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Introduction: The gradual loss of motor neurons (MNs) in the brain and spinal

cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the mechanisms

underlying neurodegeneration in ALS are still not fully understood.

Methods: Based on 75 ALS-pathogenicity/susceptibility genes and large-scale

single-cell transcriptomes of human/mouse brain/spinal cord/muscle tissues, we

performed an expression enrichment analysis to identify cells involved in ALS

pathogenesis. Subsequently, we created a strictness measure to estimate the

dosage requirement of ALS-related genes in linked cell types.

Results: Remarkably, expression enrichment analysis showed that α- and γ-MNs,

respectively, are associated with ALS-susceptibility genes and ALS-pathogenicity

genes, revealing differences in biological processes between sporadic and familial

ALS. In MNs, ALS-susceptibility genes exhibited high strictness, as well as the

ALS-pathogenicity genes with known loss of function mechanism, indicating

the main characteristic of ALS-susceptibility genes is dosage-sensitive and the

loss of function mechanism of these genes may involve in sporadic ALS. In

contrast, ALS-pathogenicity genes with gain of function mechanism exhibited

low strictness. The significant difference of strictness between loss of function

genes and gain of function genes provided a priori understanding for the

pathogenesis of novel genes without an animal model. Besides MNs, we

observed no statistical evidence for an association between muscle cells and

ALS-related genes. This result may provide insight into the etiology that ALS

is not within the domain of neuromuscular diseases. Moreover, we showed

several cell types linked to other neurological diseases [i.e., spinocerebellar ataxia

(SA), hereditary motor neuropathies (HMN)] and neuromuscular diseases [i.e.

hereditary spastic paraplegia (SPG), spinal muscular atrophy (SMA)], including

an association between Purkinje cells in brain and SA, an association between

α-MNs in spinal cord and SA, an association between smooth muscle cells and

SA, an association between oligodendrocyte and HMN, a suggestive association
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between γ-MNs and HMN, a suggestive association between mature skeletal

muscle and HMN, an association between oligodendrocyte in brain and SPG, and

no statistical evidence for an association between cell type and SMA.

Discussion: These cellular similarities and differences deepened our

understanding of the heterogeneous cellular basis of ALS, SA, HMN, SPG,

and SMA.

KEYWORDS

amyotrophic lateral sclerosis (ALS), motor neurons (MNs), single-cell transcriptome,
genome-wide association studies (GWAS), neurological disorder

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease characterized by the progressive loss of motor neurons
(MNs) in the brain and spinal cord (Kiernan et al., 2011). The
incidence of ALS has been estimated to 1.65 per 100,000 people-
year in China (Xu et al., 2020), 1.5 in United States (Mehta et al.,
2022), and 3.19 in European (Marin et al., 2014). Genetics is
a critical factor for ALS. In familial ALS, pathogenic mutations
can be identified in about 60–80% of patients, of which C9orf72
(40%), SOD1 (20%), FUS (1–5%), and TARDBP (1–5%) are the
most common (Renton et al., 2014). In sporadic ALS, the genetic
contribution is estimated to 61% (95% CI: 38–78%) (Graham
et al., 1997; Al-Chalabi et al., 2010). Large-scale genome-wide
association studies (GWAS) have identified several susceptibility
genes, including C9orf72, SOD1, and UNC13A. The ALS-related
genes were implicated in altered protein homeostasis (SOD1),
depositions of intranuclear RNA (C9orf72), and altered neuronal
cytoskeletal dynamics (TUBA4A), leading to the death of upper
and/or lower MNs in the brain, brainstem, and spinal cord (Brown
and Al-Chalabi, 2017).

