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Motor imagery (MI) electroencephalogram (EEG) signals have a low signal-to-noise

ratio, which brings challenges in feature extraction and feature selection with high

classification accuracy. In this study, we proposed an approach that combined an

improved lasso with relief-f to extract the wavelet packet entropy features and the

topological features of the brain function network. For signal denoising and channel

filtering, raw MI EEG was filtered based on an R2 map, and then the wavelet soft

threshold and one-to-one multi-class score common spatial pattern algorithms

were used. Subsequently, the relative wavelet packet entropy and corresponding

topological features of the brain network were extracted. After feature fusion,

mutcorLasso and the relief-f method were applied for feature selection, followed

by three classifiers and an ensemble classifier, respectively. The experiments were

conducted on two public EEG datasets (BCI Competition III dataset IIIa and BCI

Competition IV dataset IIa) to verify this proposed method. The results showed that

the brain network topology features and feature selection methods can retain the

information of EEG more e�ectively and reduce the computational complexity, and

the average classification accuracy for both public datasets was above 90%; hence,

this algorithms is suitable in MI-BCI and has potential applications in rehabilitation and

other fields.
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1. Introduction

As a new interactive technology, brain-computer interface (BCI) combines biomedical and

computer fields to establish a connection between human brain and computer, and continuously

expand its application in recent years (Zhao et al., 2020). Among various BCI systems, motor

imagery (MI) BCI collects the brain electrical signals during imaginary limb movements of

subjects, which is proposed as a candidate approach in motor skill learning and medical

rehabilitation (Bigirimana et al., 2020). However, compared with other BCI systems such as P300

and steady-state visual-evoked potential BCI, MI BCI presents a poor performance (Park et al.,

2021).
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Previous classification tasks of motor imagery primarily focused

on improving the feature extraction algorithm. Owing to the

characteristics of electroencephalogram (EEG) signals, the common

spatial pattern (CSP) algorithm is often used to extract features

in the spatial domain (Sharma et al., 2018). In 2018, David et al.

proposed a regularized CSP method based on frequency bands and

sorted the mutual information between the frequency bands to

extract the features. Then they calculated the distance between the

feature and label using the second normal form, and performed

classification with the nearest neighbor (Park et al., 2018). Zhang

et al. proposed a CSP algorithm that optimized both the filter band

and the time window to extract features, and an accuracy rate of

88.5% was achieved on the BCI public four-category dataset with

a support vector machine (SVM) classification (Jiang et al., 2020).

In 2018, Vasilisa proposed a feature weighting and regularization

method to optimize the current CSP method to avoid loss of feature

information. After the minimumMahalanobis distance classification,

the accuracy of the four-class dataset reached 88.6% (Mishuhina and

Jiang, 2018). These mentioned improved CSP algorithm overcomes

some of the problems of the traditional CSP algorithm, it still exhibits

certain shortcomings, such as it is unsuitable for processingmulticlass

EEG data.

In addition to feature extraction, studies have been made to

improve the performance of feature selection and classification

algorithm. In Udhaya Kumar and Hannah Inbarani (2017), the

particle swarm optimization (PSO) algorithm combined with a rough

set was used to retain features which contribute to the classification

accuracy.With the neighborhood rough set classifier, the final average

classification accuracy rate in the IIa dataset in BCI competition IV

reached 73.1%. In Selim et al. (2018) selected the most distinctive

CSP features and optimized SVM parameters by applying a hybrid

attractor metagene algorithm and a bat optimization algorithm,

and obtained an average classification accuracy rate of 78.3% in

the same dataset as that mentioned above (Chu et al., 2018). At

this stage, owing to the rapid development of the Riemannian

geometry, researchers have used the Riemann minimum distance

for pattern classification of EEG signals. In 2019, Javier proposed

an improved contraction covariance matrix to handle small sample

data more effectively, and subsequently processed the IIa dataset

through the Riemann minimum mean distance classifier, and the

average classification accuracy rate reached 79.6% (Olias et al., 2019).

