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Introduction: This study sought to elucidate the cognitive traits of visual artists

(VAs) from the perspective of visual creativity and the visual system (i.e., the most

fundamental neural correlate).

Methods: We examined the local and long-distance intrinsic functional

connectivity (FC) of the visual system to unravel changes in brain traits among

VAs. Twenty-seven university students majoring in visual arts and 27 non-artist

controls were enrolled.

Results: VAs presented enhanced local FC in the right superior parietal lobule,

right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule,

left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced

FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which

appears to be associated with visual creativity.

Discussion: The visual creativity of VAs was correlated with strength of intrinsic

functional connectivity in the visual system. Learning-induced neuroplasticity as a

trait change observed in VAs can be attributed to the macroscopic consolidation

of consociated neural circuits that are engaged over long-term training in the

visual arts and aesthetic experience. The consolidated network can be regarded

as virtuoso-specific neural fingerprint.
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Introduction

Visual arts refer to a wide range of activities, including
painting, sculpture, ceramics, design, crafts, photography, film, and
architecture (Roodhouse, 2006). Many visual artists (VAs) develop
an enhanced artistic capacity by training in the use of aesthetic
elements (e.g., construction, composition, and abstraction) aimed
at realizing their artistic and conceptual intentions (Lin et al., 2013).
The aesthetic experience embodies the actions taken to appreciate
aesthetic elements, as well as the emotions and bodily sensations
that this elicits (Brinck, 2018). The ability of VAs to apply aesthetic
experience and insight to the creation of artworks depends largely
on their visual capacity (visual perception, visual memory, visual
attention) and creativity (Chamberlain, 2017). Enhanced visual
capability and visual creativity are perhaps the most prominent
characteristics of VAs (Cupchik et al., 2009) and the visual system
may be the neurological source of these abilities (Pepperell, 2011).

The visual attributes of any object are processed mainly in the
occipital region of the brain (Chatterjee, 2003). Visual information
is processed primarily along two pathways. The ventral pathway
(what route: vision for perception) processes the identity of the
object and tracks the features of the object, such as size, shape,
and color (Zachariou et al., 2014). The ventral stream, leading
from the posterior pole of the occipital cortex to the temporal
lobe, is involved in identifying objects and tracking visual features.
The dorsal stream, leading to the parietal lobe, is involved in
spatial/motion analysis, object-directed actions, and visuomotor
control (Goodale and Milner, 1992; Kravitz et al., 2013; Freud
et al., 2016). The dorsal pathway (where route: vision for action)
provides spatial awareness and the direction of movement (Schlegel
et al., 2015). The dorsal pathway can be functionally subdivided
into a dorsodorsal stream, which includes the superior parietal
lobule (SPL, important for visuomotor control of actions) and a
ventrodorsal stream, including the inferior parietal lobule (IPL),
critical for the representation of complex actions (Peeters et al.,
2013). Note however that a recent fiber tracking study disputes
the existence of a specific dorsal pathway. They posited that in
the processing of “where-information,” the angular gyrus (AG,
BA39) channels the flow of information toward the middle
temporal gyrus (MTG) in the visual cortex, and the inferior
temporal gyrus (ITG) in the temporal cortex (Choi et al., 2020).
AG is part of the default mode network involved in reading
and comprehension, semantic processing, number processing,
spatial cognition, memory retrieval, reasoning, and social cognition
(Seghier, 2013). Converging multisensory information is combined
and integrated in the AG to facilitate comprehension and give
sense to events, manipulate mental representations, solve familiar
problems, and reorient attention to relevant information (Seghier,
2013). Thus, the AG emerges as a cross-modal hub for the
perception-to-recognition-to-action in visual art appreciation and
creation (Seghier, 2013).

