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While noise is generally believed to impair performance, the detection of weak 
stimuli can sometimes be enhanced by introducing optimum noise levels. This 
phenomenon is termed ‘Stochastic Resonance’ (SR). Past evidence suggests that 
autistic individuals exhibit higher neural noise than neurotypical individuals. It has 
been proposed that the enhanced performance in Autism Spectrum Disorder 
(ASD) on some tasks could be due to SR. Here we present a computational model, 
lab-based, and online visual identification experiments to find corroborating 
evidence for this hypothesis in individuals without a formal ASD diagnosis. Our 
modeling predicts that artificially increasing noise results in SR for individuals 
with low internal noise (e.g., neurotypical), however not for those with higher 
internal noise (e.g., autistic, or neurotypical individuals with higher autistic 
traits). It also predicts that at low stimulus noise, individuals with higher internal 
noise outperform those with lower internal noise. We  tested these predictions 
using visual identification tasks among participants from the general population 
with autistic traits measured by the Autism-Spectrum Quotient (AQ). While all 
participants showed SR in the lab-based experiment, this did not support our 
model strongly. In the online experiment, significant SR was not found, however 
participants with higher AQ scores outperformed those with lower AQ scores at 
low stimulus noise levels, which is consistent with our modeling. In conclusion, 
our study is the first to investigate the link between SR and superior performance 
by those with ASD-related traits, and reports limited evidence to support the high 
neural noise/SR hypothesis.
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1. Introduction

Noise, defined here as unwanted variability, is generally considered to be a nuisance that 
disrupts information processing (McDonnell and Abbott, 2009). Indeed, when noise is added 
to the perceptual system, performance generally decreases (Mackworth, 1965). However, in 
certain circumstances, noise can be beneficial for a system (McDonnell and Abbott, 2009). This 
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effect has been extensively studied in engineering, but there are 
examples in biological systems as well, which includes postural 
stability (Costa et al., 2007; Kaut et al., 2016), perceptual accuracy 
(Piana et al., 2000), and visual information processing in the visually 
impaired (Itzcovich et  al., 2017). The phenomenon where noise 
increases performance (or other outcome measures) is called 
‘stochastic resonance’ (SR) (Wiesenfeld and Moss, 1995; Ward et al., 
2002; Moss et  al., 2004; McDonnell and Abbott, 2009). SR is 
characterized by an inverted U-shaped function where performance 
is gradually increased by the addition of noise until it reaches peak 
performance, after which further addition of noise results in the 
gradual decline of performance (McDonnell and Abbott, 2009). While 
SR has been mostly investigated in engineering, it is now being 
researched across medical science and neuroscience, because of  
its capability to enhance or improve sensory, motor, and 
physiological functions.

Although adding noise to improve performance has large 
potential impacts, adding noise does not help in most tasks, because 
SR is mostly limited to sub-threshold stimuli. Adding noise to supra-
threshold tasks typically will not be beneficial, although there are 
examples of supra-threshold SR (McDonnell et al., 2006). Moreover, 
even when SR is found on average, adding noise does not produce a 
benefit in everyone (Aihara et al., 2008, 2010). This suggests that apart 
from external factors (e.g., amount of noise in the stimulus, i.e., 
external noise), the appearance of SR also depends on internal factors 
specific to an individual. Aihara et al. (2008) suggested that one such 
internal factor is the level of noise in the brain itself (i.e., neural noise), 
termed ‘internal noise’. The results by Aihara et al. (2010) suggested 
that that SR will fail to occur when internal noise is high in an 
individual. In other words, adding external noise to a system (such as 
the brain) that already has high amounts of internal noise will result 
in being overwhelmed with too much noise. On the other hand, 
adding external noise to a system with low internal noise levels can 
result in SR, because noise can push a sub-threshold signal above 
threshold. The variability in internal noise could explain why SR is 
generally not observed consistently across all populations.

A population suspected to have high levels of internal noise is 
individuals diagnosed with Autism Spectrum Disorder (ASD) 
(Rubenstein and Merzenich, 2003). ASD is a neurodevelopmental 
disorder that is characterized by restrictive and repetitive behaviors, 
and social communication deficits (American Psychiatric Association, 
2013). It is hypothesized that behavioral characteristics observed in 
ASD can be linked to high internal noise or neural variability in the 
autistic brain1 (Rubenstein and Merzenich, 2003; Simmons et al., 2009; 
Milne, 2011). This high internal noise in ASD is linked to an imbalance 
in excitation/inhibition ratios in the brain (Rubenstein and Merzenich, 
2003). It is believed that the high neural noise in ASD results in 
unreliable and less predictable representations of the environment 
(Dinstein et al., 2015). This hypothesis is supported by imaging and 
electroencephalogram (EEG) studies [however, there are some 
exceptions (Coskun et al., 2009; Butler et al., 2017)]. For instance, an 
EEG study showed that an autistic group displayed higher 

1 Note that we will be using identity-first language throughout this manuscript 

as we are aligned with the consensus of using identity-first language as opposed 

to person-first language (Botha et al., 2023).

intra-participant variability (trial-by-trial variability) when compared 
to the typically developing group (TD) (Milne, 2011). Further, an 
fMRI study showed increased trial-by-trial variability in BOLD (blood 
oxygen level dependent) responses within visual, auditory, and 
somatosensory cortices in autistic adults when compared to 
neurotypical adults (Dinstein et al., 2012). The increased trial-by-trial 
variability in neural activity in ASD was also discussed in a review by 
David et al. (2016). Moreover, a recent study also found high inter-
individual variability in ASD, and estimates of internal noise were 
significantly correlated with the severity of ASD symptoms [measured 
using the Autism Diagnostic Observation Schedule or ADOS (Park 
et al., 2017)]. However, there are also some studies that have not found 
a significant relationship between internal noise and ASD (Manning 
et al., 2015). Recently, Manning et al. (2017) also showed that internal 
noise levels were not significantly different in the autism group 
(although they were higher). Overall, there is good, but equivocal, 
evidence indicating that higher-than-typical neural noise may be a 
characteristic of ASD.

This pattern of a higher internal noise level is not confined to 
individuals diagnosed with ASD. It is also reported in typically 
developing individuals (TD) who exhibit a high level of autistic traits. 
The degree to which an individual exhibits autistic traits can 
be measured using the Autism-spectrum Quotient (AQ), introduced 
by Baron-Cohen et  al. (2001), or the Social Responsiveness Scale 
(SRS-2) (Constantino and Gruber, 2012). Vilidaite et  al. (2017) 
showed, using a psychophysical double-pass paradigm, that the 
amount of internal noise was positively correlated with the degree to 
which participants exhibited autistic traits on the AQ [see also 
(Orchard et al., 2021)].

The higher levels of internal noise in ASD provide a convenient 
explanation of decreased performance on various tasks such as in 
contour integration tasks (Mihaylova et al., 2021), second-order (or 
complex) detection tasks (Bertone et  al., 2005), and orientational 
discrimination tasks (Park et al., 2017).

