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Introduction: Aerobic exercise has been shown to modify Alzheimer pathology in

animal models, and in patients with multiple sclerosis to reduce neurofilament light

(NfL), a biomarker of neurodegeneration.

Objective: To investigate whether a 16-week aerobic exercise program was able to

reduce serum NfL in patients with mild Alzheimer’s disease (AD).

Methods: This is a secondary analysis of data from the multi-center Preserving

Cognition, Quality of Life, Physical Health, and Functional Ability in Alzheimer’s

disease: The Effect of Physical Exercise (ADEX) study. Participants were randomized

to 16 weeks of moderate intensity aerobic exercise or usual care. Clinical assessment

and measurement of serum NfL was done at baseline and after the intervention.

Results: A total of 136 participants were included in the analysis. Groups were

comparable at baseline except for APOEε4 carriership which was higher in the usual

care group (75.3 versus 60.2%; p = 0.04). There was no effect of the intervention

on serum NfL [intervention: baseline NfL (pg/mL) 25.76, change from baseline 0.87;

usual care: baseline 27.09, change from baseline −1.16, p = 0.09].

Conclusion: The findings do not support an effect of the exercise intervention on a

single measure of neurodegeneration in AD. Further studies are needed using other

types and durations of exercise and other measures of neurodegeneration.

Clinical trial registration: clinicaltrials.gov, identifier NCT01681602.
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Introduction

Physical activity is a prerequisite for the maintenance of health
and wellbeing in humans (Penedo and Dahn, 2005). Moreover,
physical activity is a protective factor in terms of preventing cognitive
decline including dementia (Livingston et al., 2017) as indicated by
findings from a number of epidemiological studies (Wang et al.,
2022). Alzheimer’s disease (AD) is a common cause of cognitive
decline and is neuropathologically characterized by accumulation
of beta-amyloid and tau upstream from neurodegenerative changes
in the pathophysiological cascade (Selkoe and Hardy, 2016). Such
changes may be measured by Magnetic Resonance Imaging (MRI)
or fluid biomarkers including Neurofilament Light (NfL). NfL is
released into the Cerebrospinal Fluid (CSF) from damaged neurons
and may be detected in serum (Molinuevo et al., 2018). NfL is
elevated in a number of conditions such as AD and ischemic
stroke. In AD, NfL increases as the disease progresses (Palmqvist
et al., 2019). At present, NfL measured in CSF has been used
as a secondary outcome measure in AD trial of potential new
drugs (Li et al., 2022), whereas measurements in serum is less
well established. Physical exercise may also be able to ameliorate
symptoms of AD such as cognitive symptoms and behavioral changes
(Hoffmann et al., 2013; Groot et al., 2016). In the ADEX study,
we found that 16 weeks of exercise improved processing speed
and measures of physical function and fitness (Hoffmann et al.,
2013) and that this effect may be larger with the Apolipoprotein E
(APOE) ε4 genotype. Further, exercise did not affect beta-amyloid
accumulation either on Positron Emission Tomography (Frederiksen
et al., 2019b)or in CSF (along with measures of total tau and
phosphorylated tau) (Jensen et al., 2016). In transgenic AD mouse
models, exercise has been reported to attenuate hallmarks of AD
pathology such as beta-amyloid (Vasconcelos-Filho et al., 2021)
and tau pathology (Belarbi et al., 2011). This demonstrates that
exercise might engage targets relevant for a disease-modifying effect
in AD. However, studies so far in humans have not been able to
substantiate a comparable effect. For example, despite early and
promising findings on the effects of exercise on hippocampal volume
(Erickson et al., 2011) and cortical thickness in healthy older adults
(Colcombe et al., 2006), subsequent studies with varying durations
of interventions from 3 to 24 months have been disappointing
(Firth et al., 2018; Wilckens et al., 2021), including in AD patients
(16 week intervention) (Frederiksen et al., 2017, 2018). Data from
human studies are more sparse regarding effects on tau and beta-
amyloid, but so far evidence to suggest that results from animal
studies extends to humans, is missing (Frederiksen et al., 2017,
2019a,b). Other factors might explain the lack of an association. For
example, many studies have used brain MRI scans to measure effect
on neurodegeneration (Frederiksen et al., 2017, 2018; Broadhouse
et al., 2020), which may not be sensitive enough to pick up small
effects, at least in terms of structural changes such as changes in
cortical thickness and hippocampal volume. Although this remains
speculative, findings in multiple sclerosis demonstrate that exercise
interventions of a short duration clearly attenuate measures related to
neurodegeneration in a similar fashion as disease-modifying therapy.
Specifically, in two studies in multiple sclerosis exercise interventions
were able to modify serum concentrations of neurofilament light
chain (NfL) (Ercan et al., 2021; Joisten et al., 2021). Studies in AD
on NfL (in serum or CSF) in blood and exercise are sparse. A single
study reported changes over a 6-month period in plasma NfL in a