However, some problems persisted in Riemannian approaches, for

example, as the number of the dimension of the covariance matrix

rises, the worst the accuracy become (Yger et al., 2017).

To improve the accuracy of feature classification, a new algorithm

model based on improved lasso and relief-F was designed in this

study. During feature extraction, the relative wavelet packet energy

entropy feature of the EEG signal, as well as the variance and

mean of the multiclass score common spatial pattern (mSCSP) were

extracted. These three features can not only effectively extract the

time-frequency-spatial domain information of the signal, but also are

suitable for analyzing biological non-stationary signals. Subsequently,

feature fusion was performed on the obtained features to overcome

the problem of low classification accuracy caused by a single feature.

To address the redundancy and high computational complexity of

fusion features, a feature selection method based on mutcorLasso

and the relief-F algorithm was proposed to retain important features

and eliminate redundant ones. Finally, four different classifiers were

used to verify the effect of classification, including the K nearest

neighbor (KNN), contraction linear discriminant analysis (sLDA),

random forest (RF), and an ensemble classifier (Ensemble).

2. Materials and methods

In order to improve the MI EEG classification accuracy, a

recognition method based on brain network and improved lasso

was proposed in this paper. A flowchart of the proposed model is

shown in Figure 1, which includes data introduction, preprocessing,

feature extraction, feature selection, and classification. The feature

extraction algorithmmentioned is based on the brain network model

framework. The edge weight is set according to the relative wavelet

packet entropy, and the threshold selection is based on the global

network sparsity when the brain network is constructed. In addition,

a feature selection method based on lasso method and presents some

improvements to the traditional lasso was proposed. The mutual

information and correlation between features are considered for the

construction of the objective function of lasso, and then the relief-f

algorithm is added for further feature selection.

2.1. Data preprocessing

The first step of preprocessing is to remove bad channels with

low signal-to-noise ratio by interpolation or average. The next step

is band-pass filtering which significantly affect the classification

performance of EEG. In this study, the R2 map is calculated using

the power spectral density (PSD) to obtain the frequency band

that contains the largest amount of information for each dataset

(Choi et al., 2020). In addition, because the signal-to-noise ratio of

EEG is extremely low, the data must be denoised and the wavelet

soft threshold method was used to perform denoising. The above

three steps are serial processing to avoid confusion caused by the

entanglement of Midway data.

2.1.1. Wavelet soft threshold denoising algorithm
When the EEG signal undergoes a wavelet decomposition, the

amplitude of the wavelet coefficients of EEG is greater than the noise.

The noisy signal is decomposed by the orthogonal wavelet base at

various scales at a low resolution (Khoshnevis and Sankar, 2020). For

the decomposition value at high resolution, the wavelet coefficients

whose amplitude is below the threshold were set to zero, and the

wavelet coefficients above the threshold are reduced correspondingly

or directly retained. Finally, the wavelet coefficients obtained after

processing are reconstructed using the inverse wavelet technique, and

the denoised EEG is restored.

2.1.2. Multi-score common spatial pattern
The spatial filtering technique is suitable for processing the

multidimensional signals, such as EEG (Park et al., 2014). This

algorithm mainly improves the CSP algorithm to select EEG

channels. By calculating the score of the projection matrix for all the

channels, the channel with the highest score for each class is selected

and combined to obtain the optimal filter channels. The algorithm

not only maximizes the variance difference between classes but also

reduces the cost of computing resources.
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FIGURE 1

Algorithm model. The diagram consists of five main parts: data introduction, preprocessing, feature extraction, feature selection, and classification.

2.2. Feature extraction

In this paper, the wavelet packet method is used to extract the

detail and approximate coefficients of EEG. The energy entropy

values of these coefficients are calculated, and a brain function

network based on these energy entropy values is constructed to

extract the topological features. Because the mSCSP algorithm

in the previous step amplifies the variance of different samples,

the variance characteristics of each sample are also extracted.