The process of creating artwork reflects VA’s creativity (Getzels
and Csikszentmihalyi, 2020), thus creativity can be a core mental
competence of VA. It appears that the process of creating
visual artworks engages brain circuits that subserve the cognitive
functions of attention, spatial arrangement, structural organization,
motor planning, drawing skills, mnemonic storage, visuomotor
processing, divergent thinking, mental imagery, self-consciousness,
empathy, emotion regulation, face and object processing, and

creativity (Locher, 2010). It also appears that the creative aspect
of visual artwork production engages the temporal lobe, and
particularly the inferior temporal cortex (e.g., fusiform gyrus)
of the ventral pathway, which is involved in the formation of
high-level complex visual information related to faces, places,
objects, and scenes (Flaherty, 2005; Sugase-Miyamoto et al., 2011;
Schaer et al., 2012; Conway, 2018; Beccone, 2020). It has been
posited that artistic creativity is related object processing capacity
along the ventral pathway (Kozhevnikov et al., 2013). It is
plausible that long-term training in the visual arts strengthens the
ventral pathway, manifesting as coherent activity within the neural
networks associated with creativity (Miller et al., 1996; Petsche,
1996; Jung et al., 2010). The strength of intrinsic FC can be
correlated with the visual creativity (Beaty et al., 2018).

Long-term professional training in the visual arts has been
shown to enhance neurocognitive function and initiate changes
in traits (resting state) in the brain. In a previous study using
graph theory to assess functional connectivity (FC), we reported
that the brain architecture of artists presents a hierarchical modular
organization in which the brain states specific to specific artistic
form mirror the mind states of virtuosos (Lin et al., 2013). In the
current study, we examined intraregional (local) and interregional
(long-distance) changes in FC, which are observable in resting-
state brain oscillations (Wu et al., 2016). Regional homogeneity
analysis (ReHo) (Zang et al., 2004) was used to estimate the
local synchronization of brain activity as an indication of local
connectivity, whereas the seed-based FC analysis (Yan et al., 2013)
on the regions unveiled by ReHo was used to study long-range
connectivity. It is commonly assumed that an increase in synchrony
is indicative of local functional integration, whereas a decrease
in synchrony is indicative of local functional segregation (Wu
et al., 2016). An increase in long-range FC denotes functional
integration between brain regions, whereas a decrease in long-
range FC denotes functional segregation between brain regions
(Fair et al., 2007). It has been reported that the ReHo approach
provides superior seed localization, which is beneficial to seed-
based FC analysis (Yan et al., 2013).

In the current study, we hypothesized that VAs should differ
from controls in the neurodynamics of the visual system, and
that the intrinsic strength of FC should be correlated with visual
creativity (Beaty et al., 2018). Our results revealed that long-term
training in the visual arts can consolidate the visual system at the
macroscopic level, as evidenced by enhanced visuospatial capacity,
visual attention, visuomotor control, and visual creativity. In other
words, attuned neurodynamics is an indication of resilient plasticity
nurtured through long-term experience.

Materials and methods

Participants

This study recruited 27 healthy university students majoring
in the visual arts (VA, mean age 24.0 ± 1.7, 5 men) and 27
healthy non-artists matched for age and education (control group:
CON mean age 23.2 ± 1.6, 4 men). The creative mediums of
students in the VA group included oil paints, ink, sculpture
materials, and/or multimedia. The average duration of artistic
training was 11.07 ± 4.6 years. Students in the CON group

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1114771
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1114771 August 8, 2023 Time: 11:32 # 3

Hong et al. 10.3389/fnins.2023.1114771

had no more than 3 years of institutional training in the visual
arts. All participants self-reported right-handedness without metal
implants, brain damage, or neuropsychiatric diseases. The Beck
Depression Inventory (BDI) (Beck et al., 1996) and the Beck
Anxiety Inventory (BAI) (Beck and Steer, 1990) were used to
exclude participants with obvious emotional liability. We also
used the Wechsler Abbreviated Scale of Intelligence (WASI-III)
(Chen and Chen, 2002) to ensure correspondence between the two
studied groups in terms of general intelligence. This study was
conducted in accordance with the Declaration of Helsinki and was
approved by the Institutional Review Board of Taipei Veterans
General Hospital with written informed consent obtained from all
participants.