small sample of AD patients. Patients were either randomized to
cycling or stretching. No significant change over time was reported
and between-group differences were not reported (Raket et al.,
2020).

The effects of exercise may be dependent on APOE ε4 genotype,
a risk allele for AD. In a study, we found that AD patients who
were carriers of the APOE-ε4 allele benefitted more from a 16-week
exercise intervention in regards to cognitive, neuropsychiatric, and
physical performance (Jensen et al., 2019b). Epidemiological studies
have also found evidence of a differential effect of physical activity
levels depending on APOE-ε4 status with regards to cognitive decline
and hippocampal volume (Smith et al., 2014).

As the measurement of NfL in serum could be a particularly
sensitive biomarker of neurodegeneration, the aim of the present
study was to assess the effects of a physical exercise intervention on
serum NfL in patients with AD. In addition, we wished to explore the
influence of APOE status on the effects of the intervention on NfL.

Materials and methods

Study design and population

The present study is a secondary analysis of data from
the Preserving Cognition, Quality of Life, Physical Health, and
Functional Ability in Alzheimer’s Disease: The Effect of Physical
Exercise (ADEX) study, a multi-center, single-blinded randomized
controlled trial (RCT) of physical exercise in patients with mild AD.
Details of the rationale and study design can be found elsewhere
(Hoffmann et al., 2013, 2016), as well as the main findings (Hoffmann
et al., 2013, 2016). The intervention comprised 16 weeks of group-
based, supervised moderate- to high-intensity aerobic exercise three
times weekly for 1 h. An initial 4-week ramp-up period which
familiarized participants with the exercise equipment and focused
on strength exercises was conducted to reduce the risk of injuries
(Hoffmann et al., 2013, 2016). Two hundred participants from
eight centers were recruited and randomized in the study. Clinical
assessment of cognitive function, activities of daily living, physical
function, aerobic fitness, neuropsychiatric symptoms at baseline
and at follow-up immediately following the end of the 16-week
intervention was carried out. All assessments were performed by
assessors blinded to group allocation. Inclusion criteria for the
study were the following: (1) AD according to National Institute of
Neurological and Communicative Diseases and Stroke/Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
Alzheimer’s Criteria and DIagnostic and Statistical Manual (DSM)-
IV codes; (2) between 50 and 90 years of age; (3) a Mini–Mental State
Examination score of more than 19; (4) at least 3 months of stable
doses if receiving anti- dementia medication or mood-stabilizing
medication; and (5) informed consent. Exclusion criteria included
the following: (1) severe psychiatric illness; (2) alcohol or drug abuse
within the last 2 years; (3) participation in aerobic exercise (moderate
to high intensity) more than twice weekly on a regular basis; and
(4) any medical condition precluding participation in the exercise
program (e.g., severe neurological or medical illness and presence
of several cardiovascular risk factors). Out of the 200 participants
in the study, 156 had data available for the present study and were
included in the analysis (Figure 1). The ADEX trial was approved by
the Committees of Biomedical Research Ethics for the Capital Region
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FIGURE 1

Flow-chart for participants. Data available for analysis in present study
refers to availability of serum neurofilament light at both baseline and
follow-up.

(protocol no.: H-3-2011-128) and by the Danish Data Protection
Agency (file no.: 30-0718) and carried out in accord with the Helsinki
Declaration of 1975. The trial was registered at clinicaltrials.gov
(identifier: NCT01681602) on September 10, 2012.