However, interestingly, autistic individuals also show superior 
performance on several tasks. There are well-documented examples 
of savant capabilities in ASD (Howlin et al., 2009), and it is also well-
reported that autistic individuals, on average, show enhanced 
performance on some perceptual tasks such as visual search, and 
block design tasks (Mottron and Burack, 2001; Mottron et al., 2006). 
In an effort to parsimoniously explain both enhanced and reduced 
perceptual capabilities in ASD in light of the increased neural noise in 
that population, Simmons et al. (2009) suggested that the increase in 
performance (e.g., detection ability) could be due to SR. There is some 
circumstantial evidence for this hypothesis. For instance, one study 
showed that children with ASD displayed a small performance 
enhancement in a visuo-spatial static task for first order contrast 
detection (luminance-defined) in noise, whereas in the same task, 
performance declined for second order contrast detection (texture-
defined) (Bertone et al., 2005). Simmons et al. (2009) suggested that 
the increase in performance (detectability) in the first order 
luminance-defined gratings in noise was due to an increase in internal 
noise in their visual system, subsequently enlarging the signal 
moderately through SR. However, for the second order task, this SR 
effect does not occur, as extracting information from the second order 
task requires additional processing (such as integrating information 
across more visual filters) and is thus nosier by itself (Schofield and 
Georgeson, 1999; Simmons et al., 2009). Together with the increased 
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noisy stimulus, the overall level of noise may have overwhelmed the 
visual system and hence, a decline in performance occurred.

Indeed, it appears that most tasks where increased performance 
in ASD is found are in visually “simple” tasks such as visual search 
tasks (Kaldy et  al., 2016), while many of the more complex 
counterparts show decreased performances in ASD (Bertone 
et al., 2005).

There has been no direct investigation into whether SR arising 
from higher levels of internal noise is the cause for the increased 
performance in ASD on some tasks. Here, we will investigate whether 
higher trait levels on the Autism Quotient correlated with increased 
performance through SR. We performed this research in the typically 
developing (TD) population, because this gives us an opportunity to 
(1) have a larger sample size, and (2) allows us to study and model how 
noise could affect individuals within the broader population, 
potentially increasing generalizability. If the hypothesis proposed by 
Simmons et al. (2009) is true, then performance in conditions when 
external noise is low or zero should be better for individuals with 
higher levels of AQ (and presumably higher levels of internal noise) 
compared to that of individuals with lower AQ scores (and presumably 
lower levels of internal noise).

2. Modeling stochastic resonance in 
M-alternative choice tasks

To substantiate this prediction (and others) further, 
we constructed a model to explain detection performance under noisy 
conditions in an M-alternative choice task. M-alternative choice tasks 
have been modeled in the past (Tanner and Swets, 1954; Swets et al., 
1961; Hacker and Ratcliff, 1979; Green and Dai, 1991; Wickens, 2002; 
Macmillan and Creelman, 2005; DeCarlo, 2012). Here we extend this 
to conditions where the signal strength is sub-threshold, and is only 
correctly identified due to the presence of noise (i.e., SR).

The proportion correct, Pc, in an M-alternative choice task is 
in general

 
( ) ( )1 ,MPc x x s dxφ

∞
−

−∞

 = Φ − ∫
 

(1)

where φ  is the cumulative normal density function, φ is the 
normal probability density function, and s is the signal strength, and 
M is the number of alternatives (including the target). Here, φ  
describes the chance of a certain signal value occurring given an 
average signal strength (s), and noise i.e., the standard deviation, σ, of 
φ ; here set at (1). ( )xφ  describes the chance of the M-1 non-target 
alternatives being smaller than that (noisy) signal value. Equation (1) 
describes the overall probability that the target signal is the largest 
value, i.e., proportion correct, or accuracy in ideal cases.

To model stochastic resonance, we include a threshold, τ, and 
assume that the signal strength is below threshold, i.e., s < τ. The 
approach is similar to above, but one of the alternatives will only 
be chosen when it is both the largest, and also above threshold. When 
none of the alternatives is above threshold, an unbiased guess will 
result. Therefore, there are two situations that can lead to a correct 
response. First, the signal value (x) is above the threshold, and it is also 
the largest:
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τ

φ
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which is similar to Equation 1, except that the integral starts from 
τ, to ensure that the signal is above threshold.

Second, all M alternatives are below threshold, and the correct 
stimulus is chosen by chance

 
( ) ( )11 ,M

sPc s
Mτ τ τ−
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(3)

where ( )sτφ −  represents the probability of the signal stimulus 
being below threshold, and ( ) 1Mτ −

 Φ   represents the probability 
that all other M-1 alternatives are also below threshold. The probability 
of then choosing the correct stimulus is 1/M. The overall percentage 
correct is then the sum of Pcs ≥ τ and Pcs < τ
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Next, we include both contributions of internal noise (σint) and 
external noise (σext). Therefore, we  explicitly model the standard 
deviation (σ) of the signal and alternative distributions (which 
we assume to be the same), yielding
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(5)

where σ = (σint
2 + σext

2)1/2.
Figure 1A shows the contribution of the two parts of the equation 

(i.e., target signal above threshold, and guesses), dependent on 
external noise alone (setting internal noise to zero), when M = 9. 
When noise is low, the signal plus noise will be  below threshold 
(because s < τ), and so will the M-1 non-target alternatives (as their 
mean is centered at 0). Therefore, the proportion correct depends 
completely on guesses, and equals 1/M. When noise is higher, the 
signal plus noise will pass the threshold more regularly than the 
alternatives (because it is offset by the value s, and closer to τ), and 
proportion correct will increase. When noise increases further, noise 
becomes so large relative to the signal that the signal plus noise is 
largest only in about 1/M of the trials. Proportion correct then will 
revert back to chance level.

We can now compare cases with high and low internal noise. As 
seen from Figure 1B, we can see that the model predicts superior 
performance at low external noise levels for individuals with larger 
internal noise, possibly explaining superior performance reported in 
ASDs on some tasks, and possibly in higher vs. lower AQ groups (in 
TD individuals). Performance for the same group declines when noise 
is further increased. This decline in performance at higher noise levels 
is also more exaggerated for the higher AQ scores group (or in ASD 
groups) than TD individuals with lower AQ scores. Also, we can see 
that the model predicts SR for lower AQ (or TD) participants but 
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smaller or absent SR for higher AQ (or ASD) participants.2 The results 
from this model aligns with the SR hypothesis of Simmons et  al. 
(2009), and the high neural noise hypothesis for ASD in general. Note 
that, for the experiments reported here, we have comparisons between 
lower and higher AQ groups, but the model makes the same 
predictions for TD and ASD groups.

3. Experiment 1

In the first experiment, we conducted a lab-based visual detection 
task based on the approach of Itzcovich et  al. (2017). We  used 
alphabetical letters as stimuli in the task, because of the potential 
relevance of this task in daily living. We also collected AQ measures 
for each participant, to determine whether SR parameters (such as the 
position of the peak) depend on autistic traits.