Psychological measurements

This study was part of a project on neuroaesthetics, which
addressed issues pertaining to domain-general and domain-specific
neural organization among art students in a variety of fields (visual
arts, dance, piano, strings, vocals, percussions) and non-artist
healthy controls. To facilitate inter-group comparisons, we had
all of the artists undergo the same psychological assessments and
neuroimaging using the same scanning protocols. In the current
study, we focused exclusively on VAs and controls. Creativity can
be a core mental competence of VA since the process of creating
artwork reflects VA’s creativity (Getzels and Csikszentmihalyi,
2020). Thus, all participants took the self-reported 40-item Chinese
version of the Abbreviated Torrance Test for Adults (ATTA) to
assess their aptitude in tasks involving visual (figural) and verbal
manipulation (Chen, 2006). The ATTA is commonly used for cross-
artist group comparisons (not addressed in the current study);
however, it includes a figural part that engages creative drawing
mirroring the visual art training of VAs. The ATTA measures
the ability to think creatively in terms of fluency, originality,
elaboration, and flexibility (Chen, 2006). Fluency refers to the
number of ideas that a participant can generate in a limited time.
Originality indicates one’s ability to create unique ideas. Elaboration
indicates the ability to embellish ideas with details. Flexibility
indicates one’s ability to generate many different ideas (Althuizen
et al., 2010; Shen and Lai, 2014). The ATTA creativity index (CI)
score refers to the sum of the four capacity scores. We followed
standard protocols in administering and scoring the tests (Chen,
2006). SPSS Statistics (v. 23.0, IBM Corp., Armonk, NY, USA) was
used for all psychological evaluation analyses. The results of the
psychological evaluations were considered significant at p < 0.05.

Data acquisition

Resting-state fMRI data were acquired using a 3T
MAGNETOM TrioTM (Siemens, Erlangen, Germany) at the
National Yang-Ming University. During scanning, participants lay
supine with their heads fixed using foam cushions to minimize
head motion. Scanning was performed in a T2∗-weighted echo-
planar imaging (EPI) sequence with the following parameters:
40 axial slices, TR = 2500 ms, TE = 30 ms, flip angle = 90◦,
FOV = 220 mm × 220 mm, slice thickness = 3.4 mm, matrix

size = 64 × 64, and voxel size = 3.4 mm × 3.4 mm × 3.4 mm.
A total of 200 contiguous functional volumes were collected from
each participant. High-resolution T1-weighted 3D structural
images were acquired using a magnetization-prepared rapid
acquired gradient echo sequence [MPRAGE; repetition time
(TR)/echo time (TE) = 2530 ms/3.03 ms, flip angle = 70◦, field of
view (FOV) = 224 mm × 256 mm × 192 mm, in-plane matrix
size = 224 × 256 × 192, in-plane resolution = 1 mm]. All subjects
were instructed to relax, remain still with their eyes open, think of
nothing, and refrain from moving or falling asleep. All participants
received brief training on how to focus their attention through
breathing before scanning began, and all participants maintained a
similar state throughout the actual experiment.

Data analysis: Preprocessing

Data preprocessing was performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) V4.5 Advanced Edition
(State Key Laboratory of Cognitive Neuroscience and Learning,
Beijing Normal University, China), which is based on the Data
Processing and Analysis of Brain Imaging (DPABI) Toolbox
version 4.11 (Yan et al., 2016), with statistical parametrical mapping
12 (SPM 12; Wellcome Trust Center for Neuroimaging, University
College London, London, UK) in Matlab 2015b (MathWorks, Inc.,
Natick, MA, USA). Based on experience in previous studies, the
preprocessing of functional images was performed as follows: (1)
slice timing correction; (2) realignment of images to the mean
volume for correction of head motion; (3) co-registration to map
functional information of resting fMRI images into an anatomical
space (T1-weighted images) via intra-subject spatial alignment;
and (4) segmentation of gray matter, white matter (WM) and
cerebrospinal fluid (CSF) from coregistered T1 images using the
unified segmentation model (Wu et al., 2016). Subjects with any
instances of head movement exceeding 2 mm or 2◦ were excluded
from further processing. The following nuisance variables were
regressed: (1) six parameters of head movement calculated based
on head motion with the Friston 24-parameter model translation
and rotation during realignment in SPM12 (Friston et al., 1996);
(2) the mean signal within the lateral ventricles for cerebral spinal
fluid; and (3) the mean signal within a deep white matter region
(centrum ovale). The images were normalized to the custom
template from T1 weighted images of all subjects developed by the
Montreal Neurological Institute (MNI) with resampled voxels at
2 mm × 2 mm × 2 mm. The resulting time series in each voxel
was then linearly detrended and bandpass filtered (0.01–0.1 Hz) to
extract low-frequency oscillations. Global signal regression (GSR)
was not performed as it has been shown to exaggerate negative
correlations (Murphy et al., 2009; Weissenbacher et al., 2009)
and/or to distort group differences (Saad et al., 2012). We used
WFU Pick Atlas toolbox2 to generate a visual system template based
on the modified human visual pathway model by Choi et al. (2020).
The visual system template includes the visual area [V1, V2, V3,
V4, and V5/MT (BA 17, BA 18, and BA19)], inferior temporal area