Measurement of NfL

Neurofilament light concentrations in serum were measured
using the SIMOA R© NF-lightTM Advantage Kit (Reference number
103186) (Quanterix, Lexington, MA, United States) and the
manufacturer’s instructions. Measurements were performed on a
Quanterix SR-X Biomarker Detection System.

APOE genotype

DNA was isolated with Promega Maxwell DNA purification kits
(Promega, WI, USA), according to the manufacturer’s protocol from
250 µL of buffy coat from 6 mL Ethylenediaminetetraacetic acid
(EDTA) vials. APOE genotyping for the ε2, ε3, and ε4 alleles was
performed with a TaqMan qPCR assay as described by Koch et al.
(2002).

Clinical scales and measures

Cognitive assessment included the MMSE for global cognitive
impairment (Folstein and Folstein, 1975), the Symbol Digit
Modalities Test (SDMT) after 120 s for mental speed and attention
(Smith, 1973). Assessment of Activities of Daily Living (ADL)
functioning was assessed using the AD Cooperative Study-ADL scale
(Galasko et al., 1997), and is reported for baseline. Behavioral and
psychological symptoms of dementia were assessed at baseline using
the Neuropsychiatric Inventory–Questionnaire (NPI-Q) (Kaufer
et al., 2000).

Assessment of physical fitness

Test of Physical Performance The 6-min Astrand Cycle
Ergometer test (Monark Ergomedic 839E; Monark Exercise AB,
Sweden) was used to estimate the maximal oxygen uptake based on
workload and average heart rate (HR) during the last minute of the 6-
min cycle test, corrected for age and body weight. Maximal oxygen
uptake (estimated VO2 max) was used as a measure of aerobic,
physical fitness (Cink and Thomas, 1981). Timed Up and Go test
(TUG) was used to assess basic mobility by measuring the time it
takes for a person as quickly and safely to stand up from a chair,
walk 3 m, cross a line, turn around, and walk back to the chair and
sit down (Podsiadlo and Richardson, 1991). The 30-s chair stand
test (STS) assesses strength and endurance in the lower extremity
by measuring the number of stands completed in 30 s with hands
crossed against the chest (Eggermont et al., 2010). The 400-m walk
test (fast gait speed) was used to assess walking endurance. The
walking time(s) was measured on a 20-m course marked with two
colored cones (Guralnik et al., 1994). The 10-m walk test (usual gait
speed) assesses usual gait speed (m/s) on a 10-m long course (Maquet
et al., 2010).

TABLE 1 Baseline demographics and clinical measures.

Usual care
group

(n = 73)

Intervention
group

(n = 83)

P-value

Age [years (SD)] 70.6 (7.2) 69.5 (7.8) 0.39

Female participants
[n (%)]

27 (38) 38 (46) 0.27

Baseline MMSE mean,
(SD)

24.2 (3.9) 23.9 (3.4) 0.57

Baseline ADCS-ADL
mean, (SD)

63.1 (10.5) 65.3 (8.7) 0.16

Baseline NPI-Q mean,
(SD)

10.1 (10.2) 9.9 (10.5) 0.91

Baseline VO2 max
(ml/kg) mean, (SD)

26.3 (9.2) 25.4 (7.8) 0.54

Baseline neurofilament
light chain (pg/mL)
mean, (SD)

27.1 (11.7) 25.8 (9.7) 0.44

APOE-ε4# 75.3% 60.2% 0.04

SDMT mean, (SD) 28.7 (14.5) 26.7 (15.1) 0.14

TUG (seconds) mean,
(SD)

6.3 (1.74) 6.7 (1.63) 0.08

10 m walking speed
(meter/second) mean,
(SD)

7.7 (1.78) 8.0 (1.76) 0.12

400 m (seconds) mean,
(SD)

297.9 (84.8) 306.9 (86.4) 0.26

STS (seconds) mean,
(SD)

14.7 (4.7) 14.3 (3.6) 0.72

Table shows baseline characteristics by group allocation. Significant p-values indicated by bold
lettering. All values given as mean (± standard deviation).
#Percentage of participants with at least one APOE-ε4 allele.
ADCS-ADL, Alzheimer’s disease cooperative study–activities of daily living; APO,
apolipoprotein; MMSE, mini mental state examination; NPI-Q, neuropsychiatric inventory–
questionnaire; SD, standard deviation; SDMT, symbol digit modalities test; STS, sit-to-stand;
TUG, timed-up-and-go.
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TABLE 2 Effects of the intervention.

