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Objective: The central nervous system may also be involved in the pathogenesis

of classical trigeminal neuralgia (CTN). The present study aimed to explore the

characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC)

at multiple time points after a single triggering pain in CTN patients.

Materials and methods: A total of 43 CTN patients underwent resting-state function

magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s

after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-

30 min). Voxel-based degree centrality (DC) was used to assess the alteration of

functional connection at different time points.

Results: The sDC values of the right caudate nucleus, fusiform gyrus, middle

temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-

5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal

gyrus were increased in triggering-5 s and decreased in triggering-30 min. The

dDC value of the right lingual gyrus was gradually increased in triggering-5 s and

triggering-30 min.

Conclusion: Both the sDC and dDC values were changed after triggering pain, and

the brain regions were different between the two parameters, which supplemented

each other. The brain regions which the sDC and dDC values were changing reflect

the global brain function of CTN patients, and provides a basis for further exploration

of the central mechanism of CTN.

KEYWORDS

classical trigeminal neuralgia, degree centrality, dynamic, function magnetic resonance
imaging, central mechanism

Introduction

According to the etiology of TN, it is classified into three subtypes, which are classical
trigeminal neuralgia (CTN), secondary trigeminal neuralgia (STN) and idiopathic trigeminal
neuralgia (ITN) (Olesen, 2018). CTN is a common chronic facial neurogenic disease,
characterized by paroxysmal, electric shock-like pain along the trigeminal nerve branches area
(Cruccu et al., 2020; Fan et al., 2022a). This pain is often triggered by non-noxious stimuli,
including talking and chewing (Cruccu et al., 2020), and the pain duration often seconds to
a few minutes (Shankar Kikkeri and Nagalli, 2022), while a small number of patients present
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sustainable pain (Di Stefano et al., 2020), and in the pain interval,
often, there is no pain attack (Wang et al., 2017a). CTN is known
as the most severe pain that humans can endure and often causes
anxiety, depression, and other psychiatric complications (Wang et al.,
2019; Bendtsen et al., 2020).

Neurovascular compression (NVC) is the main cause of CTN
(Cruccu et al., 2020; Ge et al., 2022b), and its pathogenesis is caused
by nerve demyelination, which leads to a short circuit between the
painful and non-painful fibers, thus causing pain (Shankar Kikkeri
and Nagalli, 2022). Studies on the structural and functional magnetic
resonance imaging (MRI) of CTN suggested that the central nervous
system is involved in the pathophysiological process of CTN (Liu
et al., 2018; Wu M. et al., 2020; Wu S. et al., 2020; Zhu et al., 2020;
Shankar Kikkeri and Nagalli, 2022).

In recent years, many studies have been conducted on the brain
function of CTN, among which the resting state functional MRI
(rs-fMRI) is a non-invasive technology applicable to several clinical
diseases (Dong et al., 2021). It shows the spontaneous brain neuronal
activity of the subjects and can be used as a biomarker of disease
progression (Zhong and Chen, 2022). The regional homogeneity
(ReHo), the amplitude of low-frequency fluctuation (ALFF), and
voxel-based degree centrality (DC) are the data-driven analysis
methods of rs-fMRI. ReHo reflects the temporal consistency of
spontaneous neural activity between a given voxel and its neighbors
(Zang et al., 2004; Ge et al., 2022a). Wang et al. (2015); Xiang et al.
(2019) found that compared to healthy controls (HCs), the ReHo
values of multiple brain regions are increased in CTN patients. ALFF
reflects the amplitude of the given voxel time series (Firouzabadi
et al., 2022). Zhang et al. (2019) demonstrated that the ALFF and
fractional ALFF values were decreased in multiple brain regions in
CTN patients. ReHo and ALFF reflect the local brain activity, while
the DC reflects the global brain activity, which is the most direct index
to measure node centrality in network analysis (Du et al., 2021).