1 http://rfmri.org/dpabi

2 https://www.nitrc.org/projects/wfu_pickatlas
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(BA 20), angular gyrus (BA 39), supramarginal gyrus (BA 40), and
superior parietal lobule (BA 5, BA 7).

Data analysis: ReHo analysis

ReHo maps were computed using Kendall’s coefficient of
concordance (KCC) of the time series between a given voxel and
its nearest neighbors (26 voxels) in a voxel-wise manner (Zang
et al., 2004). The ReHo map of each subject was divided by
its own global mean and then spatially smoothed using a 3D
Gaussian kernel with 6 mm full width at half maximum (FWHM).
Comparisons between groups of ReHo maps masked by the visual
system template were examined using a two-sample t-test in SPM.
The peaks of significant clusters were then selected as ReHo-based
seeds. Statistical significance was set at an uncorrected voxel level
of p < 0.005, followed by the family wise error (FWE)-corrected
cluster level of p < 0.05.

Data analysis: ReHo-seeded FC analysis

The preprocessing procedures were the same as those for the
ReHo analysis, except for spatial smoothing, which was performed
using a 6-mm FWHM Gaussian kernel prior to ReHo-seeded FC
analysis. We observed significant between-group differences in
terms of ReHo-seeded FC masked by the visual system template
in all regions of interest (ROIs). Mean time-series activity was

TABLE 1 Demographic data and psychological results.

VAs CONs p-value

(n = 27) (n = 27)

Age (years) 24.0 ± 1.6 23.2 ± 1.6 0.88

Sex (male/female) 5/22 4/23 0.67

Duration of learning (years) 11.1 ± 4.6 – –

Duration of daily practice
(hours)

3.4 ± 2.1 – –

Duration of weekly practice
(hours)

20.5 ± 13.0 – –

Education (years) 16.8 ± 1.6 16.3 ± 1.2 0.14

WAIS-III 110.9 ± 7.3 109.51 ± 7.22 0.55

BDI 8.6 ± 7.3 7.3 ± 6.8 0.42

BAI 8.5 ± 5.7 5.9 ± 4.7 0.054

ATTA Creativity index 72.3 ± 6.1 65.0 ± 8.0 <0.001***

Verbal creativity 1.20 ± 0.9 0.78 ± 0.71 0.54

Visual creativity 5.52 ± 2.06 3.03 ± 2.03 <0.001***

Fluency 16.1 ± 1.63 15.1 ± 1.66 0.044*

Originality 17.0 ± 2.2 15.8 ± 2.6 0.075

Elaboration 17.5 ± 1.8 15.8 ± 2.4 0.004**

Flexibility 15.4 ± 1.6 14.5 ± 1.6 0.041*

Data expressed as mean ± standard deviation.
*p < 0.05, **p < 0.01, ***p < 0.001.
VA, visual artist; CON, control; WAIS-III: Wechsler Adult Intelligence Scale-III; BDI,
Beck Depression Inventory; BAI, Beck Anxiety Inventory; ATTA, Abbreviated Torrance
Test for Adults.

extracted within the spherical ReHo-seeded regions (5 mm radius)
(Yan et al., 2013). ReHo-seeded FC was assessed between ROIs
and the whole brain in a voxel-wise manner. Individual FC
maps were then generated by computing the Pearson’s correlation
coefficient (r) between the seeds and the related brain regions.
After calculating the correlation between the reference time course
and the time course of each voxel in the brain, the r-values were
converted into z-values using Fisher’s r-to-z transformation to
normalize the distribution. When analyzing differences between
groups, two sample t-tests were performed on the ReHo-seeded
FC maps of each seed with significance set at an uncorrected voxel
level of p < 0.001, followed by an FWE corrected cluster level of
p < 0.05 in SPM. Bonferroni corrections were made for multiple
comparisons by adjusting the p-value divided by the number of
seeds analyzed.