Usual care
(n = 73)

Intervention
(n = 83)

P-value

Change
from

baseline

Change
from

baseline

Neurofilament light
chain (pg/mL), (SE)

−1.24 (0.86) 0.74 (0.69) 0.11

SDMT mean, (SE) −1.8 (0.89) −2.0 (0.82) 0.55

VO2 max (mL/kg)
mean, (SE)

2.2 (SE 0.6) 3.5 (0.8) 0.13

TUG (seconds)
mean, (SE)

0.03 (0.11) −0.06 (0.11) 0.73

10 m walking speed
(meter/second)
mean, (SE)

−0.05 (1.3) −0.081 (1.25) 0.56

400 m (seconds)
mean, (SE)

0.38 (31.6) −4.8 (44.7) 0.79

STS (seconds) mean,
(SE)

0.53 (0.30 0.26 (0.27) 0.74

Results are reported as mean NfL (pg/mL) (standard error of the mean).
The table displays results from Student’s unpaired t-test of change from baseline to 16 week
follow-up (delta values) between groups except for neurofilament light chain where results are
for the main analysis using Analysis of co-variance. Lower scores indicates better performance
except for SDMT and neurofilament light chain.
STS, sit-to-stand; SDMT, symbol digit modalities test; TUG, timed-up-and-go.

Statistical analysis

Baseline characteristics were compared between the two groups
using Student’s un-pairs samples t-test for continuous variables
and the chi-squared test for categorical variables. Regarding the

analysis of the effects of the intervention, we first tested whether the
previously reported effect of the exercise on VO2max was also present
in this subgroup as an effect on NfL could possibly be mediated
through an effect on aerobic capacity. This was done using Student’s
un-paired samples t-test for change in VO2max from baseline to
follow-up and was also done for all other measures included in
correlation analyses. The effect of aerobic exercise on serum NfL
was assessed by ANalysis of COVAriance (ANCOVA) with change
in serum NfL from baseline to follow-up as dependent variables
and group allocation, baseline MMSE, APOE genotype and sex,
and APOE genotype x group allocation as covariates. Subgroup
analyses for the analysis of the main effects of the intervention
of NfL concentration was carried out in those participants who
exercised with a mean intensity of >70% of maximal HR and
attended >80% of the offered sessions (high exercisers) or below (low
exercisers). As a sensitivity analysis and to further explore the effects
of APOE ε4 status, post hoc Spearman’s correlations were calculated
across numbers of alleles and change from baseline to follow-up in
NfL concentrations.

To test a possible association between improvements in physical
fitness and serum NfL, we further examined whether there was
a correlation between change in estimated VO2max and change
in serum NfL in the intervention group using Spearman’s rank
correlation. Similarly, the relationship between change in the TUG,
STS, 10-m, and 400-m walk tests and change in serum NfL
were assessed. As the intervention has been shown to improve
performance on the SDMT, we also assessed whether change in
SDMT correlated with change in NfL. Statistical significance was
set at P, 0.05 (two-tailed). Statistical analysis was carried out using
Intercooled Stata 9.2 for Macintosh (Stata Corporation, USA).

FIGURE 2

Serum neurofilament light by exercise intensity. Boxplot of baseline (light gray) and follow-up measurements of neurofilament light chain for each group
of exercise intensity achieved in the intervention group, and for the usual care group. There were no significant differences in changes from baseline to
follow-up between groups.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1108191
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1108191 January 18, 2023 Time: 14:6 # 5

Frederiksen et al. 10.3389/fnins.2023.1108191

FIGURE 3

Effect of number of APOE-ε4 alleles on neurofilament light. X-axis indicate number of APOE-ε4 alleles and y-axis change in serum concentration from
baseline to follow-up in the intervention group. Negative values indicate a drop in serum NfL from baseline to follow-up.