Finally, the three parts of features are fused to obtain a higher-

dimensional matrix. However, the dimensions of the features

extracted by the above three different feature extraction algorithms

are different, resulting in the situation that some features with

large dimensions may have a great impact on the screening

results in the subsequent feature screening. Therefore, the feature

matrix is standardized and the features with different dimensions

are compressed to the range of [0,1] for subsequent processing.

The two main feature extraction methods used in this study are

as follows.

2.2.1. Relative wavelet packet entropy
Currently, relative wavelet packet entropy has been widely used

in processing EEG data. It can efficiently extract the time–frequency

domain information, and the low frequency of EEG can be reduced

by wavelet packet decomposition technology. Meanwhile, the high-

frequency information are extracted to reflect the time–frequency

domain information of this part of the EEG signal more effectively.

This wavelet packet decomposition method has no redundancy and

omissions, therefore, it can perform an efficient time–frequency

localization analysis on EEG that contain a large amount of medium

and high-frequency information.

In this study, the EEG signal is decomposed into three layers.

Therefore, the approximate and detail coefficients of the three layers

are obtained, which are Aj, j = 1, 2, 3 and Dj, j = 1, 2, 3 where

j represents the number of decomposition layers. The formula for

calculating the energy coefficient of each layer was as follows:

Ej = (Aj(k)+
∑

k

Dj(k)
2)/3 (1)
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where k represents the k-th channel, the approximation coefficients

Aj are averaged, and the detail coefficients Dj are used in the second

norm. Therefore, both the detail coefficients and approximation

coefficients are considered as the energy value of each layer.

Furthermore, because the approximation coefficient is more

important in the analysis of EEG signals, the original value of

the approximation coefficient is directly used, whereas the detail

coefficient is used as part of the energy coefficient. The formula to

calculate the total energy is as follows:

Et =
∑

j

E2j , (2)

where Et represents the total wavelet packet energy value

(Dimitrakopoulos et al., 2018). The relative wavelet energy value can

be obtained from the two formulas above, and the specific formula is

as follows:

Pj =
Ej

Et
(3)

where
∑

j Pj = 1, and the distribution of Pj can be used as an

important feature of the EEG time–frequency domain. Next, based

on the Shannon entropy theory, the wavelet packet energy entropy

was calculated (Li and Zhou, 2016). The specific formula is as follows:

Sm = −
∑

j

(Pj ln(Pj)), (4)

where Sm represents the relative wavelet packet energy entropy of

channel m. Based on the formula, the value between channels can be

calculated, which provide a foundation for building a brain function

network for each dataset.

2.2.2. Brain network
The method to construct a brain function network can be

primarily classified into following four steps:

Node definition: Each channel electrode after channel selection

is used as a node to construct the brain network.

Weight calculation: The weight value of the edge in this

experiment is the relative energy entropy of wavelet packet designed

in the previous section.

Threshold definition: The threshold selection criterion used in

this experiment is based on sparsity, which is determined as the 30%

sparsity standard to ensure that each node is not an isolated node

and that the network complexity is low. This is more suitable for

subsequent processing.

Topological feature extraction: It is primarily aimed at several

typical topological features of the constructed brain network,

including the degree of the node, clustering coefficient of the node,

global efficiency of the brain network, and characteristics of the first

and spectral norms of the brain network. The specific formulas are as

follows Lee et al. (2018):

The formula for node degree parameter is as follows:

ki =
∑

j∈N

(Rij)+
∑

j∈N

(Rji), (5)

where Rij and Rji indicate the edge from node i to node j and the

edge from node j to node i exist, respectively. The N represents the

total set of features extracted from the brain topology network, and ki
represents the degree of node i, which is calculated by the sum of the

outgoing and incoming paths of the node. After calculating the degree

of the node, it can be used to calculate the clustering coefficient of the

brain network. The specific formula for the calculation is as follows

Kakkos et al. (2019):

C =
t

ki ∗ (ki − 1)
(6)

where t represents the number of triangles around node i.