3.1. Materials and methods

3.1.1. Participants
A total of 33 participants participated (10 males, 23 females, 

Mage  =  25.4, SDage  = 9.50). Of these, 26 participants identified as 
University of Canberra students and seven did not. All had normal or 
corrected to normal vision. The research received approval from the 
University of Canberra Human Research Ethics Committee (ethics 

2 When we discuss the model, we add in parentheses that the higher AQ 

group results could also apply to ASD groups. This is because our higher and 

lower groups refer to high and low noise, where the high group could be both 

higher AQ (within the TD population) or alternatively ASD.

number: 1868) and participants received a written information sheet 
and signed a consent form prior to commencing the experiment. All 
participants were reminded that they could withdraw at any time and 
were given contact information of the experimenter so they could ask 
any questions or raise any concerns they may have had after leaving 
the experiment. After data-screening (see below) 24 participants (7 
males, 17 females, Mage = 24.8, SDage = 9.18) were included in the 
analysis. This sample size was based on previous studies that 
investigated SR using letter identification tasks (Piana et al., 2000; 
Itzcovich et al., 2017).

3.1.2. Equipment and physical setup
Stimuli were presented on a gamma-corrected Dell LCD screen 

(60 Hz, 1920×1080 pixels), which was viewed at an approximate 
distance of 57 cm without a chin or head rest.

3.1.3. Quest procedure to determine initial letter 
contrast

The experiment started with two brief sessions in which we used 
the QUEST (Watson and Pelli, 1983) to establish detection thresholds 
(75% correct) in conditions without noise. On different trials, one of 
two letters, D and C, were presented in Sloan font with different white 
levels on a gray background. The participant had to decide whether a 
C or D was presented after each trial. Each staircase consisted of 40 
trials, and the threshold was taken as the value provided by QuestMean 
at the end of the staircase. The threshold procedure was repeated twice 
to determine the level of contrast that resulted in threshold-level 
performance. The average of the two estimates was taken as the 
detection threshold.

3.1.4. Visual stimuli
The target stimuli were vertically orientated alphabetical letters C, 

D, H, K, N, O, R, S, V, and Z, presented in Sloan font. The size of the 

A B

FIGURE 1

(A) Modeling proportion correct dependent on noise. M = 9, τ = 0.2, s = 0.19, σint = 0, σext is varied, and (B) the dependence of accuracy (Pc) on external 
noise (σext), assuming different levels of internal noise for two groups, a low-noise group (representing TD individuals, or TD individuals with lower AQ 
scores, σint = 0.01), and a high noise group (representing ASD, or TD individuals with higher AQ scores, σint = 0.1).
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letters was set at 64 pt. (85.33 px). The stimuli were presented on a 
uniform gray background and were programmed to be positioned at 
the center of the screen.

Noise stimuli were generated in MATLAB as separate frames 
(images). Noise was placed on top of the letter and the gray 
background, and noise and letter luminance were added. The strength 
of the noise was varied by varying the standard deviations of the 
gaussian distribution (i.e., white noise) of the luminance noise. The 
check sizes of the noise were 1px. The noise images were created anew 
for each trial and displayed in order at a refresh rate of 60 Hz.

3.1.5. Experimental visual display settings
After participants completed the QUEST procedure the visual 

experiment began. At this point the experimenter left the room and 
the participant completed the main visual experiment, and the AQ 
questionnaire. The stimulus size in the task was around two degrees 
of visual angle.

The experimental conditions were created in MATLAB and were 
based on the procedures conducted in Itzcovich et  al. (2017). 
Background luminance was kept at an intermediate gray level 
(128/255). Each letter was displayed in the center of the screen within 
a box frame. The luminance of the display letters was higher than the 
background but differed for each participant based on the QUEST 
procedure described above. On different trials, one of the 10 letters 
was displayed within one of seven levels of Gaussian additive noise, 
with sigma (σ) of 0, 6, 12, 18, 30, 60, and 90. We will refer to this noise 
as external noise. During the experiment each letter was randomly 
displayed 14 times, twice for each noise level. The letter was displayed 
for 1 sec. Participants had to type the letter they perceived on a 
keyboard, which had the 10 response options highlighted. There was 
no time limit for the participants to respond. Participants completed 
140 trials in the experiment, and the whole experiment took 45 min 
to complete.

3.1.6. Autism-spectrum quotient
The Autism-Spectrum Quotient (AQ) is a self-administered 

questionnaire which consists of 50 statements to each of which a 
respondent must indicate their level of agreement (Baron-Cohen 
et al., 2001). All items from the original scale were included without 
any modifications, and were presented on the computer monitor, one 
by one, in order. Participants selected their answer with the arrow 
keys, and pressed space to advance to the next question. Participants 
were required to indicate their responses on a Likert-scale ranging 
from 1 (definitely agree) to 4 (definitely disagree). The overall scale has 
a moderate to high internal consistency with Cronbach’s alpha score 
ranging from 0.63 to 0.77 (Baron-Cohen et al., 2001). This is consistent 
with findings from other authors (Austin, 2005; Hoekstra et al., 2008; 
Kloosterman et al., 2011). The AQ was not used as a screening or 
diagnostic tool for ASD in this manuscript, hence we did not consider 
clinical score cut offs.

3.1.7. Data screening
Prior to conducting the analyzes, the proportion correct data from 

each participant were checked for any unusual responses or patterns. 
We mainly looked for patterns that indicated response bias (such as 
participants responding with the same answer throughout the 
experiment), completing the experiment in an unrealistic time, and 
taking prolonged breaks during the experiment. We found no such 

unusual responses or patterns (in this experiment or the next). 
Participants who had 100% correct response at the lowest noise level 
(zero noise level) were excluded (i.e., nine participants from each 
study were excluded), because their data would preclude the possibility 
of showing any increase in performance due to noise. The reason that 
some participants showed 100% correct at zero noise level can 
be attributed to the staircase procedure, which may have not worked 
efficiently, leaving the performance for these participants at a high 
level. Participants’ data were also excluded if overall performance was 
not above chance level (1/M). For this first experiment, all participants 
scored above chance level. Lastly, there were no missing values for any 
of the items.

3.1.8. Data processing and statistics
Proportion correct data were analyzed with the statistics software 

(The Jamovi Project, 2021) and (JASP Team, 2022). Analysis that 
required statistical contrasts analysis were conducted in JASP. Note 
that we have used Generalized Linear Mixed Model (or GLMM) for 
most of our statistics as (1) our dependent variables are either binary 
responses or not normally distributed, and (2) the advantage of such 
models is that it allows us to incorporate random effects factors. As is 
standard for binomial distributions, we used a GLM with binomial 
distribution, and logit link functions. We have also provided OR (odds 
ratio) for some analysis. The further the OR is from 1, the more likely 
that there is an association between the variables.

3.2. Results

3.2.1. The stochastic resonance effect
Our results show clear SR (see black line in Figure 2), with optimal 

performance occurring at non-zero levels of noise (here σ = 6).
A GLMM with binomial family and logit link function was 

conducted in the JASP software to evaluate the effects of visual noise 
on the average correct responses of participants. The participants were 
used as a random effect grouping factor and noise was used as the 
fixed factor. The analysis produced a significant main effect for 
external noise level σ [χ2 (1) = 722.88, p < 0.001, VS-MPR (Vovk-Sellke 
Maximum p-ratio) = 3.18 × 10155].