Results

Baseline demographics and clinical characteristics are presented
in Table 1. There was a significant difference in the prevalence
of the APOE ε4 allele with the allele being more frequent in the
usual care group (75.3 versus 60.2%). A total of 20.7% of those in
the intervention group and 23.9% of the usual care group had two
APOE ε4 (not significant). There were no other significant differences
in baseline characteristics between the two groups. There were no
significant differences between the included study population and
the study population comprised of dropouts and missing serum NfL
values in any of the baseline variables (data not reported). There
was no significant difference in change from baseline in VO2max
between the two groups [intervention: 3.5 (SE 0.8); usual care: 2.2
(SE 0.6); p = 0.13] (Table 2). There was no effect of the intervention
on serum NfL levels (Table 2) between groups [F(1,153) = 2.52,
p = 0.11] (Table 2) or an interaction between APOE genotype or
group allocation [F(1,153) = 1.01, p = 0.36]. Similarly, there was
no difference in the effect of the intervention between the usual
care group, low exercisers or high exercisers [usual care versus low
exercisers: F(1,100) = 1.03, p = 0.31; usual care versus high exercisers

TABLE 3 Correlations between serum NfL and clinical measures.

Rho P-value

SDMT −0.13 0.13

VO2 max −0.06 0.52

TUG 0.06 0.48

10 m −0.02 0.78

400 m −0.02 0.84

STS −0.06 0.40

The table displays results from Spearman’s rank correlation analyses between change from
baseline to 16 week follow-up (delta values) in serum NfL and various cognitive and physical
measures. VO2 max is results from the Åstrand test.
STS, sit-to-stand; SDMT, symbol digit modalities test; TUG, timed-up-and-go.

F(1,119) = 2.80, p = 0.10] (see Figure 2). Correlation analyses
of number of APOE- ε4 and change in NfL was not significant
(see Figure 3). Lastly, there were no significant findings regarding
correlations between change in NfL and change in physical fitness
measures and SDMT (Table 3).

Discussion

This is the first study to investigate the effects of aerobic exercise
on serum NfL in patients with AD. Exercise did not reduce serum
NfL. We did not find that change in NfL correlated with change in
measures of cognitive function or physical fitness and function.

Previous studies of exercise effects on serum NfL have been
limited to studies in multiple sclerosis or healthy participants with
the exception of a single smaller study. In the study, 26 patients
were randomized to either cycling or stretching but only change
over time within groups were reported and not between groups.
The intervention was not associated with a change over time. Ercan
et al. (2021) found that in patients with relapsing-remitting multiple
sclerosis, an 8-week program of moderate intensity aerobic exercise
was able to decrease serum NfL levels by 32%. In another study in
multiple sclerosis using a shorter exercise intervention of 3 weeks, it
was similarly found that serum NfL levels were lowered (Joisten et al.,
2021). These findings therefore clearly demonstrate that exercise is
able to perturb processes leading to leakage of NfL even over a
relatively short time scale. Joisten et al. (2021) found that the change
observed in NfL in multiple sclerosis patients following exercise
was linked to the kynurenine pathway which has been involved in
neuroinflammatory and neurodegenerative processes (Savitz, 2020).
NfL levels have been found to be associated with kynurenine
pathway metabolites in early stages of AD (Chatterjee et al., 2019).
Although neuroinflammation is likely to play a role in AD (Amor
et al., 2010), it is reasonable to assume that this will be low-grade
inflammation relative to multiple sclerosis. Exercise produces an anti-
inflammatory response, but studies in mild cognitive impairment
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and AD have been inconsistent with some showing an effect in
the direction of an anti-inflammatory effect (Tsai et al., 2019;
Eustáquio et al., 2020) and others not (Nascimento et al., 2014;
Jensen et al., 2019a). Further, a meta-analysis of the effect of exercise
on inflammatory markers did not show an effect in AD and MCI
on inflammatory markers linked to AD pathology (Huang et al.,
2021). In healthy controls, exercise was also found to affect the
kynurenine pathway, but not NfL (Isung et al., 2021). In summary,
in AD, other drivers of pathology than neuroinflammation may
be more important and less amenable to exercise, although this is
speculative.