Static DC (sDC) reflects the strength of connections between the
given voxel and the other voxels in the whole brain without a prior
definition of the region of interest (Bao et al., 2021). Typically, a node
with a high DC value is crucial and can be regarded as the hub of
information integration (Wu S. et al., 2020). The sDC has been used
in TN (Zhu et al., 2020), Herpes zoster (Fan et al., 2022b), toothache
(Wu S. et al., 2020), migraine (Lee et al., 2019), and other diseases.
Zhu et al. (2020) showed that compared to HCs, the DC values of
multiple brain regions in TN patients were significantly higher.

Although the rs-fMRI was collected in a quiet state of the subjects,
the brain activity fluctuated with time (Kong et al., 2021). Dynamic
DC (dDC) is a method combines sDC with “sliding window” (Tian
et al., 2022), reflecting the time dynamics of remote functional
connectivity (Du et al., 2021). Although dDC has not been reported
in TN, it has been applied to Parkinson’s disease (Wang et al., 2022),
major depressive disorder (MDD) (Yang et al., 2022), schizophrenia
(Wang et al., 2021), depressive mania (Sun et al., 2022), and other
diseases.

In the study, the pain was triggered by simulating the harmless
actions in the daily life of CTN patients, the sDC and dDC values
were measured at multiple time points after a single triggering pain.
Thus, we hypothesized that: (1) the sDC and dDC values of multiple
brain regions in CTN patients were altered after triggering pain; (2)
the brain regions where the dDC value changes differed from that of
sDC, providing a beneficial supplement to sDC.

Materials and methods

All the participants provided written informed consent. This
prospective study was approved by the local ethics committee of
the Affiliated Hangzhou First People’s Hospital, Zhejiang University
School of Medicine (IRB# No. 202107002). It was carried out
following the Declaration of Helsinki.

Participants

A total of 85 CTN patients were recruited from the Affiliated
Hangzhou First People’s Hospital, Zhejiang University School of
Medicine, between July 2021 and March 2022. The inclusion criteria
for patients with CTN were as follows: (1) patients diagnosed with
CTN according to the third edition of the International Classification
of Headache Disorders (ICHD-3) and demonstration of NVC (not
simply contact) on MRI with morphological changes (atrophy or
dislocation) in the trigeminal nerve root; (2) unilateral pain in the
distribution of one or more branches of the trigeminal nerve; (3)
paroxysmal facial pain precipitated by trigger factors (such as light
touching of the face and opening mouth); (4) conventional MRI
T1 weighted imaging (T1WI) and T2WI examination showed no
abnormal brain signals; (5) no additional neurological or sensory
deficits in all patients; (6) no previous surgical or other invasive
procedures for CTN; (7) no contraindications to MR scanning;
(8) patients underwent microvascular decompression and presented
NVC which not only contact; (9) right-handed patients. The
exclusion criteria were as follows: (1) patients with CTN who
had undergone surgical treatment before; (2) headaches and other
paroxysmal or chronic pain conditions; (3) a family history of
headache or other pain in first-degree relatives; (4) other somatic or
psychiatric conditions; (5) left-handedness; (6) contraindications to
MRI (Ge et al., 2022a).

Experimental design

Patients on analgesic medications were asked to discontinue their
medications 12 h before the scheduled scanning sessions. Before the
MRI scan, a medical history was recorded to determine the zone with
substantial pain in daily life. Then, the trigger zone was stimulated
within 5 s before the second rs-fMRI scan; the trigger zones were
stimulated by the doctors, which was a gentle touch to the patient’s
trigger zone with a long cotton swab (Moisset et al., 2011). The foam
was used for head fixation to ensure that the patient remained head-
still during the scan. All participants underwent three-dimensional
T1 weighted image (3D-T1WI) and rs-fMRI. The three time points
of rs-fMRI were before stimulating the trigger zone (baseline), within
5 s after stimulating the trigger zone (triggering-5 s), and 30 min after
stimulating the trigger zone (triggering-30 min). After scanning, the
patients were asked whether the stimulation caused pain and whether
they experienced additional pain during the scan (Ge et al., 2022b).

Pain evaluation

If the patients experienced the stimulation, the pain would be
assessed using the visual analog scale (VAS) after scanning. The
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FIGURE 1

Participant selection. FD, framewise displacement; STN, secondary trigeminal neuralgia; CTN, classical trigeminal neuralgia.