Next, we  conducted a planned contrast analysis. A planned 
contrast analysis revealed that the increase in performance from zero 
noise was significant at σ = 6, z(∞) = 7.01, p < 0.001. When further 
external noise is added (σ =12), performance starts to decline as 
observed in Figure 2. This decline in performance was also significant 
in the contrast analysis; z(∞) = −3.81, p < 0.001. The planned contrast 
p values were Holm-Bonferroni adjusted.

3.2.2. Dependence on AQ traits
To determine the impact of AQ, we categorized AQ scores into 

higher and lower AQ scores. There is evidence that indicates that the 
most accepted form of categorization of autistic traits is by performing 
a median-split (Stevenson and Hart, 2017). Therefore, the median-
split approach was used for categorizing our group. The median in this 
data was 20.50, and hence participants that scored below 20.50 were 
considered lower AQ (N = 12, M = 15.08, SD = 3.75, Range: 7–20) and 
participants that scored 20.50 and above were deemed as higher AQ 
(N = 12, M = 24.50, SD = 3.52, Range: 21–34), see blue and red lines in 
Figure 2. Note that, we do not actually have many AQ scores above 32 
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(a cut-off when AQ is used for screening), and the group means are 
well below 32. Therefore, we chose to name the groups lower and 
higher AQ groups (and not low and high AQ groups). A GLMM with 
binomial family and logit link function showed a non-significant main 
effect for AQ group [χ2 (1) = 0.05, p = 0.82, OR = 1.07], a significant 
effect for noise level (σ) [χ2 (1) = 263.51, p < 0.001, OR = 0.97], and a 
non-significant interaction for noise level (σ) and AQ group [χ2 
(1) = 1.43, p = 0.23, OR = 1.00]. This analysis shows that there was no 
significant difference in performance between the higher and lower 
AQ groups, who showed similar levels of SR.

3.2.3. Improved detection threshold in 
participants was not linked to autistic traits

As a check whether there were any differences in detection 
thresholds (as measured with QUEST) between individuals with lower 
and higher levels of AQ, we  performed a linear mixed model. 
We  checked for outliers using Z-scores on the threshold values, 
revealing one outlier (Z-score > 3.29). Furthermore, when we fitted 
the linear mixed model with all participants included, and checked the 
residual and predicted value plots, the participant’s residual was an 
outlier as well. Therefore, this participant was excluded from the 
main analysis.

A GLMM with Gamma distribution, and inverse link function 
was conducted with the threshold values as the dependent variable, 
AQ score was included as a covariate, and the order of the two 
threshold sessions was a fixed factor. The participants were added as 
the random effects in the model.

The results from the analysis yielded a significant effect of order 
[χ2 (1) = 4.83, p = 0.03, OR = 1.12], a non-significant effect of AQ [χ2 
(1) = 1.41, p = 0.24, OR = 1.00], and a non-significant interaction effect 

of order and AQ [χ2 (1) =  0.28, p = 0.60, OR = 1.00]. This analysis 
indicates that participants on average performed better in the second 
threshold procedure, but this (improvement in) threshold score was 
not linked to their AQ scores (Supplementary Figure S1).

3.2.4. Impact of letters
SR effects may be different between different letters, because some 

letters are more confusable than others. We computed a confusion 
matrix (Figure 3) showing for each presented letter (x-axis), which 
letter was reported (y-axis), to see how participants performed for 
each letter in the detection task. This analysis allows us to investigate 
how different stimuli can impact the occurance of SR. This can also 
have real-life implications as there are numerous stimuli present in the 
environment. Thus, for the SR-phenomenon to be  effective in 
ecological settings, it has to work with different stimuli. Furthermore, 
if some letters are very easy to identify, and accuracy is close to 100% 
for that letter, SR would probably be too small to measure.

From the matrix, we can see that some letters are often confused, 
such as R and K, O, C and D, and H and N. Other letters are not as 
often confused with other letters (e.g., O and K). This happens at all 
noise levels (also see Supplementary Figure S2 for performance at each 
noise level).

We believe that when such confusable letters are involved in the 
task, detection rates will be lower at zero noise levels allowing the 
effect of external noise and SR to be more prominent. To test this 
hypothesis, we first calculated the difference between zero noise and 
the maximum performance at any non-zero noise level (we refer to 
this as ‘accuracy boost’) for all participants. Overall average 
performance at zero noise for all letters (and all participants) is 
negatively correlated with the accuray boost as seen in Figure  4 
(Pearson’s r = −0.80, p = 0.005). This plot indicates that when accuracy 
at zero noise is low, the beneficial impact of noise is high and 
vice versa.

These differences between letters notwithstanding, all letters 
showed the inverted U-shaped function indicating strong presence of 
SR (Figure 5; data points).

FIGURE 2

Inverted u-shaped function (SR effect) from Experiment 1. The graph 
illustrates the raw average proportion correct versus σ noise level. 
Error bars show standard errors of the means over participants. The 
blue line illustrates lower AQ participants, and red line shows higher 
AQ participants.

FIGURE 3

Confusion matrix depicting the frequency of reported and presented 
letters in Experiment 1.
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4. Experiment 2 (online experiment)

A shortcoming of the first experiment is that we could not 
estimate internal noise measures for the participants (due to the 
low number of trials) and correlate it with AQ scores. Here, 
we performed another visual identification experiment, which had 
several strengths. First, we  ensured that we  had more (12) 
repetitions per combination of noise level and letter identity, which 
allowed us to estimate internal noise measures for each participant 
and correlate these measures with AQ scores. Second, due to the 
COVID-19 pandemic, we had to conduct this experiment online. 

This forced us to look at whether SR can occur in a more 
ecologically valid scenario of online letter identification, instead of 
using a lab-based setting. Third, we  expanded the ecological 
relevance by using the first 9 letters of the alphabet, instead of a 
carefully curated set of letters as typically done. Fourth, we did not 
only include white noise, but also three types of colored noise. 
We used colored noise as most behavioral studies investigating SR 
have only used white noise to show SR. We wanted to investigate 
if colored noise could produce a better SR effect than traditional 
white noise as suggested by some previous research in another 
context (Duan et al., 2014).

FIGURE 4

The impact of SR when the task contains confusable letters. Dashed line Indicates the regression line (trendline). Plot shows negative association 
between baseline accuracy and improvement in accuracy above baseline (accuracy boost). The baseline is accuracy of participants at zero external 
noise level.

FIGURE 5

This figure illustrates the effect of noise on each letter. Horizontal axis (x-axis) represents noise levels in log-scale, and the vertical axis (y-axis) shows 
accuracy. Accuracy at zero external noise was plotted at a level of 6 × 10−2 of external noise. Lines show the fit of the model (Model 1) to this data.
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4.1. Methods and procedure

4.1.1. Participants
Participants in this study were 48 undergraduate students (24 

males, 24 females, Mage = 21.10, SDage = 4.63) from the University of 
Canberra, who had normal or corrected to normal vision, and were 
undertaking an introductory psychology unit. All participants were 
aged 18 and above. This research was approved by the University of 
Canberra Human Research Committee (ethics number: 4454). After 
data screening (see below), 30 participants were included in the 
analysis (13 males, 17 females, Mage = 20.37, SDage = 3.49). This sample 
size was again satisfactory based on previous studies that investigated 
SR using letter identification tasks (Piana et  al., 2000; Itzcovich 
et al., 2017).