Data analysis: Correlation analysis

VAs can be considered skilled experts in creative production
(Degarrod, 2016); therefore, we used SPSS statistical software (v.
23.0, IBM Corp., Armonk, NY, USA) to compare the VA and CON
groups in terms of the correlation between ReHo and ReHo-seeded
FC maps (masked by the visual system template) and ATTA scores.
Training effects among VAs were revealed by correlating variables
in visual arts training (duration of visual arts training, duration of
daily practice hours, and average amount of practice time per week)
with ReHo and ReHo-seeded FC maps, respectively. We extracted
the z-scores of significant peaks from individual ReHo and ReHo-
seeded FC maps to perform group comparisons and assess two-
tailed correlations between the z-scores and ATTA scores and
variables of visual art training, respectively. The significant level was
thresholded at p < 0.05.

Results

Demographic data and psychological
evaluations

We observed no significant differences between the groups
in terms of age, sex, level of education, depression, anxiety
and intelligence. Compared to the control group, the VA group
presented significantly higher scores for visual (figural) creativity
(VA: 5.52 ± 2.06, CON: 3.03 ± 2.03, p < 0.001), fluency (VA:
16.1 ± 1.6, CON: 15.1 ± 1.7, p = 0.044), elaboration (VA: 17.5 ± 1.8,
CON: 15.3 ± 2.4, p = 0.004), and flexibility (VA: 15.4 ± 1.6, CON:
14.5 ± 1.6, p = 0.041). They also presented a higher ATTA CI
(sum of measurements of four categories of creative capacity; VA:
72.3 ± 6.1, CON: 65.0 ± 8.0, p < 0.001). Note that the VA group
demonstrated also a sub-significant trend of higher originality
performance as compared to the control group (VA: 17.0 ± 2.2,
CON: 15.8 ± 2.6, p = 0.075) (Table 1).

Altered local connectivity in the visual
system of VAs

To identify the cardinal functional hubs of the VAs, we
quantified intraregional functional integration/segregation by
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FIGURE 1

Between-group differences in ReHo: ReHo in the VA group (red)
was higher than in the CON group in three regions: Rt. SPL, Rt.
precuneus, Lt. ITG/FG, Lt. AG, and Lt. MOG. ReHo, regional
homogeneity; VA, visual artist; CON, control; Lt., left; Rt., right; SPL,
superior parietal lobule; ITG, inferior temporal gyrus; FG, fusiform
gyrus; AG, angular gyrus; MOG, middle occipital gyrus.

calculating the voxel-wise ReHo value. The ReHo value was
significantly higher in the VA group than in the CON group in
the right SPL, right precuneus, left ITG, left ITG/fusiform gyrus
(FG), left AG, and left middle occipital gyrus (MOG) of the visual
system (Figure 1 and Table 2). These regions are associated with
visual imagery (Ishai et al., 2000; Mechelli et al., 2004), visuospatial
processing (Tres and Brucki, 2014), and the perception of objects,
faces, and scenes (Sugase-Miyamoto et al., 2011; Conway, 2018).
Notably, these regions are also engaged in elementary constructs
of visual productivity (e.g., visual capacity, formation of higher-
level complex visual representation, divergent thinking, long-term
memory storage, and visual imagery) (Miyashita, 1993; Ishai et al.,
2000; Mechelli et al., 2004; Sugase-Miyamoto et al., 2011; Zhang
et al., 2011).

Altered long-range functional
connectivity in the visual system of VA

Six regions of interest (ROIs) identified in ReHo analysis were
used as seeds for FC analysis. The VA group presented a higher
FC of the left ITG-right cuneus, -right MOG, and -bilateral SOG
(Figure 2 and Table 3). These targeted regions are associated with
the functional processing of visual characteristics of objects and
scenes, object recognition, and form representation.

Between-group differences in the
correlation between FC strength and
creativity

Our hypothesis posited that the VA group would display
distinct neurodynamics in the visual system compared to the CON
group. We also expected the strength of FC to be associated with

TABLE 2 Regions showing differences in ReHo between VAs and CONs.