Although MN functions have been implicated, the mechanisms
of neurodegeneration in ALS are still not fully understood (van Es
et al., 2017). Moreover, the roles of two distinct subpopulations—
α-MNs and γ-MNs—in ALS pathogenesis are not fully elucidated.
α-MNs located in the spinal cord innervate extrafusal muscle
fibers, which create force to move the skeleton. In contrast, γ-MNs
innervate intrafusal fibers, which modulate the sensitivity of muscle
spindles to stretch (Burke et al., 1977). A comparison of α- and γ-
MNs in the spinal cord showed different behavior in ALS (Ragagnin
et al., 2019), indicating that these two MNs subpopulations are
not affected equally in ALS pathogenesis, raising the question if
genetics contributes to the different roles of MNs subpopulations
in ALS. Although several genes were found to be associated with
familial and sporadic ALS, few studies have addressed possible
genetic differences distinguishing familial and sporadic ALS and
the cellular basis governing pathogenicity and susceptibility of ALS.

Abbreviations: ALS, amyotrophic lateral sclerosis; SA, spinocerebellar
ataxia; HMN, hereditary motor neuropathies; SPG, hereditary spastic
paraplegia; SMA, spinal muscular atrophy; MN, motor neuron; EWCE,
expression weighted cell type enrichment; FDR, false discovery rate; HI,
haploinsufficient; LoF, loss of function; GoF, gain of function; LoFT, loss of
function tolerant; NNN, non-neurodegeneration-or-neurodevelopment.

Recent advances of single-cell RNA-sequencing have provided
an accurate and comprehensive depiction of cell types and
gene expression. On the basis of cell type identification and
diseases-related gene expression, previous studies (Skene et al.,
2018; Bryois et al., 2020) have revealed various brain cell
types involved in neurological disorders, including associations
between monoaminergic neurons and neurodegenerative diseases,
associations between embryonic GABAergic neurons and
neurodevelopmental diseases, and associations between projecting
excitatory neurons and psychotic disorders. Our previous study
also showed that serotonergic neurons are involved in the etiology
and therapy-genetics of anxiety disorders (Liu et al., 2021).

Here, using the same strategy, we applied an empirical method
named expression weighted cell type enrichment (Skene and
Grant, 2016) (EWCE) to investigate the cellular basis of ALS and
four neurological disorders with phenotypic overlap, including
hereditary motor neuropathies (HMN), spinocerebellar ataxia
(SA), hereditary spastic paraplegia (SPG), spinal muscular atrophy
(SMA). Our results suggested that MNs in the spinal cord play a
role in ALS, SA, and HMN; additionally, MNs subpopulations—
α- and γ-MNs—are mainly linked to the susceptibility and
pathogenicity of ALS.

Materials and methods

Pathogenicity genes of ALS, HNM, SA,
SPG, and SMA

We scanned the OMIM (Amberger et al., 2015) database
(updated till July 14th, 2021) using the phenotypic series
“PS105400-Amyotrophic lateral sclerosis” and discovered 37 causal
connections between pathogenic mutations in genes and ALS
subtypes (e.g., ALS 6, 8, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23,
and 26, with or without frontotemporal dementia). We identified
32 unique pathogenicity genes and employed the gene symbols
reported in OMIM (Supplementary Table 1). We searched the
OMIM (Amberger et al., 2015) database (updated till July 14th,
2021) for the phenotypic series “PS164400-Spinocerebellar ataxia,”
“PS303350-Spastic paraplegia,” as well as phenotypic description
including of “hereditary motor neuropathies” and “spinal muscular
atrophy” that do not belong to a single phenotypic series. Finally,
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we discovered 36, 15, 20, 57 genes that are related to HMN, SA,
SMA, and SPG, respectively (Supplementary Table 2).

Susceptibility genes of ALS

We collected 48 ALS-susceptibility genes from 13 recent large-
scale genome-wide association studies (Laaksovirta et al., 2010;
Shatunov et al., 2010; Deng et al., 2013; Fogh et al., 2014; Xie et al.,
2014; van Rheenen et al., 2016, 2021; Benyamin et al., 2017; Nicolas
et al., 2018; Wei et al., 2019; Iacoangeli et al., 2020; Nakamura
et al., 2020; Li et al., 2021). We reviewed these studies carefully and
employed the genes that were reported to be significantly associated
with ALS (Supplementary Table 3) in single-variant association
and/or gene-level association.