4.1.2. Stimulus and measures
The visual stimuli were presented using Gorilla Experiment 

Builder.3 Gorilla is a cloud software program designed specifically for 
behavioral sciences. Target stimuli were vertically orientated 
alphabetic letters ranging from A to I, presented in Arial font. The size 
of the letters was set at 300px. The stimuli were presented on a uniform 
gray background and were programmed to be positioned at the center 
of the screen.

Noise stimuli were generated in MATLAB as separate frames 
(images). These noise images were placed on top of the letter and the 
gray background. The strength of the noise was varied by varying the 
opacity of the noise stimuli. The size of the noise stimuli were 344 × 
344 pixels, and 72 pixels/inch. There were four different types of noise, 
white noise (flat spatial and temporal frequency spectrum; 1/fn with 
n = 0), and noises with decreasing amounts of high spatial and 
temporal frequencies: pink (n = 1), brown (n = 2), and a noise we will 
call infrared noise (n = 4). All types of noise were created as one series 
of images, saved in a PNG format. They were then loaded into the 
Gorilla program and displayed in order at a refresh rate of 60 Hz. 
There was one sequence of noise for each noise color that was reused 
throughout the experiment.

To provide the best performance, participants were restricted to 
perform this experiment on a desktop or laptop computer. Participants 
were advised to perform this experiment with minimum distractions 
(for example, switching off their phone notifications).

4.1.3. Procedure
Participants had to consent to participate in the study, and consent 

for their data to be used in future studies. Participants then provided 
basic demographic information, such as gender and age. They were 
then provided with instructions explaining what they were required 
to do to successfully complete the experiment.

Before initiating the main experiment, participants completed a 
staircase procedure, which served as a practice procedure for the 
participants, but was also a crucial aspect for our main experiment. 
For the staircase experiment, participants were shown a series of 
letters which started with the contrast of the letters being high (letter 
was light gray), allowing the participant to observe the letter easily. No 
noise was presented. After the stimulus was presented and removed 

3 www.gorilla.sc

from the screen, the participants indicated which letter they perceived. 
The answer screen consisted of 3 × 3 grid with all possible targets 
presented (in alphabetical order). The participants selected their 
answer with a mouse click. A staircase procedure was used to find the 
visual threshold for the participant (see example in Figure 6A). The 
threshold was set at 50% correct responses, lowered from 75% correct 
in the lab-based experiment, to decrease the chances of ceiling 
performance. The staircase procedure consisted of 45 trials. During 
the main experiment, stimuli were presented at 95% of the stimulus 
contrast obtained from the staircase procedure.

In the main experiment, each trial contained one of the target 
letters (‘A’ to ‘I’), counterbalanced over trials. On each trial, the target 
letter was shown for 1 sec. Along with these letters, a visual noise was 
added simultaneously on top of the letter. In this experiment, 
we changed both the amplitude of noise, as well as the type of noise. 
The amplitude of noise was changed by changing the opacity of noise 
field that was displayed. There were five different types of noise levels 
(see examples in Figure 6B). The opacity levels of the noise were 0.00, 
0.003, 0.01, 0.03, and 0.10. Participants gave their answer using the 
same answer screen as in the staircase procedure. If they were unable 
to identify the letter, they were encouraged to guess. The participants 
performed 540 trials (nine letters, four noise colors, five noise levels, 
and three repeats), taking about 45 min. After the experiment, they 
were asked to complete an Autism Quotient questionnaire which took 
roughly 10 min to complete.

4.1.4. Data screening
The proportion correct data from the visual identification trials 

were imported into the statistics software Jamovi version 2.2.2 and 
JASP version 0.15.0.0. Similar to the first experiment, analyzes that 
required specific contrasts were conducted in JASP, and other analyzes 
were conducted in Jamovi.

A generalized linear model (GLM) analysis was conducted for all 
individual participants to observe overall dependence on external 
noise. Participants whose data showed no statistically significant 
dependence on external noise were excluded from the analysis; one 
participant was excluded based on this criterion.

Also, we  found that eight participants had not scored above 
chance level and were further excluded. Additionally, nine participants 
also showed 100% accuracy at zero noise level, and hence, they were 
also excluded. Lastly, there were no missing values for any of the items.

4.2. Results

4.2.1. Impact of noise, and stochastic resonance
A GLMM with binomial family and logit link function was 

conducted in the JASP software to evaluate the effects of colored noise 
(infrared, brown, pink, and white) and external noise level (opacity 
levels of 0.00, 0.003, 0.01, 0.03, and 0.1, modeled as a continuous 
variable) on the accuracy data. Intercepts were included as 
random effects.

The analysis produced a significant main effect for noise opacity 
level [χ2 (1) = 1651.76, p < 0.001, VS-MPR = ∞], a non-significant 
effect for noise color [χ2 (3) = 1.55, p = 0.67, VS-MPR = 1.00], and a 
significant interaction for noise opacity level and noise color [χ2 
(3) = 55.93, p < 0.001, VS-MPR = 3.23 × 109]. The interaction effect 
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reflects the different dependence of external noise for the different 
colors of noise, especially at higher noise levels (Figure 7).

To investigate the possible presence of SR, we then conducted a 
planned comparison at two different noise levels for all colored noises: 
0.00 versus 0.003, and 0.00 versus 0.01, which we believed to be the 
optimal levels of noise for this experiment. The analysis revealed that 
neither comparison was significant (both |z| < 1.16). Hence, no clear 
SR effect was found in this version of the experiment.

4.2.2. Superior performance by higher AQ 
participants

To compare the performance between higher and lower AQ 
participants, we categorized AQ scores into higher and lower AQ 
scores. The median in this data set was 20. Participants who 
scored below 20 were considered lower AQ (N = 13, M = 14.23, 
SD = 2.89, Range: 10–19), and participants who scored 20 and 
above were deemed as higher AQ (N = 17, M = 23.94, SD = 3.54, 
Range: 20–31).

A GLMM with binomial family and logit link function was 
conducted in the Jamovi software to investigate the difference in 
performance for higher and lower AQ traits group across noise levels 
in the visual detection task. The participant variable was used as a 
random effect grouping factor, and the intercept over participants was 
added as random factor.

The analysis yielded a significant main effect for noise opacity 
level [χ2 (1) = 1078.15, p < 0.001, OR ≈ 0.00], a non-significant effect 
for AQ group [χ2 (1) = 0.56, p = 0.46, OR = 0.85], and a significant 
interaction for noise opacity level and AQ group [χ2 (1)  =  20.64, 
p < 0.001, OR = 76.24]. The average accuracy for the two groups is 
shown in Figure 8.