The clustering coefficient can reflect the universality of cluster

connections around a single node; therefore, it is often analyzed as

a feature of the brain function network (Horn et al., 2014). Another

feature is the global efficiency of the brain network, which can reflect

the degree of connectivity of the entire brain network. The specific

formula used for calculation is as follows:

E =
1/

∑

j∈N,j6=i dij

N − 1
, (7)

where dij represents the shortest distance from node i to node j.

The shortest distance was calculated using Dijkstra’s algorithm. The

starting point is taken as the center and expand outward layer by

layer (breadth first search idea) until it is extended to the end point.

The order of increasing length produces the shortest path used in

this algorithm. That is, after sorting the path lengths of all visible

points each time, this algorithm select the shortest path from the

corresponding vertex to the source point. Therefore, this algorithm

is more suitable for EEG than prim algorithm or Freud algorithm.

The nodes of brain network are defined by reconstructing

different node positions on the electrode cap and the corresponding

path is composed of the relative wavelet packet entropy coefficient.

Then the threshold is set to determine the sparsity of the brain

network construction to avoid high computational complexity and

feature redundancy. The topological characteristics of these three

parts of the brain network can fit the information of entire brain

network.

2.3. Feature selection

Owing to the higher dimension of the matrix after feature fusion,

a significant amount of computing resources is consumed. Therefore,

the lasso method based on mutual information and correlation

combined with the relief-f method is used for feature selection.

Finally, the feature matrix with smaller dimensions is selected,

which could reduce the computational complexity and ensure a

higher classification performance. The specific details of these two

algorithms are as follows:

2.3.1. mutcorLasso
During data training, hundreds or even thousands of variables

are involved. Therefore, there are possibilities of overfitting when the

dependent variable of the objective function ismeasured using several

variables. Lasso-based methods can be used to perform filtering more

efficiently by eliminating some nonessential variables. Therefore,

both discrete and continuous data can be processed. In this paper, we

propose a lassomethod based onmutual information and correlation,
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which is an improvement on the traditional lasso algorithm. It

considers the mutual information and correlation information of

features and labels followed by optimization. We modified the

objective function of the traditional lasso algorithm, and objective

function proposed is as follows:

min(‖y⊤ − w⊤X‖22 + α‖w‖1 + βw⊤Cw), (8)

where y and X are formula elements in the traditional Lasso

algorithm, y represents the label of the dataset, and X represents

the characteristic matrix calculated according to the least squares

method. C is the squared mutual information correlation matrix,

and w is the weight coefficient of each feature vector. α and β are

the learning rates that control the optimization speed of the entire

objective function. If the setting is extremely small, the local optimal

value can be obtained easily; if extremely large, the amplitude of result

fluctuates significantly, and the global optimal value can be obtained

easily. In this study, the initial value of α is set to 0.5 and β to 0.1,

the values are updated to get a better accuracy based on these two

parameter combinations. The formula to calculate matrix C is as

follows:

C = R⊙ R, (9)

where R is the coefficient matrix of the mutual information and

correlation, ⊙ represents the Hadamard product, and the formula to

calculate each element in the Rmatrix is as follows:

rkl =

∑n
i=1 xkixli

√

∑n
i=1 x

2
ki

√

∑n
i=1 x

2
li

+ |mutInf (xki, xli) |, (10)

wheremutInf represents themutual information between two feature

vectors. Using this formula, each coefficient of matrix R is obtained

and used as the basis for the optimization of subsequent objective

function. After the general feature is selected using the algorithm

above, the feature dimension is still large. Therefore, the experiment

will be proceeded using the relief-f algorithm, which is typically used

at this stage to perform further feature selection.

After feature filtering by the above method, the dimension of

feature vector is reduced from 120 to 20, and the relevant redundant

features are eliminated.

2.3.2. Relief-f
The basic principle of the algorithm is as follows: first, samples

R are randomly selected from training set D and the k nearest

neighbor samplesH are obtained from the same typeR. Subsequently,

the k nearest neighbor samples M are selected from samples of

different types from R. Finally, the feature weight is updated using

this formula.

In view of the overall dimensions of the dataset and information

from relevant studies, we set the k nearest neighbor samples to six.