TABLE 1 Demographics and behavioral results of CTN.

CTN

Men/Women 9/34

Age (years) 55.14 ± 11.59

Lateral 29R/14L

Disease duration (years) 5.14 ± 5.94

Average duration of attack (min)
<1 30

1–2 4

>2 9

Pain location V2.3 25

V3 9

V2 7

V1.2 2

Pain intensity (VAS) 7.69 ± 2.04

CTN, classical trigeminal neuralgia; VAS, visual analog scale.

researchers guided the patients in rating their pain on a scale of 0–
10. A higher score indicated a greater pain intensity. A rating of “0”
represented no pain, and a rating of “10” meant intolerable pain (Ge
et al., 2022b).

Image preprocessing

Resting-state function magnetic resonance imaging data
preprocessing was conducted using the Data Processing and Analysis
of Brain Imaging (DPABI6.1) and Statistical Parametric Mapping
12 (SPM12) toolbox based on the MATLAB platform (MathWorks,
Natick, MA, USA). The preprocessing pipeline included the following
steps: (1) removing the first ten time points of each session to ensure
that the MRI signal reached a steady state, (2) slice-timing and head
motion correction for the remaining images, (3) normalization to
the Montreal Neurological Institute (MNI) and re-sampling of the
resulting data to obtain 3 mm× 3 mm× 3 mm voxel size, (4) removal

of the linear trend of the time course of the blood oxygenation
level-dependent (BOLD) signal, and (5) a noise removal process,
including the regression of Friston-24 head motion parameters,
cerebrospinal fluid signals, and white matter signals. Nine patients
were excluded due to large head motion (>2.5-mm maximum
displacement, 2.5◦rotation or framewise displacement (FD) exceeded
0.2 throughout the scanning), and the remaining 43 patients with
CTN were subjected to further analysis.

sDC calculation

For the weighted graph, DC is defined as the sum of the weights
from the edges connected to the node. Compared to the binary
version of DC, weighted DC provides a more accurate representation
of the centrality of functional brain networks (Bao et al., 2021).
Pearson’s correlation of time series between every voxel and other
voxels in the whole brain calculated the correlation matrix R = 6(rij),
j = 1. N-1 (R is the DC, r is the coefficient of correlation of the
given voxel, j is other voxels in the whole brain, N is the number
of voxels). The correlation coefficient of each voxel was r > 0.32 (Lv
et al., 2019) (P < 0.05, Bonferroni correction) and were summed to
obtain the weighted DC for each voxel. The threshold of 0.32 was used
to eliminate the counting voxels with low temporal correlation. The
different threshold choices do not alter the results qualitatively (Bao
et al., 2021). For standardization, the average DC value is divided in
the whole brain, and then a Gaussian kernel was used with half height
and full width of 6 mm for spatial smoothing.

dDC calculation

The sliding window method was used to calculate the time
variability of the given voxel between the other voxels in the whole
brain. Window length is a critical parameter in the calculation
of rs-dynamics. A short window length may increase the risk of
introducing spurious fluctuations in the observed dDC, and a long
window length may hinder the characterization of the temporal
variability dynamics of the dDC (Zang et al., 2004). In line with our
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FIGURE 2

Significant differences in sDC among different time points in patients with CTN. sDC, static degree centrality; CTN, classical trigeminal neuralgia.

FIGURE 3

Post hoc comparisons of analysis of variance. The connection between two bars represents significant between-time differences of sDC (A) and dDC (B)
(∗represents significant level P < 0.05, ∗∗denotes significant level P < 0.01, and ∗∗∗ indicates significant level P < 0.001, Bonferroni correction). sDC, static
degree centrality; dDC, dynamic degree centrality; baseline, the rs-fMRI was performed before stimulating the trigger zone; triggering-5 s, the rs-fMRI
was performed within 5 s after stimulating the trigger zone; triggering-30 min, the rs-fMRI was performed at the 30th minute after stimulating the trigger
zone. CAU.R, right caudate nucleus; FFG.R, right fusiform gyrus; MTG.R, right middle temporal gyrus; ORBmid.R, right middle frontal gyrus, orbital part;
SFG.R, right superior frontal gyrus; SFG.L, left superior frontal gyrus; LING.R, right lingual.