Single-cell transcriptome datasets

We employed six large-scale single-cell transcriptome datasets
from recent studies (Zeisel et al., 2015; Rosenberg et al., 2018;
De Micheli et al., 2020; Supplementary Table 4). The first
dataset was generated by Rosenberg et al. (2018). Their study
analyzed 156,049 mononuclear transcriptomes in mouse brains
and spinal cords and classified these cells into 73 cell types via an
unsupervised clustering method. The second dataset was generated
by De Micheli et al. (2020). The research team integrated 22,058
single-cell transcriptomes in human muscles (e.g., right serratus,
left flexor hallucis longus, orbicularis oris, eye lid, left vastus
lateralis, left external oblique, left rectus abdominus, trapezius,
right external oblique, right flexor hallucis longus) and resolved
16 distinct populations of muscle-resident cells. The third dataset
was generated by Milich et al. (2021). Their study generated 66,178
cells from uninjured and injured (Briefly, mice were anesthetized
and received a 65-kilodyne mid-thoracic contusion injury) mouse
spinal cord. Cluster analysis of these cells resulted in 15 distinct
clusters. The fourth dataset was generated by Sathyamurthy et al.
(2018). Their study analyzed 17,354 nuclei from adult mouse
lumbar spinal cord and founded seven major clusters. The fifth
dataset was generated by Andersen et al. (2021). Their study
obtained transcriptomes of 112,554 cells and 34,884 nuclei from
four samples of human spinal cord and indicated the cellular
landscape of the human spinal cord, including α and γ MNs.
The sixth dataset with 9,970 cells was assembled by Skene et al.
(2018) from single-cell transcriptome datasets (Dueck et al., 2015;
Saraiva et al., 2015; Usoskin et al., 2015; Zeisel et al., 2015). These
cells are distributed in various mouse brain regions and were
classified into 24 brain cell types. These datasets were released
by the authors and accessed from the Gene Expression Omnibus
database.

Datasets 1–2 containing single-cell transcriptomes of mouse
brain, mouse spinal cord, and human muscle were used for
discovery; Datasets 3–4 were used for replicating the associations
that were founded in mouse spinal cord. Dataset 5 is used for
validating the associations of mouse in human spinal cord. The
reason we did not used it for discovery is that the dataset 5 is
provided by a preprint study. Dataset 6 was used for validating
the associations that were found in mouse brain. Since no cell

type annotations of MNs and subpopulations were included in
the datasets 3–4, we annotated MNs and subpopulations via the
SingleR (Aran et al., 2019) R-package1 with reference to the spinal
cord (Rosenberg et al., 2018) (dataset 1).

Expression weighted cell type
enrichment

The EWCE (Skene and Grant, 2016) method has been
demonstrated to be reliable for studying the expression specificity
across various cell types with single-cell transcriptomes. We
employed the EWCE R-package2 to investigate the cell-type
expression specificity of ALS-related genes. Firstly, we used the
generate-celltype-data function to calculate the specificity of genes
in each cell type. Subsequently, we used the bootstrap-enrichment-
test function to estimate the P-value of specificity of target genes.
The bootstrap method randomly samples 10,000 lists of genes
with the same number of target genes from all the genes. The
specificity of these 10,000 lists of genes was used as background
distribution. P-values of specificity of target genes were calculated
by the cumulative density function of the specificity distribution
and adjusted by the false discovery rate (FDR) method. Statistical
significances differed by genes number were estimated by randomly
selecting the genes number (5–32) from ALS-pathogenicity genes
and exhibited in Supplementary Table 5.