To ensure that each sample type is randomly selected, we control the

random sampling rate required by the algorithm to be within 30–

40%. The distance function is marginally modified, and the distance

is set to the absolute value of the difference between elements in

two feature vectors, thereby reducing calculation complexity and

reflecting the difference between random and selected samples.

Finally, the statistics on the w value after traversal are obtained,

the w value of each feature vector is sorted, and feature matrix of

lower dimensions is selected. In this algorithm, the update formula

of feature weight w is as follows:

w = w−

k
∑

j=1

diff (A,R,H) /(mk)

+
∑

c∈class(R)

p(C)

1− p(class(R))

∑k
j=1 diff (A,R,H)

(mk)2

(11)

where diff () represents the difference between the R and H samples

on feature A, and mk represents the number of total samples.

According to the formula, the w coefficient can be continuously

updated.

After feature filtering by the above method, the dimension of

feature vector is reduced from 20 to 10, So it is better suitable for

classification tasks with low time complexity.

2.4. Classifier

The last component pertains to classification. Four classifiers

were used in the experiment, namely KNN, sLDA, RF, and the

Ensemble obtained by integrating the three classifiers. These four

classifiers can verify whether the proposed algorithm is universal.

KNN is determined by voting the unlabeled samples by the K

nearest neighbors (Bablani et al., 2018). sLDA is an improved version

of linear discriminant analysis, which is more applicable when the

number of training samples is less than the number of features

(Tjandrasa and Djanali, 2016). RF is an extension of the traditional

decision tree classification algorithm that adds knowledge in the

integrated learning field and performs decision classification based

on multiple decision trees (Lanata et al., 2020). After verifying the

classification accuracy for different number of decision tree on the

datasets, we set the number to 10 in the RF. Ensemble is integrated

according to the prediction labels finally obtained using the three

classifiers mentioned, and it uses the voting method to predict the

labels of final ensemble classifier.

The five components above are the specific description of the

algorithm model. The following sections focus on the new algorithm

proposed herein in feature extraction and feature selection. The

pseudo code of the feature selection algorithm above is shown below

Table 1.

2.5. Evaluating indicator

The evaluation indicators used in this experiment was accuracy.

It is the most important index in the entire classification system and

is obtained based on the confusion matrix. The specific formula to

calculate it as follows:

Accuracy =
Truenum

Totalnum
, (12)

where Truenum indicates the number of samples correctly classified,

and the Totalnum indicates the total number of samples. All the data

in the result tables are obtained through 10 fold cross validation.
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TABLE 1 The pseudo code of the feature selection algorithm.

Algorithm: Procedure of mutcorLasso+Relief-f

Input: Feature vector matrix X ∈ Rp∗n , corresponding label y∈ Rp ,

The maximum number of iterations iternum

mutcorLasso method:

1: For i from 1 to n do:

2: For j from 1 to n do:

3: Calculate mutual information and correlation using Equation (10)

4: end for

5: Construct matrix C based on the above coefficients

6: Calculate the Hadamard product following Equation (9)

7: Obtain the fixed matrix B:

8: B = X ∗ X⊤ + β ∗ C

9: Initialize the w coefficient to a random decimal between 0 and 10

10:While i < 1,000

11: temp = w

12: Calculate diagonal matrixM:

13: M(t) = diag(

√

w
(t)
1 ,

√

w
(t)
2 , ...,

√

w
(t)
p )

14: Update weight coefficient w:

15: wt+1 = Mt[MtBMt +
αIp
2
]−1MtXy

16: if t > iternum :

17: break

18: end if

19: According to the value of w, the features with w of 0 are eliminated

Relief-f method:

20: For i from 1 to 60:

21: Random select a sample

22: Find 6 neighbor samples from the same class as the sample

23: Find 6 neighbor samples that are different from the sample

24: Update w weight using Equation (11)

25: sort w

26: Select the first N-dimensional features according to the value of w

Output:feature matrix after selecting

3. Results

3.1. Data description

To demonstrate the effectiveness of the proposed method, we

conducted the following experiments on the dataset IIIa in BCI

competition III (Blankertz et al., 2006) and the dataset IIa in BCI

competition IV (Tangermann et al., 2012), as detailed in Table 2.