Brain region BA MNI coordinate Size t score

x y z

VAs > CONs

Right SPL* 7 9 –72 60 203 4.10

Right Precuneus* 7 3 –60 66 3.85

Left ITG* 20 –57 –12 –36 150 4.32

Left ITG/FG* 20 –35 –18 –33 3.85

Left AG 39 –50 –72 36 115 3.22

Left MOG 19 –42 –80 30 3.06

Size refers to the number of voxels in the cluster (peak level uncorrected p < 0.005, cluster
level corrected FWE, p< 0.05). ReHo, regional homogeneity; VA, visual artist; CON, control;
BA, Brodmann area; SPL, superior parietal lobule; ITG, inferior temporal gyrus; FG, fusiform
gyrus; AG, angular gyrus; MOG, middle occipital gyrus.
*Also peak level uncorrected p < 0.001, cluster level corrected FWE, p < 0.05.

visual creativity score, based on prior research (Beaty et al., 2018).
In our study, we found a significant positive correlation (r = 0.500,
p = 0.002; Figure 3A) between the CI score and the strength of
FC between the left ITG and the right SOG in the VA group.
However, no significant correlation was observed in the CON
group (r = −0.144, p = 0.48; Figure 3A). Furthermore, within
the VA group, we discovered a significant positive correlation
between the visual creativity score and the strength of FC between
the left ITG and the right cuneus (r = 0.415, p = 0.003; Figure
3B), as well as the strength of FC between the left ITG and
the right SOG (r = 0.621, p < 0.001; Figure 3C). However, no
significant correlations were observed in the CON group between
the visual creativity score and the strength of FC between the
left ITG and the right cuneus (r = −0.130, p = 0.51; Figure
3B) and the strength of FC between the left ITG and the right
SOG (r = −0.201, p = 0.29; Figure 3C). Moreover, we noted a
significant negative correlation (r = −0.458, p < 0.001) between
the weekly practice duration (measured in hours) and the strength
of FC between the left ITG and the right MOG in the VA group
(Figure 3D). There were no notable differences between the VA and
CON groups concerning the correlation between the strength of
intraregional FC and behavioral variables (training duration, daily
practice hours, and psychological measurements). Additionally, in
the VA group, no significant correlations were observed between
the strength of interregional FC and other behavioral variables (p >
0.05).

Discussion

Training in the visual art and the cultivation of aesthetic
sensibilities can shape the brain of VAs. In the current study,
we sought not to activate any cognitive processes related to the
active creation of visual artwork. Instead, we posited that in the
context of functional connectivity, the consolidation of neural
circuits that engage during long-term learning may underpin
the macroscopic neuroplasticity of VAs. This study reports a
neurosignature representative of the neural makeup in the visual
system of VAs (e.g., visual perception, visual attention, and
visual creativity).
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FIGURE 2

Between-group differences in ReHo-seeded FC: The VA group presented stronger FC in the Lt. ITG (light blue)-bilateral cuneus (red), -bilateral
MOG, and -bilateral SOG. ReHo, regional homogeneity; FC, functional connectivity; VA, visual artist; Lt., left; Rt., right; ITG, inferior temporal gyrus;
MOG, middle occipital gyrus; SOG, superior occipital gyrus.

Constellations of local and long-range
connectivity in the visual system relate to
the capacity of VAs in visual arts
production and appreciation

The IPL (particularly the AG) has been proposed as a major
“store house” of artistic creativity (Chakravarty, 2012). Creative
cognition and creative output as conceived in the prefrontal cortex
(ventromedial and dorsolateral prefrontal cortex, respectively) are
relayed to the IPL and SPL reciprocally with the perceptive visual
system (dorsal and ventral pathways) for both artistic production
and appreciation. The ventromedial prefrontal cortex is involved
in aesthetic evaluation and appreciation (Chakravarty, 2012). The
VA group presented superior intraregional functional integration
in terms of higher ReHo value (Wang et al., 2011) in the neural
substrates of both the dorsal pathway (right SPL, right precuneus,
left AG) and the ventral pathway (left ITG/FG) (Jiang and Zuo,
2016; Table 2 and Figure 1). The SPL and AG of the dorsal
pathway (involved in artistic spatiality) (Seydell-Greenwald et al.,
2017) serves spatial awareness, attention, spatial/motion analysis,
goal-directed action, and visuomotor control (Husain and Nachev,
2007; Shomstein, 2012; Seghier, 2013). The precuneus and SPL
also participate in visual imagery and other visuospatial processing
(Cavanna and Trimble, 2006; Walker et al., 2011; Tres and Brucki,
2014).