Dosage requirement in related cells

We developed a strictness measure in this study to estimate
the dosage requirement for a given gene. Strictness was calculated

by the standard deviation of fold change: S = 1/

√∑n
i (Ci−C)

2

n−1 , in
which S refers to strictness, C refers to fold change, i refers to the
ith cell, and n refers to the total number of cells. The fold change
was calculated by the expression in one cell divided by the mean
expression in all cells: Ci Ei/E, in which E refers to the expression
in one cell, E refers to the mean expression, i refers to the ith cell.
A high strictness value indicates that a gene is required to have strict
expression. A low strictness indicates that the gene expression is
tolerant to alterations.

To calculate the significance of strictness for target genes, we
developed a method based on the Central Limit Theorem. Central
Limit Theorem states that the distribution of the sample means will
be approximately normal distribution. Firstly, we have a number
(n) of target genes that we want to study, and then we calculate
the strictness mean for these n genes (x). Subsequently, we take
a sample with n genes from all the genes randomly and repeat
the sampling 10, 000 times via a bootstrap method. We calculate
the strictness means for each of the 10,000 random samples and
then estimate the mean (µ) and the standard deviation (σ) of the
distribution via a maximum likelihood estimation. The distribution
of sample means should be approximately normal: XN(µ, σ2).
Finally, the P-value of the target genes mean is calculated

1 https://github.com/LTLA/SingleR

2 https://github.com/NathanSkene/EWCE
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FIGURE 1

Venn diagram of genes related to ALS, HMN, SA, SPG, and SMA. The
numbers in the area show the gene number in the corresponding
overlap of genes related to ALS-pathogenicity and
ALS-susceptibility (A), genes related to ALS, HMN, SA, SPG, and SMA
(B). These neurological disorders with complex phenotypic overlaps
share few genes.

as: P (x X) = 1− 1
σ
√

2π

∫ x
−∞
−exp

{
−

(x−µ)2

2σ2

}
dx. P-values are

adjusted by the Bonferroni’s method. We employed the three
gene sets described below for evaluating the performance of the
strictness measure.

Haploinsufficient genes

We accessed 299 known haploinsufficient (HI) genes from
Dang et al. (2008). We retained 49 HI genes that are related
to neurodegenerative and/or neurodevelopmental diseases (i.e.,
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, SA,
multiple system atrophy, epilepsy, autism spectrum disorder, and
schizophrenia) (Supplementary Table 6). These 49 genes were used
as a positive control for evaluating the strictness measure.

Loss-of-function tolerant genes

We accessed 330 putative homozygous loss-of-function
tolerant (LoFT) genes from Lek et al. (2016) (Supplementary
Table 6). These genes contain at least two different high confidence
loss-of-function (LoF) variants that were found in a homozygous

state in at least one individual in the ExAC database. These 330
genes were used as a negative control of HI genes.

Non-neurodegeneration-or-
neurodevelopment diseases-related
genes

We accessed 1,189 genes related to non-mental-health
diseases from Krishnan et al. (2016). These genes were identified
from OMIM and used as negative genes for autism spectrum
disorder-related genes. We reviewed these 1,189 genes and
then excluded the genes related to neurodegenerative and/or
neurodevelopmental diseases, including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, SA, multiple system
atrophy, epilepsy, autism spectrum disorder, and schizophrenia.
We retained 1,113 genes related to non-neurodegeneration-or-
neurodevelopment diseases (NNN) as another negative control of
HI genes (Supplementary Table 6).

Data and code availability

Genes related to ALS, HMN, SA, SPG, and SMA are listed in
Supplementary Tables 1–3. Single-cell transcriptome datasets are
listed in Supplementary Table 4. HI genes, LoFT genes, and NNN-
related genes are listed in Supplementary Table 6.

The code for investigating cell-type specificity and gene
expression strictness is written in R-program and is released at
GitHub.3

Ethics approval

This study was reviewed and approved by the Ethics Review
Committee at Hebei Medical University and was performed at
Hebei Industrial Technology Research Institute of Genomics. No
participant or donor was involved in our study.