These results are consistent with the predictions from our model 
(Figure 1B). At low external noise levels, participants with higher AQ 
scores performed better than participants with lower AQ, particularly 
at zero noise. Also, at higher noise levels, the higher AQ group shows 
a sharper decline in performance when compared to lower AQ group. 

A

B

FIGURE 6

(A) Example of the progression in the staircase procedure with the stimulus letter ‘A’. Image (d) illustrates an example when the letter A is about at the 
visual threshold. (B) Example of a stimulus presented with different types of background noise (Brown on the left versus Pink on the right) for the main 
task. In the experimental setting, the letters were displayed with lower intensities.

FIGURE 7

Average performance of participants in the visual detection task. Raw 
average accuracy versus noise level plot for infrared, brown, pink, 
and white noise. Error bars show standard errors of the means.
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FIGURE 10

Confusion matrix depicting how accurately the letters in the online 
experiment were correctly guessed across all noise opacity levels in 
Experiment 2.

These results are also in line with the high neural noise and SR 
hypothesis for ASD [see (Simmons et al., 2009)].

Our model can more closely capture these effects when we set 
M = 9, τ = 0.02, and s = 0.95 * τ, to simulate the fact that we set our signal 
strength in the experiment at 95% of the obtained detection threshold. 
Then to simulate the difference between the lower and higher AQ 
group, we set σint for the lower AQ to 0.005, and for the higher AQ 
group to 0.008. External noise was varied. With these parameters 
(Figure 9), the model shows a very similar dependance on external 
noise to the experimental data. One obvious difference is that the 
accuracy overall is considerably lower; we will discuss this feature later.

4.2.3. AQ scores did not affect visual detection 
thresholds

To investigate the relationship between autistic traits and detection 
thresholds, as measured with the staircase procedure, we employed a 
generalized linear model with gamma distribution and inverse link 
function. This revealed a non-significant effect of AQ on detection 
thresholds [χ2 (1) = 0.11, p = 0.74, OR = 1.00]. Visual inspection on the 
residuals indicated normality (Q-Q plot, Histogram, and boxplot), 
and Shapiro–Wilk test also indicated normality (p = 0.28). The analysis 
suggests that in the online experiment, autistic traits did not influence 
detection thresholds in the experiment.

4.2.4. Impact of letters in the online based SR 
task: Explaining the high accuracy

Accuracy in this experiment was about 75% at zero external noise, 
which is relatively high for a task with 11% chance level, and also 
higher than the aimed-for accuracy of 50%. We believe that the high 

accuracy was at least partly due to the selection of letters (A to I) used. 
For instance, if we consider the letter A, the outline of the letter A does 
not overlap with any other letters used from A-I, making it relatively 
easy to identify, resulting in high accuracy. However, the letter ‘E’ 
would be  more challenging to guess as this letter could be  easily 
confused with the letter ‘F’ and possibly ‘B’, and vice versa.

To gage whether there was systematic confusion between letters 
in this experiment, we computed a confusion matrix. We did this at 
each external noise level (Supplementary Figure S3) and overall 
(Figure 10).

FIGURE 8

Participant’s performance based on higher and lower AQ. The graph 
illustrates the raw average accuracies for participants with higher and 
lower AQ traits. Error bars show standard errors of the means.

FIGURE 9

Predictions made by the modeling based on the current 
experimental parameters.
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Indeed, participants often confused the letter E and F, and also C 
and G. However, other letters such as ‘A’ or ‘I’ were much easier to 
guess. This is true across noise levels (Figure 10), as well as noise colors 
(Supplementary Figure S4). Importantly, even for E and F, they are 
often confused with each other, but not with other letters, suggesting 
that guesses were not random, but selected from a smaller subset of 
letters than the nine possible options.

The problem with high accuracy levels at zero noise, is that 
there is little room for improvement by adding noise. Therefore, 
we looked at whether SR was more pronounced in the letters that 
were more confusable. Similar to Experiment 1, we plotted accuracy 
at zero external noise versus the increase of performance relative to 
zero noise, or accuracy boost, in Figure 11. The correlation analysis 
showed a ‘very strong’ negative association between baseline 
accuracy and improvement in accuracy above baseline (Pearson’s 
r = −0.86, p = 0.003). From Figure  11, we  can see that for more 
confusable letters such as “E” and “F,” the accuracy was low at zero 
noise and therefore, the effect of noise, or SR, was more prominent 
(higher accuracy) when compared to less confusable letters such as 
“A” or “D” where the zero noise accuracy is high. This trend is also 
seen in Figure 12, where some SR is seen for confusable letters such 
as E and F, but not for salient letters like A or D. This figure indicates 
that SR was present in our data but only for specific letters.

Lastly, there was also a negative correlation between the 
proportion of participants that showed SR for each letter and baseline 
accuracy for the letter (Pearson’s r = −0.74, p < 0.05). From Figure 13, 
we can see that greatest number of participants showed SR for the 
letter F, which also had the lowest baseline accuracy, and least number 
of participants showed SR for the letter A, which had the highest 
baseline accuracy.

Additionally, it is possible that the single staircase procedure in 
this experiment did not work well for some participants in this version 
of the experiment. In such instances, the staircase procedure would 
have ended prematurely at a high contrast level, consequently leading 

to a high contrast for those participants in the zero noise and other 
conditions. However, we  investigated all staircases, and identified 
staircases that may not have converged, and those that did converge. 
The staircases that converged showed a numerically higher accuracy 
than those that may not have converged, suggesting that the 
non-convergence of staircases cannot explain the elevated 
accuracy rates.

5. Adjusting the model to allow for 
higher accuracies at low noise levels

In this section, we will present the modified model which allows 
us to fit our data where higher accuracies are present at lower noise 
levels. We used the adjusted model on the overall data, and we also 
used it on individual data. For all the fits we included lower and upper 
bounds, and we  used the least squares method as the error 
minimization approach. The lower and upper bound was set to 0 and 
100, respectively, for Experiment 1. For Experiment 2, the lower 
bound was 0 and upper bound was 0.l. All the fitting was done 
using MATLAB.

To address the high accuracy in the data, we  introduced a 
parameter M2 in the model. M2 like M represents the alternatives in 
the experiment, but it is smaller than M, because it represents the 
number of alternatives that the individual is guessing between when 
they are not certain, e.g., in the case of letters ‘E’ and ‘F’ which are 
confused with each other as they have shared or overlapping features. 
Hence, the value of M2 here will be  closer to 2 (as there are two 
alternatives to choose from). M2 was implemented in the model from 
Equation (3) as
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FIGURE 11

The impact of letters in the SR task when the task contains salient letters (online experiment). Dashed line indicates the regression line (trendline). Plot 
shows negative association between baseline accuracy and improvement in accuracy above baseline (accuracy boost). The baseline is accuracy of 
participants at zero external noise level.

https://doi.org/10.3389/fnins.2023.1110714
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Raul et al. 10.3389/fnins.2023.1110714

Frontiers in Neuroscience 12 frontiersin.org

With the introduction of M2 in Equation (6), the final equation of 
the model, Equation (5), is changed to
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We first fitted the model on the overall data for Experiment 1. The 
signal strength (s), threshold (τ) or criterion, and internal noise were 
fitted simultaneously. M was set to ten, and M2 was obtained from the 
confusion matrix. To obtain M2, we used the formula 1/(total number 
of responses for the presented letter/total number of responses). This 
produced different M2 values for all letters. The initial value of s was 
set as 2.027 which was approximately the stimulus strength used 
throughout the experiment. The initial τ, was set at s/2, the optimal 
setting in most signal detection frameworks; this setting does not 
produce SR. Initial internal noise (σ int) was set at 0.00. Figure  5 

depicts the results produced by the fit for Experiment 1. These fits 
show that adjusting M2 based on the obtained data (from the 
confusion matrices), leads to approximately correct levels of accuracies 
higher than 50%.

