the methods [F(2.84, 28.37) = 7.06,
p < 0.01]). The tCSP method got an average accuracy of 83.64%,
which was significantly better than that obtained by CSP (t10 = 3.28,
p < 0.01) and FBCSP (t10 = 2.29, p < 0.05). The combination
method of tCSP and CSP achieved an average accuracy of 84.77%,
yielding statistically better performance than CSP (t10 = 4.24,
p < 0.01), FBCSP (t10 = 3.38, p < 0.01), and CSP+FBCSP
(t10 = 2.63, p < 0.05). The performance of tCSP+FBCSP was
significantly better than CSP+FBCSP (t10 = 2.36, p < 0.05). At the
same time, there was no significant difference between tCSP and the
combination methods of tCSP+CSP and tCSP+FBCSP (p> 0.05).

Figure 7 shows the average classification accuracies across all
subjects with the different number of training samples for all
methods. The classification accuracies had a rising trend with the
increase of training samples. It should be noted that tCSP achieved
significantly better performance than CSP and FBCSP for all
conditions. The tCSP+CSP method achieved the best performance
when the number of training samples was between 24 and 56.

3.5. Classification performance of
dataset IVa

Table 3 compares the classification results of the proposed
methods with some other CSP-based approaches. In this study,
the raw data were bandpass filtered between 7 and 30 Hz. The
data from 0.5 to 2.5 s after cue onset were selected for feature

extraction and classification. A 5-fold cross-validation was applied
to evaluate the classification performance of the proposed method.
tCSP achieved an average classification accuracy of 91.33%, and
the combination method of tCSP and CSP achieved an average
classification accuracy of 94.31%, with two subjects achieving
100% accuracy, which obtained the highest average classification
accuracy.

3.6. Results of the online evaluation

The classification parameters in experiment two, such as
frequency ranges and the sampling rate, were selected in
accordance with experiment one. Furthermore, we also performed
the pseudo-online evaluation of CSP, FBCSP, CSP+FBCSP and
tCSP+FBCSP using the same data collected from experiment two.
Figure 8 shows the classification results of all subjects. The accuracy
differences were significant for all the methods [F(5, 45) = 3.27,
p < 0.05]. tCSP achieved an average accuracy of 80.00%, with two
subjects getting an accuracy of 100%. The combination method of
tCSP and CSP achieved an average accuracy of 84.00%, with three
subjects getting an accuracy of 100%, which was significantly better
than that obtained by CSP (t9 = 2.81, p < 0.05), FBCSP (t9 = 2.28,
p < 0.05), CSP+FBCSP (t9 = 2.70, p < 0.05), and tCSP+FBCSP
(t9 = 2.75, p < 0.05). There was no significant difference between
the classification accuracies of tCSP and CSP or FBCSP (p> 0.05).

4. Discussion

As a typical algorithm for ERD-feature extraction, CSP heavily
depends on selecting frequency bands. However, not all subjects
show distinct ERD patterns with strong discriminant ability when
performing MI tasks (Figure 3B). CSP features generally yield poor
classification performance with an inappropriate frequency band
(Novi et al., 2007). Hence, selecting appropriate subject-specific
frequency ranges before CSP is an effective and popular measure
to improve the performance of MI-based BCIs (Novi et al., 2007;
Kai Keng et al., 2008; Park and Lee, 2017; Park et al., 2017). This
study proposed tCSP method to optimize the frequency selection
after CSP filtering, achieving significant better performance than
the traditional CSP methods.

tCSP addresses the MI-induced EEG features in both spatial
and frequency domains. After spatial filtering by CSP, we
increased the dimension of the data, i.e., the time-frequency
transformation and data concatenation, aiming to present more
detailed discriminative information in the time-frequency domain
(Figure 4A). Then, we reduced the dimension of the data
by selecting the optimal subject-specific frequency points for
classification. The data dimension increasing and reducing
processes may reinforce features’ discriminability. As a result, from
Figure 5, we can see that the distribution of tCSP features had
a more obvious divergence with better discriminability than CSP
and FBCSP, especially when the number of training samples was
limited.

CSP features reflect a broad frequency-band power variation
of MI EEG data (Ramoser et al., 2000; Kai Keng et al., 2008). In
contrast, tCSP extracts feature from frequency point ranges, which
may get finer discriminative information in the frequency domain
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than CSP. Thus, tCSP got better performance than CSP. The tCSP
and CSP features may reflect different fineness levels of frequency
optimization, so the combination of tCSP and CSP may provide
comprehensive discriminative information to further improve the
performance of MI classification. From the results in Table 2, the
tCSP+CSP method got the best performance on average with the
highest accuracy of 100%, which was significantly better than CSP,
FBCSP, and CSP+FBCSP. For dataset IVa (Table 3) and the online
evaluation (Figure 8), the combination of tCSP and CSP got the
best performance on average.

Generally speaking, a limited number of training samples
would bring about a high variance for the covariance estimation,
which might result in a biased estimation of eigenvalues (Friedman,
1989). Thus, a small-sample setting condition usually results in
poor performance of classifiers. From the results of this study, the
proposed method performed relatively well in small-sample setting
conditions. For the dataset of experiment one (Figure 7), the tCSP
method achieved an average accuracy of about 70% with 16 training
samples, approximately equal to that of traditional CSP and FBCSP
with 48 training samples.

5. Conclusion

This study designed a novel feature extraction method, i.e.,
tCSP, to optimize the frequency selection after CSP filtering.
tCSP could achieve better performance than the traditional CSP
and filter bank CSP. Furthermore, the combination of tCSP and
CSP could extract more discriminative information and further
improve the performance of MI-based BCIs. The results of a dataset
collected by our team, a public dataset and an online evaluation
verified the feasibility and effectiveness of the proposed tCSP. In
general, optimizing the frequency selection after CSP is a promising
approach to enhance the decoding of MI EEG patterns, which is
significant for the development of BCIs.
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Appendix

Here is the pseudocode of the tCSP:
Algorithm: tCSP
Input: EEG dataset E ∈ RN × T .
Output: The tCSP feature vector yt .
Step 1 (Preprocessing):

• Divide the dataset into training, calibration and test data.

Step 2 (CSP Filtering):

• Center the training data as Ein = Ein−En, where n = 1,2 and i denotes the i-th trial.
• Calculate composite spatial covariance Cc = C1 + C2.
• Eigenvalue decomposition: Cc = VcDcV ′c.
• Calculate P = −

1
2
√
DcV ′c.

• Whitening transformation: Sn = PCnP′.
• Eigenvalue decomposition: Sn = B3 nB′.
• Calculate W = B′P.
• Transform all the data as Zi

= W′Ei.

Step 3 (Data transformation and concatenation):

• Transfer the data Zi to the time-frequency domain Gi
∈R2M × J × T .

• Reconstitute the data Gi to a matrix Hi
∈ RJ × Tw , where Tw = T× 2M.

Step 4 (feature extraction):

• For j = 1: J

1. Select the data Ki,j
∈ RTw from Hi at frequency point j

2. Calculate templatejn = 1
I
∑I

i = 1 K
i,j
n using the training data

3. Calculate tCSP features as ρi,j =

[
corr(templatej1, Ki,j)

corr(templatej2, K
i,j)

]
4. Train an FDA classifier using training features, then calculate a classification accuracy using calibration features
5. All the classification accuracies form a matrix Q∈RA × J , where A indicates the number of subjects
6. Break and go to next step

• Select the frequency points with the highest classification accuracies as Fa = Q · F′, where F is a sparse matrix.
• Select the tCSP features at Fa to form a feature vector yt .
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