Results

The involvement of motor neurons in
ALS

We collected 32 ALS-pathogenicity genes from the OMIM
database and 48 ALS-susceptibility genes from recent large-scale
genome-wide association studies. There are five genes (C9orf72,
KIF5A, NEK1, SOD1, and TBK1) related to the pathogenicity
and susceptibility of ALS (Figure 1A). To address the cellular
basis related to different genetic impacts, we employed the
EWCE method developed by Skene and Grant (2016). The
EWCE R-package was used to calculate the cell-type specificity
of the pathogenicity and susceptibility ALS genes in the single-
cell transcriptome data. No neurons in brain were found to

3 https://github.com/liuhankui/ALS
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FIGURE 2

Associations of cell types and six gene panels. The red line refers to the significance threshold (P-adjusted <0.05) after FDR adjustment. Histograms
exceeding the red line indicate the cell types of mouse brain (A), mouse spinal cord (B), and human muscle (C) significantly associated with
corresponding gene lists. The Sankey diagram linked the diseases and associated cell types (D).

be associated with ALS-pathogenicity genes or ALS-susceptibility
genes (Figure 2A). Surprisingly, α-MNs and γ-MNs in the spinal
cord were associated with ALS-susceptibility genes and ALS-
pathogenicity genes (Figure 2B), suggesting different involvements
of MNs subpopulations in ALS. To confirm our findings, we
employed two independent single-cell transcriptome datasets of
mouse spinal cord and annotated the cell types using the SingleR
package with a reference from Rosenberg et al. (2018). We
replicated the specific associations of susceptibility/pathogenicity
genes and α-/γ- MNs (Supplementary Table 7). A significant
association (P-value = 0.05) between susceptibility genes and
α-MNs, as well as a significant association (P-value = 0.03)
between pathogenicity genes and γ-MNs, was observed in the
replication data of mouse spinal cord data (Milich’s dataset).
Suggestive associations (P-value of susceptibility genes and α-
MNs = 0.08; P-value of pathogenicity genes and γ-MNs = 0.075)
were observed in the replication data of mouse spinal cord data
(Sathyamurthy’s dataset). We also validated these associations in
a single-cell transcriptome dataset of human spinal cord and
observed a significant association (P-value = 0.039) between
susceptibility genes and α-MNs, as well as a significant association
(P-value = 0.015) between pathogenicity genes and γ-MNs. The
replications in mouse dataset and validation in human dataset
demonstrated the robustness of our findings. We combined the
statistical summary of three independent single-cell transcriptome
datasets of mouse spinal cord and one single-cell transcriptome
dataset of human spinal cord via meta-analysis (Willer et al.,

2010) and used the total number of cell types (56) of the four
datasets [discovery: 14; replication of mouse spinal cord (Milich’s):
14; replication of mouse spinal cord data (Sathyamurthy’s):
10; validation of human spinal cord data: 18] for Bonferroni’s
P-value correction. The meta-analysis results (Supplementary
Table 7) confirmed γ-MNs associated with ALS-pathogenicity (P-
value = 6.00× 10−7) and α-MNs associated with ALS-susceptibility
(P-value = 6.86× 10−6).

Cellular differences of ALS, HMN, SA,
SPG, and SMA

Besides ALS, we included four neurological disorders—HMN,
SA, SPG, and SMA—with phenotypic overlaps and collected
their pathogenicity gene sets. Except for five of the HMN-
pathogenicity genes shared with SMA, there are few overlaps
between each pair among ALS, HMN, SA, SPG, and SMA
(Figure 1B). These results showed potential different contributions
of cell types to disease pathophysiology. Analysis of cell type-
specific expression of genes related to HMN, SA, SPG, and
SMA provided insights into their cellular basis: an association
between Purkinje cells in brain and SA, an association between
α-MNs in spinal cord and SA, an association between smooth
muscle cells and SA, an association between γ-MNs in spinal cord
and HMN, an association between oligodendrocyte and HMN, a
suggestive association between mature skeletal muscle and HMN
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FIGURE 3

The strict dosage requirement of ALS-related genes in MNs. (A) The histogram displays the distribution of strictness value of all genes in brain cells.
Strictness values for Fam197b and Ank1 are exhibited by the red triangles. (B) Comparison of three gene panels with known strictness in mouse brain
and spinal cord. (C) ALS-susceptibility genes dosage is required strictly in MNs. (D,E) LoF ALS-pathogenicity genes are required strictly in γ-MNs and
no evidence are observed for GoF genes or unknown category. Red point refers to the Sod1 gene.