previous study (Ge et al., 2022b), we used a 50 TR (100 s) sliding
window length and a 2 TR (4 s) step size (Fu et al., 2021; Ge et al.,
2022b; Li et al., 2022; Sun et al., 2022). Based on the method similar
to sDC, after calculating the DC of all voxels in the time window, each

participant will obtain multiple window-based DC graphs. Then,
we calculated each participant’s standard deviation per voxel in all
window-based DC plots to measure the dynamic changes in DC. In
order to maintain consistency with sDC, we used a Gaussian kernel
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TABLE 2 sDC and dDC difference in CTN patients among different timespoints.

Method Brain
region

Side Peak MNI coordinates Cluster
size

(voxels)

Peak
intensity

F-value P-value Post hoc P-value

X Y Z Baseline
vs. 5 s

Baseline vs.
30 min

5 s vs.
30 min

sDC CAU R 15 24 0 305 18.934 14.041 0.000 0.000 0.164 0.000

FFG R 33 −75 −9 237 18.875 20.951 0.000 0.000 0.003 0.116

MTG R 60 −33 9 336 19.440 24.207 0.000 0.000 0.703 0.000

ORBmid R 45 51 −9 336 12.603 24.471 0.000 0.000 0.000 0.011

SFG R 15 0 63 166 14.902 24.188 0.000 0.000 0.003 0.004

SFG L −15 −3 66 130 12.810 16.849 0.000 0.000 0.083 0.001

dDC LING R 9 −8 0 172 8.715 9.538 0.000 0.254 0.000 0.008

sDC, static degree centrality; dDC, Dynamic degree centrality; CTN, Classical trigeminal neuralgia; MNI, Montreal Neurological Institute; Baseline, the rs-fMRI was performed before stimulating
the trigger zone; 5 s, the rs-fMRI was performed within 5 s after stimulating the triggerzone;30 min, the rs-fMRI was performed at the 30th min after stimulating the trigger zone; CAU, caudate
nucleus; FFG, fusiform gyrus; MTG, middle temporal gyrus; ORBmid, middle frontal gyrus, orbital part; SFG, superior frontal gyrus; LING, lingual.

FIGURE 4

Significant differences in dDC among different time points in patients with CTN. dDC, dynamic degree centrality; CTN, classical trigeminal neuralgia.

with half height and the full width of 6 mm for spatial smoothing.
The step size of 5 TRs (10 s) was applied to further validate the results
of dDC with different step sizes (Supplementary Figures 1, 2 and
Supplementary Tables 1, 2).

Statistical analysis

Data Processing and Analysis of Brain Imaging (DPABI) software
was used to compare the sDC and dDC values of regional brain
activity, measured three times for CTN patients. Repeated-measures
analysis of variance (ANOVA) was used to examine the differences
between the groups. The Gaussian random field theory (GRF, voxel
P < 0.005, cluster P < 0.005) was applied for multiple comparison
correction. Comparison between the two groups was performed

using SPSS 26.0, the Bonferroni correction procedure (P < 0.05)
was used to correct. The pearson correlation analysis was used to
assess the association between the average sDC and dDC values of
significant clusters and pain characteristics.

Results

Demographic information and clinical
characteristics

A total of 43 CTN patients were included in this study. The
procedures of participant selection are shown in Figure 1. The disease
duration, distribution of pain, duration of each pain episode, and pain
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FIGURE 5