To check for the presence of SR, we investigated whether the peak 
of the fitted curve is higher at any non-zeros level of noise, than at the 
zero-noise level. If the difference was positive, SR was present for the 
letter. The fit produced SR for all letters with letter ‘O’ having the 
smallest SR (accuracy boost = 0.08), and letter ‘N’ having the largest 
SR (accuracy boost = 0.16).

We performed the same fit on the data from Experiment 2. All 
values for the initial parameters remained the same except the value 
of M was set to nine, and τ was changed to 1.025/28, which was the 
approximate average stimulus strength used in Experiment 2. 
Figure 12 illustrates the results produced by the fit for the online 
experiment. Again, accuracy levels were estimated relatively well, and 
the fit produced SR for all letters with letter ‘A’ having the smallest SR 
(accuracy boost = 0.0015), and letter ‘F’ having the largest SR (accuracy 
boost = 0.04).

FIGURE 12

Figure illustrating the effect of noise on each letter used for Experiment 2. Horizontal axis (x-axis) represents noise levels in log-scale, and the vertical 
axis (y-axis) shows accuracy. Accuracy at zero external noise was plotted at a level of 3 × 10−4 of external noise. Lines show the fit of the model  
(Model 1) to this data.
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5.1. Fitting the model to individual 
participant data

In an effort to estimate internal noise levels from the model, 
we fitted the model to individual data in Experiment 2, and then 
correlated the noise level estimated from the fits to AQ scores. Due to 
low trial numbers in Experiment 1, we were unable to fit the model on 
individual participants for that experiment.

To obtain the best model for the individual data, we compared 
multiple models (with different free and fixed parameters) to assess 
the best fit. The parameters (fixed and fitted) for the first model were 
the same as the ones described in the previous section (i.e., Model 1 in 
Supplementary Table S1). In the second model (Model 2  in 
Supplementary Table S1), the fixed parameter was M2, and the fitted 
parameters were τ (fitted independently for all letters), s and internal 
noise (combined over all letters). In the third model (Model 3  in 
Supplementary Table S1), M2 was fitted separately for each letter, as 
well as fitting ,σ  s, and internal noise. In the last model (Model 4 in 
Supplementary Table S1), s was kept as the fixed parameter (combined 
over all letters), and M2 (separately for each letter), τ (independently 
for all letters), and internal noise (combined over all letters) were the 
fitted parameters. We used the fit that produced the lowest Akaike 
information criterion (AIC) value, averaged over all the participants, 
to present our data here. We  have summarized all the models in 
Supplementary Table S1. Note that the more negative the AIC value, 
the better the fit.

The AIC values indicated that the best model for fitting individual 
data was Model 3 (Supplementary Table S1). We used the least squares 
method for the error minimization approach, and we set the lower 
bound to [1, 0] and upper bound to [9, 0.1] for this model.

We also checked SR for all participants (i.e., checked whether the 
peak of the fitted curve was higher at any non-zeros level of noise), 

and we  found that 12 out of the 30 participants had shown 
SR. Figure 14 shows an example of the fit for one participant.

We performed a GLM analysis using the Gaussian distribution 
and identity link function to investigate the relationship between AQ, 
and internal noise estimated from the fitted model. Before the analysis 
we checked for any outliers. No outliers were identified in the data (all 
Z < 3.30). Kurtosis, skewness, Q-Q plot indicated normality for the 
dependent variable ‘internal noise’. The GLM analysis yielded a 
non-significant main effect for AQ [χ2 (1) = 0.26, p = 0.61, OR = 1.00], 
with a slight positive slope. Figure 15 depicts this non-significant 
trend. When taking the noise estimates from the best model for each 
participant individually (instead of from the best overall model), the 
results did not change considerably.

6. Discussion

6.1. Stochastic resonance in the visual 
domain

We performed lab-based and online visual-identification-in-noise 
tasks. We found that SR was clearly present in the laboratory-based 
task, but not in the online experiment. Our findings from the 
laboratory experiment are consistent with past findings, showing SR 
in a variety of visual tasks (Kundu and Sarkar, 2015; Treviño et al., 
2016; Van der Groen et  al., 2019), and specifically the letter 
identification used by Itzcovich et al. (2017). Treviño et al. (2016) 
showed that visual noise improved the proficiency to discriminate 
motion direction in random-dot-motion tasks in healthy adults. Van 
der Groen et al. (2019) added visual noise to a visual stimulus in a 
binocular rivalry experiment and showed clear SR. In another study, 
participants were asked to extract image features from visual noise and 

FIGURE 13

The proportion of participants showing SR for each letter in relation to the letter’s baseline accuracy. Dashed line indicates the regression line 
(trendline). Plot shows negative association between baseline accuracy and proportion of participants showing SR. The baseline is accuracy of 
participants at zero external noise level.
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FIGURE 15

The relationship between AQ and Internal Noise. Blue scatter illustrates participants that showed SR, and red scatter illustrates participants that did not 
show any SR.

FIGURE 14

An example fit of Model 3 to one participant. The fit produced no SR for this participant. Horizontal axis (x-axis) represents noise levels in log-scale, and 
the vertical axis (y-axis) shows accuracy. Accuracy at zero external noise was plotted at a level of 3 × 10−4 of external noise. Lines show the fit of the 
model (Model 3) to this data.
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the performance in the task was best at non-zero amounts of external 
noise (Simonotto et  al., 1999). Participants showed an inverted 
U-shaped function (SR) in the task just like in our lab-based 
experiment. Similar enhancements in detection and discrimination 
tasks were also found in the auditory domain where auditory noise 
was used to enhance hearing (Zeng et al., 2000).

For behaviorally relevant stimuli such as those used in our 
experiments (letters), Piana et al. (2000) showed that optimal amounts 
of noise dramatically increased performance in a letter detection task. 
Itzcovich et al. (2017) also found SR for all of their visually impaired 
participants when they used a letter-detection-in-visual-noise task. 
Our finding of SR in a similar task are consistent with these others.

6.2. Stochastic resonance and ASD

We investigated the link between autism traits (and by inference 
ASD) and SR through external noise manipulations. We modeled our 
data with an extension on the M-alternative choice signal detection 
model, to include a threshold, allowing for SR for sub-threshold 
stimuli to occur. Fitting the model to our data we  found mixed 
evidence for the hypothesis that suggests increased performance in 
ASD on selected tasks may be due to SR, mediated by high internal 
noise in ASD (Simmons et al., 2009).