(P-value = 0.052), associations between oligodendrocyte subtypes
and SPG (Figures 2A–C). The associations of MN/oligodendrocyte
in spinal cord/brain were confirmed in replicated/validated
datasets (Supplementary Table 8). Similar to ALS, MNs were
associated with SA and HMN. To our knowledge, SA and
HMN both present ALS-like phenotypes (Anand et al., 2014;
Garcia-Santibanez et al., 2018) and MNs degeneration (Ikeda
et al., 2012; Beijer and Baets, 2020) is involved in their
pathogenesis. Oligodendrocyte is also involved in ALS, a cell
type that was shown to induce hyperexcitability and death in
mutant SOD1 mouse (Ferraiuolo et al., 2016). Oligodendrocytes
in both brain and spinal cord are associated with SPG, consistent
with a previous report (Edgar et al., 2004). Oligodendrocytes
are associated with HMN. Besides the cellular basis in brain
and spinal cord, smooth muscle cells are associated with SA,

skeletal muscle cells are associated with HMN. No evidence
was observed for an association of SMA, even though SMA
and HMN share five pathogenicity genes. To provide a clear
image of the connections, we linked the diseases and cell
types via a Sankey diagram (Figure 2D). These similarities and
differences may provide insights in the etiology of ALS, HMN, SA,
SMA, and SPG.

The strict dosage requirement of
ALS-susceptibility genes in MNs

Here we have revealed that ALS-related genes are specifically
expressed in MNs, however, how these genes affect ALS reminds
unclear. To provide insight into the mechanism, we developed a
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measure called strictness to evaluate the dosage requirement in
single-cell populations. We hypothesized that if a gene is dosage-
sensitive, it will have a narrow range of expression in normal cells
and present a higher strictness measure. For example, ANK1 was
identified as a dosage-sensitive gene (Dang et al., 2008). The LoF
variant in ANK1 causes haploinsufficiency and results in autism
spectrum disorder (Yang et al., 2019). The Ank1 strictness measure
in mouse brain cells is in the top strictness decile. In contrast, the
FAM187B expression is tolerant to be altered because it harbors
a common stop-gained variant (MacArthur et al., 2012). There
are 43.6% of individuals who have a heterogeneous LoF variant
and 34.7% of individuals who have homogeneous LoF variant in
the gnomAD (Karczewski et al., 2020) database. The Fam187b
strictness measure in mouse brain cells is in the bottom strictness
decile (Figure 3A). To evaluate the performance of the strictness
measure, we employed three gene sets with known expression
patterns in the brain. Dosage-sensitive genes involved in brain
functions are expected to have high strictness in brain cells. We
collected 49 HI genes related to neurodegenerative diseases and/or
neurodevelopmental diseases as a positive control, 300 LoFT genes,
and 1,113 NNN disease-related genes as negative controls for
the absence of dosage-sensitivity or brain functions, respectively.
HI genes exhibited significant high strictness in brain and spinal
cord. In contrast, LoFT genes and NNN disease-related genes
exhibited low strictness (Figure 3B). These results demonstrated
that strictness is a robust measure of dosage-sensitive genes.