We did not find an effect of APOE genotype in terms of an
effect of exercise on NfL. In contrast, in a previous analysis of
results from the ADEX study, it was found that APOE-ε4 carriers
benefitted more from the intervention on a number of cognition
and physical function outcomes (Jensen et al., 2019b). Observational
studies have also suggested a moderating effect of APOE status
on the relationship between physical activity and risk of dementia,
beta-amyloid status, gray and white matter volume, and cerebral
blood flow, with some studies showing benefit for APOE-ε4 carriers
(Kivipelto et al., 2008; Head et al., 2012; Brown et al., 2013; Smith
et al., 2014; Zlatar et al., 2014) and others for APOE-ε4 non-
carriers (Rovio et al., 2007; Kulmala et al., 2014; Luck et al., 2014).
Evidence from differential responses in carriers versus non-carriers
has also been reported in anti-amyloid therapy (Cummings et al.,
2021), but it is generally assumed that this is related to amyloid
removal, and so far there is no evidence to suggest that exercise
modifies cortical amyloid deposition (Frederiksen et al., 2019b;
Vidoni et al., 2021). It is also worth noting that it is uncertain
if the difference in change in NfL is of a size that is clinically
meaningful. In a large longitudinal study of changes in NfL in
blood a mean change of 4.9 ng/mL was reported in AD dementia
(Palmqvist et al., 2019) but whether for example halving this rate
would translate into measurable effects on clinical measures remains
to be determined.

Apart from a lack of an effect of exercise on neurodegeneration,
other factors may explain the negative findings in the present
study. For example, the intervention may not have been long
enough to affect mechanisms related to the underlying disease
mechanism in AD, the intervention may not have been at a
sufficient intensity or the population may not have been the right
one, e.g., too advanced along the AD pathophysiological pathway
for exercise to be effective on NfL. A number of observations
do, however, counter these explanations. Firstly, and as already
mentioned, shorter interventions have been shown to be able to
affect serum NfL (Ercan et al., 2021; Joisten et al., 2021), although
not in AD patients. Secondly, the intervention was able to improve
symptoms of AD including cognitive function (Hoffmann et al.,
2016). Lastly, effects of exercise on NfL may be short-lived and
were not captured due to the time from the intervention ended
and blood samples were obtained. We did not find the intervention
to improve measures of physical function and fitness, as opposed
to findings in the whole cohort (Sobol et al., 2016). This was
quite surprising and may also have played a role in the negative
findings in the present study as an effect on NfL could be mediated
through an improvement in, e.g., VO2max. In summary, although
it cannot be ruled out, several observations may be taken to
indicate that the intervention should have been able to attenuate the

neurodegenerative processes, but studies with longer interventions
are needed to test this.

This study has limitations. As already addressed, the length
of the intervention could play a role in our negative findings.
Further, it may be speculated that the intervention would have
been more effective in earlier disease stages. However, finding
treatments for patients at the dementia stage remains important.
Another limitation is the absence of measures of other markers of
neuroinflammation (or candidate markers) whose effects might be
studied along with NfL.

Strengths of the study are a rigorous methodology and a
relatively large sample size. Moreover, the patient population
was well characterized, and all patients had a diagnosis of
AD based on published criteria and assessed by experienced
clinicians. The intervention was well-planned and designed
specifically to patients with dementia ensuring target engagement
in terms of physical fitness. In addition, all exercise sessions
were supervised by a physical therapist and all participating
subject wore pulse watch monitors to ensure that workout
load was maintained.

In conclusion our findings do not support an effect of a 16-
week intervention of moderate aerobic exercise on a single measure
of neurodegeneration. Results regarding exercise in patients with
AD are still sparse and although the findings do not support an
effect, caution is needed, and the results do not dispel a possible
disease-modifying effect of exercise. Studies examining effects on
markers of AD and neurodegeneration in CSF are needed to further
complement the present findings. Further studies are needed in
AD examining longer interventions and applying a multimodal
approach to untangle underlying mechanisms of exercise as a
possible therapy in AD.
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