In support of the hypothesis, our M-alternative choice task 
modeling predicted that higher AQ group (or ASD) shows enhanced 
performance at low noise levels compared to lower AQ group (or TD), 
with this increased performance showing a relatively rapid decline 
with increased noise levels. This was indeed found in Experiment 2, 
but not in Experiment 1. The model also predicted that the lower AQ 
group (or TD) would show SR, before showing a decline in 
performance at high noise levels. This is qualitatively shown in 
Experiment 2 as well. Although no significant SR was found in 
Experiment 2 overall, model fitting showed SR in 12 out of 30 
individuals. The prediction that internal noise estimates would 
correlate positively with AQ was not supported by our data, although 
a positive trend was present in the data.

Overall, our results are the first indirect experimental evidence 
that SR could indeed be the explanation for improved performance in 
ASD on some tasks. Note that our results still need to be interpreted 
with caution, as it is difficult to conclude and extend our findings to 
the ASD population without performing similar sets of experiments 
in that population. Moreover, our sample only consisted of a limited 
range of AQ scores for both experiments. For instance, while we used 
a median split to compare lower AQ scores with higher AQ scores, 
most participants with higher AQ scores are well within the 
neurotypical range of scores. Additionally, it is possible that our 
estimates of internal noise level could be  improved by measuring 
internal noise directly, for example by using a double-pass 
psychophysical technique (Vilidaite et al., 2017).

6.3. Colored noise

We also explored whether colored noise, such as infrared, brown, 
and pink noise, could exhibit an SR-like phenomenon. Even though 
we found significant differences between the different noise types, this 
difference was mostly confined to high external noise levels. We found 

no overall significant effect of SR in the data, and this was true for all 
noise colors. Other research has found some success when 
investigating SR with colored noise in other domains. For instance, 
brown noise has resulted in SR in a neuronal model (Coelho et al., 
1999). Experiments in rat sensory neurons have also suggested that 1/f 
noise can be better than white noise for improving the response of a 
neuron to a weak signal under certain circumstances through SR 
(Nozaki et al., 1999). Some calculations have also suggested that pink 
noise can show an SR effect and can enhance performance of a system 
(Hänggi, 2002). Lastly, in a recent paper, SR was experimentally 
studied in an artificial neuron and the author demonstrated that pink 
noise enhanced the input signal by up to 20 times more when 
compared to white noise in neural circuits (Pinto, 2021). Our research 
is the first to investigate the impact of colored noise in a behavioral 
task. Although we did not find a statistical difference in the type of 
noise used, we see that brown noise impaired performance more at 
high external noise levels. Perhaps, future research can investigate the 
effects of colored noise in a laboratory-based (and not online) 
behavioral task and compare the results with our findings.

6.4. Letter confusion, and SR

We found SR at accuracy levels much higher than expected from 
the model that we  proposed (where the maximum accuracy is 
(1 + M/2 M). When we plotted confusion matrices, we found that the 
letter stimuli were not equally confusable, resulting in better than 
chance guesses (and higher accuracy). This is line with past research, 
which has suggested that some letter pairs or other groups are more 
confusable, as they share similar features (Townsend, 1971; Gervais 
et al., 1984). Consequently, some letters are easy to identify, while 
others are more difficult to identify, depending on the task (Jordan 
et al., 2003). For example, we found confusions between letters E and 
F, which is consistent with findings from Townsend (1971). Also, 
letters such as D, G, O, Q, and U have shown poor performance in 
letter identification tasks because of confusions among them (Mueller 
and Weidemann, 2012).

Therefore, having non-confusable letters in the online experiment 
allowed the participants to guess the letter correctly at zero and high 
noise levels at levels higher than expected. Instead of guessing 1/9, it 
appeared that for most letters the guessing was closer to ½, elevating 
baseline “guess” rates. When incorporating this knowledge into our 
model, the model fitted the elevated levels of accuracy quite well. At 
these higher accuracy levels, finding SR is more difficult (as there is 
less room to ceiling performance), thus the selection of letters can 
impact performance and the possibility of SR.

6.5. Inconsistent results across the two 
experiments

Given the different pattern of results in the two experiments, it is 
worth discussing the possible origins of these differences. The two 
experiments had several key differences in approach. The environment 
of the experiments was different, with the online condition being less 
well controlled than the lab-based experiment. Second, the 
experiments used different set of letters which can impact the 
appearance of SR.
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There were also some more nuanced differences between the 
experiments. For instance, the letter stimuli, and the noise stimuli 
were larger in the online experiment. Even though we did not control 
the distance from the screen where people sat, a standard distance 
from the screen would result in a stimulus that is much larger in the 
online experiment. For instance, the stimulus size in the online task 
would have been close to seven degrees of visual angle, but for the 
lab-based experiment it would have been around two degrees. Further, 
the check sizes were smaller for the lab-based experiment compared 
to the online task (respectively 1px and 3.44px check sizes). Given that 
the relationship between spatial frequency content and letter sizes 
influences letter detectability (Alexander et al., 1994), as well as the 
possible impact of spatial averaging on the smaller check sizes in the 
lab-based experiment, the different check sizes could possibly explain 
the difference in results. Check sizes relative to the target letters were 
comparable (approximately 85 vs. 87 checks per letter).

Other factors such as the participants, the threshold procedures, 
and the number of trials also differed across the two experiments, which 
also could have contributed to the difference in results between them. 
Our online study also did not account for factors such as differences 
between participants in internet speed and computer performance.

6.6. The impact of showing SR in an online 
setting

Previous studies have shown that SR can be achieved in a well-
controlled environment [for example see (Enders et al., 2013; Treviño 
et  al., 2016; Itzcovich et  al., 2017)]. In most of these experiments, 
participants are in an environment where they are adhering strictly to 
procedures provided by the researchers. For example, in visual detection 
tasks, these procedures may include sitting at an appropriate distance 
from the computer, using a chin rest to have an appropriate head 
position, and finally, using an eye tracker to monitor participants’ eye 
movements (this is generally done to eliminate trials in the analysis 
where the participants were distracted). This environment is generally 
‘quiet’, which makes it easier for an SR effect to occur when external 
noise is added to the stimuli. While our results from the lab-based study 
followed a similar procedure, and found the expected results, the online 
experiment provided us with some new insights. We found no overall 
strong SR. However, SR did seem to be present for more difficult-to-
identify letters. Also, when our model was adjusted for higher accuracies 
at lower noise levels, we found that there was some SR for all letters in 
the overall data for the online experiment. Additionally, 12 out of 30 
participants showed SR in the experiment when we fitted models for 
individual participants. This suggests that SR can occur even in relatively 
uncontrolled settings, showing a level of robustness that is important if 
visual SR were to be used to achieve real-life improvements in vision.

In conclusion, our experimental data and modeling provide some 
insight and support for the hypothesis that higher internal noise in 
ASD can explain better task performance on some tasks. However, our 
results were equivocal, as Experiment 1 did not find group differences 
in SR, while Experiment 2 did.
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