TABLE 3 Differences in ReHo-seeded FCs between VAs and CONs.

Brain region BA MNI coordinate Size t score

x y z

VAs > CONs [Seed: Left ITG (–57 –12 –36)]

Right cuneus 18 3 –93 18 138 4.55

Right SOG 18 21 –87 6 4.36

Left SOG 17 –9 –99 12 4.35

Right MOG 19 30 –93 16 107 4.54

Right MOG 19 43 –81 6 3.98

Size refers to the number of voxels in the cluster (peak level uncorrected p < 0.001, cluster
level corrected FWE, p < 0.05). Bonferroni corrections were made for multiple comparisons
by adjusting the 0.05 divided by 6 of the seeds analyzed. ReHo, regional homogeneity; FC,
functional connectivity; VA, visual artist; CON, control; BA, Brodmann area; ITG, inferior
temporal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus.

As a key region connecting the occipital and parietal cortices,
the ITG plays critical roles in the perception of objects, faces, and
scenes (Conway, 2018) as well as in visual creativity (e.g., visual
capacity, formation of higher-level complex visual representation,
divergent thinking, long-term memory storage, and visual imagery)
(Miyashita, 1993; Ishai et al., 2000; Mechelli et al., 2004; Sugase-
Miyamoto et al., 2011; Zhang et al., 2011). The pattern of higher
intrinsic FC of the left ITG-right cuneus, -right MOG, and -bilateral
SOG (Table 3 and Figure 2) in the VA group is substantiated by
the anatomical and structural connectivity studies of the visual
system (Zhang et al., 2013; Takemura et al., 2017; Lin et al.,
2020). We considered that the constellations of local and long-
range connectivity changes implicate functional synergy between
brain regions and can be better appreciated in the context of
the neurological underpinning of visual artistic production and
appreciation (Smith et al., 2003; Vartanian and Goel, 2004; Kozbelt
and Seeley, 2007; Kravitz et al., 2013; Vessel et al., 2019).

FC strength in the visual system of VAs
mirrors creativity

VA group was of higher creativity as compared to the control
group could be evidenced by their higher ATTA scores. In the VA
group, we observed a significantly positive correlation between the
ATTA CI score and the strength of the left ITG-right SOG FC
(Figure 3A). When we consider that the ATTA CI score is a sum
of four creative capacities (fluency, originality, elaboration, and
flexibility), these findings indicate the consolidation of the ventral
pathway in VAs facilitates the integration of various abilities in
the creative process. These findings echo those in a previous study
in which it was reported that network attributes in the occipital
regions are predictive of individual differences in creative ability
(Jiao et al., 2017).

The positive correlations between FC strength in the left ITG
(with respective right cuneus and right SOG) and visual creativity
score in the VA group (Figures 3B, C) partly indicate the neural
underpinnings of creativity in VAs. Visual creativity refers to the
appreciation and ability to produce novel esthetically pleasing
visual forms (e.g., sketches, paintings, and graphic design). The
process of creating these forms depends heavily on visual imagery
(Heilman et al., 2003; Sack et al., 2008; Pelowski et al., 2017) and
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FIGURE 3

Examining the link between functional connectivity strength, ATTA scores, and practice time. (A) The strength of the Lt. ITG-Rt. MOG FC is positively
correlated with the creativity index measured by the ATTA score among VAs. (B) The strength of the Lt. ITG -Rt. Cuneus FC is positively correlated
with the visual creativity score of the ATTA among VAs. (C) The strength of the Lt. ITG -Rt. SOG FC is positively correlated with the visual creativity
score of the ATTA among VAs. There is no significant correlation observed among CONs in (A–C). (D) The strength of the Lt. ITG -Rt. MOG FC is
negatively correlated with weekly practice time among VAs. The significance level is thresholded at p = 0.05. ATTA, Abbreviated Torrance Test for
Adults; Lt., left; Rt., right; VA, visual artist; CON, control; ITG, inferior temporal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus; FC,
functional connectivity.