3.2. Experimental parameter settings

3.2.1. Setting of α and β in mutcorLasso algorithm
In the feature selection part, we adjusted two parameters, α

and β , used in the algorithm and used five-fold cross-validation to

TABLE 2 Data description.

Competition Subjects Train Test

Dataset IIIa, BCI-III K3b (45 Trials/task) 90 90

K6b (30 Trials/task) 60 60

L1b (30 Trials/task) 60 60

Dataset IIa, BCI-IV A01~A09 (9 Subjects) 144 144

Both datasets include four motor imagery tasks of left hand, right hand, foot or tongue

movement.

FIGURE 2

The e�ect of α and β parameters in mutcorLasso algorithm. As the

color is closer to yellow, the higher the accuracy of the classification is.

verify the results of RF classifier. Taken K3b dataset as example,

Figure 2 represented the learning rates α and β of mutcorLasso

algorithm, respectively. Although the parameters range between

0.1 and 1, which is relatively small, it affects the classification

accuracy very significantly. It could be seen when α was 0.5 and

β was 0.1, the accuracy of the K3b dataset was the best among all

these values. Similarly, in the other dataset, the adjacency matrix

graph was calculated to reflect a better accuracy based on different

parameter combinations in mutcorLasso algorithm, and then the best

combination of α and β was determined to improve accuracy.

3.2.2. Setting of bandpass filter parameter
We removed the artifacts from raw EEG data and then calculated

the PSD of each sample to construct the R2 chart that reflects

the information of different frequency bands. The three graphs in

Figure 3 show the bandpass filter for three datasets, in which the

ordinate indicates the number of channels, the x-axis indicates the

bandpass filter frequency band, and each square indicates the power

of each channel in different filter frequency bands. Based on them,

the filter band of the k3b dataset was set to 0.5–20, the k6b was set

to 3–30, and the l1b was set to 4–40. Similarly, in the IV2a dataset,

bandpass filtering was performed based on the relevant R2 map to

obtain more information.
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FIGURE 3

R
2 chart for three EEG datasets. The more information the frequency band contains, the closer is the color to yellow. Therefore, the bandpass filter

parameters of each dataset can be determined.

3.2.3. Setting of wavelet base in wavelet soft
threshold denoising

Because of the varied sampling numbers of the two competition

datasets, the wavelet bases for these datasets were different. In

this experiment, the wavelet soft threshold method was used to

perform denoising. It can be inferred from the Figure 4 that the

denoised signal can approximately retain the original value of

the original signal, and some high-frequency noise signals are

directly eliminated. For the 250 samples in the BCI3 IIIa four-class

dataset, db10 was selected as the wavelet base, and for the 1,125

samples in the BCI4 IIa four-class dataset, db20 wavelet base was

selected (Yang et al., 2018).

3.2.4. Setting of brain network sparsity parameter
The brain network parameter selection was verified based

on the k3b dataset. After constructing the entire brain network

model, we compared the effect of sparsity on the brain network

model, as shown in Figure 5. The brain network with the

sparsity of 10% contains isolated nodes, which could affect the

subsequent extraction of the brain network features. In addition,

the brain network with the sparsity of 50% shows an extremely

dense overall connection of the brain network, which rises the

calculation complexity. Thus, the brain network diagram with the

sparsity of 30% will be used to build a brain network and the

topological features.

3.3. Results of di�erent classifiers on two
datasets

3.3.1. Dataset IIIa (BCI-III)
The performance of the algorithm model was verified based

on the 50% cross-validation method. This experiment was repeated

20 times and the average accuracy of the entire algorithm model

was obtained. In Table 3, the classification accuracy of the existing

corresponding algorithms used for Dataset IIIa (BCI-III) is mostly

between 80 and 85%, and the accuracy of ensemble classifier exceeded

90% when the training set contained few samples.