Subsequently, we calculated the strictness of ALS-related
genes in spinal cord cell types and showed that the ALS-
susceptibility genes present significant high strictness in α-MNs
(Figure 3C), indicating that the ALS-susceptibility genes are
dosage-sensitive and the LoF of genes may be a mechanism of
ALS. The P-value of the ALS-pathogenicity gene strictness in γ-
MNs is close to the significant threshold, indicating that there
may be different mechanism among these genes. We reviewed
the ALS-pathogenicity genes on the basis of animal model and
classified these genes into three categories: LoF, gain of function
(GoF), and unknown (Supplementary Table 1). We showed that
LoF ALS-pathogenicity genes are strictly required in γ-MNs. In
contrast, no statistical evidence for supporting the hypothesis that
the GoF genes or the genes in unknown category are dosage-
sensitive (Figure 3D). These results are consistent with our
hypothesis that LoF genes have high strictness and GoF genes have
low strictness.

Besides, ALS-susceptibility genes and LoF pathogenicity genes
exhibited high strictness in astrocytes and oligodendrocytes, both
these two cell types were shown to play important roles in
ALS (Ferraiuolo et al., 2016; Stoklund Dittlau et al., 2023).
Excitatory, inhibitory, cerebrospinal fluid contacting neurons also
required strict expressions of ALS-susceptibility genes. Abnormal
cerebrospinal fluid contacting neurons (Ng Kee Kwong et al., 2020),
imbalance between excitatory and inhibitory (Foerster et al., 2013;
Cavarsan et al., 2022) were reported to contribute to ALS.

Discussion

Our study revealed several cell types associated with ALS and
three additional neurological disorders, HMN, SA, and SPG. Most

of the related cell types have been demonstrated to be important
in the related diseases (Skene et al., 2018; Bryois et al., 2020)
[e.g., Purkinje cells (Kasumu and Bezprozvanny, 2012; Xia et al.,
2013; Ishida et al., 2016) in SA, oligodendrocyte (Edgar et al.,
2004) in SPG]. Notably, MNs are linked to ALS: α-MNs are
associated with ALS-susceptibility genes and γ-MNs are associated
with ALS-pathogenicity genes. Although the degeneration of MNs
is demonstrated to cause ALS and neuromuscular disorders, the
pathogenicity of MNs subpopulations is less known. The different
roles of MNs subpopulations are consistent with a previous study
(Lalancette-Hebert et al., 2016) that showed different vulnerabilities
of MNs subpopulations: α-MNs are selectively degenerated and γ-
MNs are completely spared in an ALS mutant mouse model. These
results suggested that α- and γ-MNs do not play equal roles in ALS.
Besides MNs, we found no statistical evidence for an association
between muscle cells and ALS-related genes (Figure 2C). To our
knowledge, MN death is the core event of ALS pathology (Anakor
et al., 2022), however, the disruption of the neuromuscular junction
is an early event in ALS pathology (Cappello and Francolini,
2017). Skeletal muscle metabolic dysregulation and atrophy in
SOD1 mutation transgenic mice (Brooks et al., 2004; Marcuzzo
et al., 2011) and iPSCs (Badu-Mensah et al., 2020) derived from
ALS patients harboring SOD1 mutation were suggested to play a
role in ALS. The muscle atrophy in SOD1 model doesn’t conflict
with our result. Our study investigated the most specific cell type
expressed ALS-related genes. We cannot exclude the potential
connection between specific gene and other cell types. Moreover,
we observed SOD1 is specifically expressed in human muscle
(Supplementary Table 9). Limited to the power for detecting
minor characteristics of a few genes, the P-value of gene expression
specificity in muscle did not access the significant threshold after
FDR. Taken together, these results deepened our understanding of
ALS pathogenesis.