Correlations between the clinical parameters and brain regions which the sDC were changed in CTN patients. (A) The sDC value of MTG_R was
positively correlated with the visual analog scale (P = 0.013, r = 0.377). (B) The sDC value of CAU_R was positively correlated with the disease duration
(years) (P = 0.010, r = 0.390). (C) The sDC value of MTG_R was positively correlated with the average duration of attack (P = 0.036, r = 0.321). (D) The
sDC value of FFG_R was positively correlated with the average duration of attack (P = 0.008, r = 0.399). sDC, static degree centrality; CTN, Classical
trigeminal neuralgia; Baseline, the rs-fMRI was performed before stimulating the trigger zone; triggering-5 s, the rs-fMRI was performed within 5 s after
stimulating the trigger zone; CAU_R, right caudate nucleus; FFG_R, right fusiform gyrus; MTG_R, right middle temporal gyrus.

score are summarized in Table 1. And 11 patients with paroxysmal
attacks lasting more than 2 min, which may be related to peripheral
or central sensitization may account for the continuous pain (Olesen,
2018).

Compared to the baseline, the changing
trend of sDC after triggering pain in CTN
patients

The sDC value of right caudate nucleus (CAU), fusiform gyrus
(FFG), middle temporal gyrus (MTG), middle frontal gyrus, and
orbital part (ORBmid) were increased in triggering-5 s and decreased
in triggering-30 min. The sDC values of bilateral superior frontal
gyrus (SFG) were decreased in triggering-5 s and increased in
triggering-30 min (Figures 2, 3 and Table 2). The sDC values for the
three time points are listed in Supplementary Table 3.

Compared to the baseline, the changing
trend of dDC after triggering pain in CTN
patients

The dDC value of right lingual (LING) was gradually increased in
triggering-5 s and triggering-30 min (Figures 3, 4 and Table 2). The

sDC values for the three time points are provided in Supplementary
Table 3.

The correlation between the average sDC
and dDC values of significant brain
regions and the pain characteristics

The sDC value of CAU in baseline was positively correlated
with the disease duration. The sDC value of MTG in baseline was
positively correlated with VAS. The sDC values of FFG in baseline and
triggering-5 s were both positively associated with pain persistence
(Figure 5).

Discussion

In the previous study, we explored the local brain function after
a single triggering pain in CTN patients, namely, the time-frequency
properties of ALFF (static ALFF, dynamic ALFF) (Ge et al., 2022b).
In this study, we analyzed the changes in global brain function at
different times after a single triggering pain and found that (1) the
sDC and dDC values of multiple brain regions were changed after
triggering pain; (2) the brain regions which the dDC value altered are
different from those of the sDC, which is complementary to sDC and
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provides a new perspective and supplement for exploring the central
mechanism of CTN patients.

CTN is known as the most severe pain that humans can endure.
Currently, most studies on the brain function of CTN patients are
based on the cross-sectional rs-fMRI (Xiang et al., 2019; Wu M.
et al., 2020; Zhu et al., 2020; Li et al., 2021; Zhang et al., 2021; Liu
et al., 2022). Several studies are based on the task state of TN with
fewer subjects, including one case report which studied the local brain
function (Borsook et al., 2007). DC is one of the methods to evaluate
the changes in brain functional network activity, which can detect
the functional importance of different nodes in the brain at the voxel
level (Wu S. et al., 2020). Although DC has been applied to various
diseases (Keefe et al., 1991; Zang et al., 2004; Xu et al., 2019; Li et al.,
2020; Serafini et al., 2020; Wu S. et al., 2020; You et al., 2020; Dong
et al., 2021; Ma et al., 2021; Zhong and Chen, 2022), there has been
less research on TN. In this study, we analyzed the changing trend of
sDC and dDC at multiple time points after triggering pain in CTN
patients. It not only simulates the changing trend of the whole brain
functional connectivity after triggering pain in CTN patients and
provides a basis for exploring its central mechanism but also avoids
discomfort or uncooperating caused by the pain task states.

In this study, the sDC values of the right CAU, MTG, FFG,
and ORBmid were changed in the same trend, i.e., increased in
triggering-5 s and decreased in triggering-30 min, indicating that the
connectivity with the whole brain increased significantly for a short
period after triggering pain, and then recovered gradually in the four
brain regions. However, the recovery levels in triggering-30 min were
slightly different, indicating that the four regions participate in the
pain process of CTN, but the specific role is diverse.