3.3.2. Dataset IIa (BCI-IV)
Training set and test set were used at a ratio of 1:1 to verify the

algorithm model on dataset IIa. The experiment was repeated 20

times to obtain the variance value of the entire model. In Table 4, the

average accuracy of the nine datasets exceeded 80%, which is better

than the optimal average value of 80.9% obtained in the previous

paper. In particular, the average accuracy obtained by the RF classifier

was approximately 90%, which is a significant improvement.The

classification accuracy of the existing corresponding algorithms used

for Dataset IIa (BCI-IV) was mostly above 85%, suggesting the

algorithm model proposed in this paper can achieve good results on

this data set.

3.4. Results of fused feature extraction
algorithms

In the subsection, the classification accuracy of several feature

extraction algorithms mentioned were verified through the five-

fold cross-validation method. To avoid the influence of feature

selection, the extraction features were directly classified by the

RF classifier without feature selection. Table 5 shows that the

classification effect of the combination of any two feature extraction

methods is better than that of the single feature extraction algorithm

alone, and the classification effect obtained by combining the three

methods mentioned is the best, approximately 90%. What’s more, it’s

discovered that the variance features obtained by the SCSP facilitated

the classification to be the best, followed by the topological features

of the brain network.

3.5. Results of feature extraction algorithms

We compared the proposed feature extraction method with

other algorithms, including Sparse Filter Bank Common Spatial

Pattern (SFBCSP) (Zhang et al., 2015), Temporally Constrained

Sparse Group Spatial Pattern (TSGSP) (Yu et al., 2018) and Discrete

Wavelet Decomposition (DWT) (Khatun et al., 2016). We randomly

combined features extracted from these four methods with mSCSP

variance features, then performed feature selection by the relief

algorithm, finally obtained the average accuracy of the mentioned
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FIGURE 4

Wavelet soft threshold denoising results under di�erent competition datasets. The black line in the figure represents the original signal, and the red line

represents the result after the wavelet-based denoising.

FIGURE 5

Brain network results in di�erent sparsity situations, as 10, 30, and 50%, respectively.

TABLE 3 The classification accuracy of di�erent classifiers on dataset IIIa.

Data sLDA RF KNN Ensemble

K3b 93.32 89.25 92.62 91.83

K6b 93.71 93.13 91.82 92.19

L1b 92.83 93.19 94.46 93.95

classifiers after a five-fold cross-validation. As shown in the Table 6,

in datasets IV2a, the average accuracy exceeds 90% by the proposed

feature extraction method combining wavelet packet energy entropy

and brain network features.The results suggest that the feature

extraction method proposed is better than the other three feature

extraction methods.

TABLE 4 The classification accuracy of di�erent classifiers on dataset IIa.

Data sLDA RF KNN Ensemble

A01 86.42 89.03 91.06 90.55

A02 92.35 93.95 92.75 94.26

A03 72.26 88.89 85.74 86.41

A04 64.67 65.86 65.69 65.73

A05 95.81 99.11 97.94 97.94

A06 89.63 99.26 97.62 98.03

A07 90.36 98.33 98.36 97.88

A08 88.98 93.64 92.04 90.25

A09 66.01 77.18 66.35 73.14
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TABLE 5 The classification accuracy for di�erent feature extraction algorithms.

Data RWPEE BNTC mSCSP RWPEE+BNTC RWPEE+SCSP BNTC+SCSP Proposed

A01 56.16 70.16 79.93 76.96 80.51 85.54 88.65

A02 61.15 70.83 79.62 76.56 80.62 82.34 82.64

A03 63.84 81.94 84.61 82.24 88.91 84.64 92.52

A04 63.46 78.22 82.91 78.33 87.92 89.74 91.96

A05 64.04 84.86 83.36 84.85 81.81 85.84 85.84

A06 67.94 80.49 82.95 80.46 82.53 83.26 93.76

A07 68.46 73.12 83.46 73.24 82.13 84.04 93.59

A08 60.12 78.52 69.69 78.64 78.81 80.25 82.21

A09 67.56 74.43 86.38 75.31 82.21 84.65 94.53

Mean 63.61 76.91 81.43 78.35 82.86 84.45 89.55

RWPEE refers to relative wavelet packet energy entropy, BNTC refers to the brain network topological characteristics of brain network, mSCSP refers to the one-to-one scoring CSP algorithm

variance characteristics.