the ability to combine disparate visual representations to form new
entities. The production and appreciation of visual products are
subserved by the two visual pathways (Chakravarty, 2012). These
results confirm that the creation of artworks depends on the visual
system and particularly the ITG of the ventral pathway, which
controls visual imagery, visual perception (Ishai et al., 2000), and
visual attention for object recognition (Zhang et al., 2011). Object
visualization ability (the ability to construct visual appearances of
objects in terms of their shapes, color, and texture) in the ventral
pathway and spatial visualization ability (the ability to spatial
awareness and direction of movements) in the dorsal pathway
both contribute to artistic creativity (Kozhevnikov et al., 2010,
2013). Scores on ATTA emphasize object visualization ability over
spatial visualization ability to enrich the creative content. Our
data indicates that the ventral pathway is particularly consolidated
in VAs, due to strengthening of the FC between the ITG and
the cuneus/SOG following long-term practice in bringing artistic
notions to fruition.

Learning effect was negatively correlated
with connectivity strength

Extensive training can lead to “effortless doing,” which
manifests neurologically as diminished brain activity, neural
oscillation, and functional connectivity (Sampaio-Baptista et al.,
2015; Ji et al., 2017). One previous study of elite athletes discovered
that lower amplitude signals (low- and high-frequency alpha
event related desynchronization) in the ventral pathway (in the
occipital and temporal areas) are an indication of processing

that is more efficient than that observed in normal individuals
(Babiloni et al., 2009). High-efficiency processing is characterized
by a bidirectional reduction of activation in areas associated with
task execution and the deactivation of regions associated with the
processing of irrelevant information (Qiu et al., 2019). It has been
suggested that the ITG is involved in visual object recognition
and visual perception, whereas the MOG is primarily involved
in the characterization of objects in terms of shape and category
(Proklova et al., 2016). The occipital and temporal regions together
co-constitute the ventral visual pathway (“what” route) for object
recognition (Kravitz et al., 2013). The negative correlation between
FC strength in the left ITG-right MOG and the duration of
weekly practice (as an indicator of practice intensity) (Figure 3D)
connotes “effortless doing” as a manifestation of proficiency in the
execution of visual skills following the sustained practice of skills
involving visual manipulation (Sheth and Young, 2016; Conway,
2018). Long-term training and the resulting proficiency in the low-
level processes typically engaged in the visual arts provides a solid
foundation for the creative production of artworks, which requires
efficient cognitive engagement.

Limitations and future directions

The current study has several limitations, which should be
considered in the interpretation of our findings. First, only the
ATTA was used as an indicator of general creativity. Future
work should include other more specific creativity tasks (e.g.,
spatial visualization ability and creativity) to further explore the
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psychological manifestations of long-term training in the visual
arts. Second, ReHo and ReHo seed-based FC can be used together
to detect the synchronization of brain activity (local and long-
distance) (Yan et al., 2013). The combination of these two
approaches can help to identify cardinal hubs and facilitate seed
selection for FC analysis (Zang et al., 2004). In the current study,
we focused only on the visual system, as it is the most fundamental
neural system for VAs. In the future, researchers could conduct
a more thorough analysis of the FC and the neurodynamics
of otherwise identified neural substrates and neural networks
potentially involved in visual creativity (e.g., default mode network)
(Beaty et al., 2014). These networks could be employed as heuristics
by which to elucidate changes in the brain traits of VAs (Takeuchi
et al., 2011).

Conclusion

The resilience of the brain is largely due to the dynamic
reconfiguration of functional organization to support a variety
of cognitive demands. Learning-induced neuroplasticity as a trait
change observed in VAs can be attributed to the macroscopic
consolidation of consociated neural circuits that are engaged over
long-term training in the visual arts and aesthetic experience. It
appears that the visual creativity of VAs is correlated with the
strength of intrinsic functional connectivity in the visual system.
The consolidated network can be regarded as a virtuoso-specific
neural fingerprint.
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