We showed that the ALS-susceptibility genes are dosage-
sensitive in MNs, as well as the ALS-pathogenicity genes with
known LoF mechanism in γ-MNs. In contrast, the GoF ALS-
pathogenicity genes or the genes with unknown mechanism
exhibited low strictness (Figures 3D, E). SOD1 is one of the
GoF pathogenicity genes. Transgenic mutant SOD1 mice and
rats develop characteristics that are similar to human ALS.
A previous study showed that the complete absence of SOD1 in
mice did not precipitate ALS-related phenotypes (Reaume et al.,
1996). A low strictness value of Sod1 is consistent with the
GoF mechanism (Figure 3E). Indeed, which mechanism causes
the ALS—gain- or LoF—is still not clear (Kabashi et al., 2010;
Saccon et al., 2013; Mizielinska and Isaacs, 2014; Scekic-Zahirovic
et al., 2016). Our study suggested the main characteristics of
ALS-susceptibility genes is dosage-sensitive, highlighting the need
to carefully consider the LoF mechanism in sporadic ALS. For
LoF ALS-pathogenicity genes, they were shown to strictly express
in γ-MNs but not α-MNs. This result may suggest γ-MNs are
more vulnerable to dosage alteration of the LoF pathogenicity
genes. We noticed that there is no significant difference in
the vulnerability of α- and γ-MNs to ALS-susceptibility genes.
This result doesn’t conflict with the association between ALS-
susceptibility genes and α-MNs. The ALS-susceptibility genes were
shown to highly express in α-MNs. Compared with other cells with
lower expression, the α-MNs were largely affected by the alteration
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of ALS-susceptibility genes. In contrast, the strictness of SPG-
related genes was shown differences between oligodendrocytes and
other un-associated cells, as well as that of ALS-pathogenicity
genes and γ-MNs. Indeed, the strictness measure was designed
to compare the different expression spectrums in specific cell
type between LoF genes and GoF genes as a fellow independent
study of cell type expression specificity analysis. This measure
was demonstrated by the LoF ALS-pathogenicity genes strictly
expressed in related γ-MNs and exhibited the strict expression
of SPG-related genes in oligodendrocytes, SA-related genes in α-
MNs, ALS-related genes in oligodendrocytes. HMN-related genes
were shown no LoF characteristic in related MNs. Based on these
results, strictness analysis may provide a priori understanding
of the mechanisms of disease-related genes without an animal
model.

Similar to ALS, MNs were associated with SA and HMN. To
our knowledge, SA and HMN both present ALS-like phenotypes
(Anand et al., 2014; Garcia-Santibanez et al., 2018), and MNs
degeneration (Ikeda et al., 2012; Beijer and Baets, 2020) are
involved in their pathogenesis. Oligodendrocytes are associated
with ALS, SPG, and HMN. The links to SPG and ALS are
consistent with previous reports (Edgar et al., 2004; Ferraiuolo et al.,
2016). Besides, smooth muscle cells are associated with SA, and
skeletal muscle cells are associated with HMN. No evidence was
observed for an association of SMA, even though SMA and HMN
share five pathogenicity genes. These similarities and differences
may provide insights into the etiology of ALS, HMN, SA, SMA,
and SPG.

Upper MNs should be considered in our further investigation.
ALS patients showed loss of pyramidal tract upper MNs, specifically
Betz cells (Hammer et al., 1979). The cortical connections of Betz
cells are impaired prior to ALS onset (Genç et al., 2017). Betz cells
were found below the surface of the cerebral cortex within layer
V of the primary motor cortex and make direct connections to
spinal MNs (Lemon, 2008). However, the mouse brain single-cell
transcriptome datasets employed in our study did not annotate
Betz cells. Betz cell specifically expressed POU3F1 gene (Machado
et al., 2014) which can be used as a marker for cell identification
in mouse and human. A recent study with more than 450,000
transcriptomes and epigenomes in humans, marmoset monkeys
and mice showed a broadly conserved cellular makeup of primary
motor cortex, with similarities that mirror evolutionary distance
and are consistent between the transcriptome and epigenome.
Our discoveries in mouse spinal cord were validated in human
spinal cord. These consistent results indicated data from mouse
can be used for human disease investigation, providing a reliable
pathway for further investigation in Betz cells and other novel
cell types.

In summary, our study revealed the cellular basis of ALS,
HMN, SA, and SPG and the dosage characteristic of the disease-
related genes in specific cell types. Moreover, the methods—cell
type enrichment and gene expression variability—are useful for
investigating the role of genes in various cell types, which may open
the door for valuable mining of public single-cell data and genetic
knowledge of human diseases.
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