Bold values represent the highest value.

TABLE 6 The classification accuracy di�erent feature extraction algorithms.

Data TSGSP SFBCSP DWT Proposed

A01 86.03 82.73 74.83 88.63

A02 74.51 74.22 79.61 82.63

A03 91.75 88.55 87.71 92.51

A04 75.16 69.56 87.95 91.95

A05 81.91 76.34 83.15 83.66

A06 69.27 64.64 90.55 93.78

A07 89.89 86.88 94.51 93.51

A08 94.48 90.99 90.31 92.23

A09 81.95 72.84 89.91 94.50

Mean 82.75 78.55 86.73 90.33

Bold values represent the highest value.

TABLE 7 The classification accuracy for di�erent feature selection

algorithms on dataset IIIa.

Data Relief-f Lasso Lasso+Relief-f Proposed

K3b 87.84 82.21 89.05 91.97

K6b 88.57 82.15 90.25 92.63

l1b 86.74 83.33 88.75 91.55

Mean 87.75 82.53 89.35 92.05

Bold values represent the highest value.

3.6. Results of feature selection algorithms

Table 7 compared the proposed mutcorLasso method with relief-

f, lasso and the combination of these methods.The feature matrix

obtained before feature selection is guaranteed to be exactly the

same, but different features are adopted in the feature selection part.

The selection algorithm controls the features in 20 dimensions to

ensure that the feature dimensions selected using different feature

selection algorithms are the same. After 50% cross-validation, the

TABLE 8 The classification accuracy for feature selection and comparison

algorithms on dataset IV2a.

Data GBDT Pearson Pso+svm Proposed

A01 91.02 87.71 86.18 91.91

A02 84.30 83.42 76.19 84.83

A03 90.81 85.61 77.98 91.52

A04 95.22 88.74 87.41 90.36

A05 88.81 85.91 92.36 92.75

A06 93.92 90.15 91.68 93.74

A07 92.93 85.76 88.27 93.49

A08 85.51 82.88 81.02 86.48

A09 69.96 70.44 74.85 74.87

Mean 88.02 84.54 83.96 88.85

Bold values represent the highest value.

proposed algorithm achieved better accuracy of above 90% than

other algorithms.

In Table 8, three feature selection algorithms were compared,

including Gradient Boosting Decision Tree (GBDT) (Wang et al.,

2019), Pearson correlation coefficient (Pearson) (Xu and Deng, 2018)

and Particle swarm optimization (PSO) (Wang et al., 2020). These

three algorithms are widely used and representative feature selection

algorithms of different kinds. According to the results of these

datasets, the feature selection algorithm proposed herein yielded

better results on seven datasets, with an average accuracy rate of

88.8%, which is an improvement compared with other three feature

selection algorithms, 0.8, 4.3, and 4.9%.

4. Conclusion

The proposed model effectively integrates seven components:

bandpass filtering, wavelet denoising, channel filtering, feature

extraction, feature fusion, feature selection, and pattern classification.
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The main contributions of this study are as follows. Firstly, a complex

brain network feature extraction method based on wavelet packet

energy entropy was proposed, which not only extracts space–time

domain features but also extracts the topological features of the

brain network simultaneously, thereby retaining more EEG feature

information. Then, a lasso method based on mutual information and

correlation was proposed, and the subsequent relief-f algorithm was

combined with feature filtering to improve the selected features. The

proposed algorithm model can effectively mitigate the problem of

low accuracy caused by the scarcity of the training set and achieve

precise motion imaging classification. In the future, reducing the

computational complexity of the algorithm model and realizing

online analysis for a better application in medical rehabilitation will

be another research direction of our work.
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