The CAU is a key region of the subcortical network that receives
damaging information from the trigeminal nucleus through direct
projection from the trigeminal spinal cord nucleus. In addition, the
CAU plays a crucial role in assessing the consistency between actions
and outcomes (Zhang et al., 2021). The MTG is a major part of the
default mode network (DMN) and is also involved in the attention
network (Yeo et al., 2011). The changing trend of sDC in the right
MTG indicates its role in the pain process but not as a component of
DMN, but may be as a part of the attention network. Additionally,
CTN patients with long-term pain may sensitize the resting state and
further increase their connectivity after triggering pain. However, the
specific mechanism needs to be studied further. The FFG is located on
the basal surface of the temporal and occipital lobes and is involved
in various sensory integration and cognitive processing. It is also an
integral part of the limbic system that is closely associated with mental
abilities, such as emotion, behavior, learning, and memory. FFG plays
a crucial role in the anticipation and perception of pain regulation
(Wang et al., 2017a). Li et al. (2017) showed that compared to HCs,
the gray matter volume of bilateral MTG, CAU, and right FFG was
reduced in CTN patients. Zhang et al. (2020) conducted a meta-
analysis of brain function changes in CTN patients and found that
the signal in MTG was inconsistent across studies. This phenomenon
could be attributed to paroxysmal and transient CTN pain. Different
studies put forth varied results in terms of whether the patients have
pain and different frequencies of pain.

The SFG located in the upper part of the prefrontal cortex is
involved in socially oriented thoughts and may also be involved in
anticipation of impending pain (Torrado Pacheco et al., 2021). The
SFG is also involved in the composition of DMN, which is active
in the resting state (Yuan et al., 2018; Zhang et al., 2019), and the
activity is reduced when involved in tasks and stimuli (including

painful stimuli) (Wang et al., 2017b). This finding is consistent with
the changing trend of bilateral SFG in this study, i.e., the sDC value
was decreased in triggering-5 s and increased in triggering-30 min.
This indicates that the functional importance of the node decreases
for a short period after the triggering pain and recovers gradually.
Yuan et al. (2018) found that compared to HCs, the ReHo of the
SFG in idiopathic TN patients was significantly increased. Xiang et al.
(2019) showed that the ReHo value of right SFG in CTN patients
was increased compared to that in HCs. SFG may be a leading node
in the brain network that coordinates working memory (Alagapan
et al., 2019). The pain of CTN patients is triggered by harmless
movements in daily life, and the patients may deliberately restrict
such movements (for example, chewing and speaking) to avoid pain.
Therefore, we speculated that the signal changing of the SFG is not
only related to pain but also related to the memory formed by the
patients’ daily movement restriction.

The dDC reflects the time variability of DC, i.e., the fluctuation
of DC as time changes. In this study, after triggering pain in CTN
patients, we found a brain region with obviously changed dDC value,
namely, the right LING, and was different from the brain regions
with altered sDC value, indicating that dDC provides additional
supplementary information. The LING is a part of the visual
processing network (Russo et al., 2019). The dDC value of the right
LING was decreased in triggering-5 s and increased in triggering-
30 min, indicating that the variability of dDC value of the LING was
decreased in a short period and then increased. Zhu et al. (2020)
found that compared to HCs, the DC value of the right LING in TN
patients was significantly higher.

Limitations

In this study, we explored the changing trend of static and
dynamic functional connections in CTN patients at multiple time
points after triggering pain. Compared to the baseline, the sDC
or dDC values of each brain region showed a recovery trend at
triggering-30 min, but the recovery level was different and did not
return to the baseline, which required a prolonged duration to
further clarify the changing trend in the brain functional connectivity
after triggering pain. Secondly, we did not conduct the classification
studies according to the average duration of attack, and in the
future, we will study CTN patients depending on the average
duration of attack.

Conclusion

After a single triggering pain, both the sDC and dDC values of
CTN patients were changed in different brain regions, which were
complementary to each other. These brain regions which the sDC and
dDC values were changing reflected the global brain function of CTN
patients and provided a specific basis for further exploration of the
central mechanism of CTN.
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