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Background: K-complex detection traditionally relied on expert clinicians, which

is time-consuming and onerous. Various automatic k-complex detection-

based machine learning methods are presented. However, these methods

always su�ered from imbalanced datasets, which impede the subsequent

processing steps.

New method: In this study, an e�cient method for k-complex detection

using electroencephalogram (EEG)-based multi-domain features extraction and

selectionmethod coupledwith a RUSBoosted treemodel is presented. EEG signals

are first decomposed using a tunable Q-factor wavelet transform (TQWT). Then,

multi-domain features based on TQWT are pulled out from TQWT sub-bands,

and a self-adaptive feature set is obtained from a feature selection based on the

consistency-based filter for the detection of k-complexes. Finally, the RUSBoosted

tree model is used to perform k-complex detection.

Results: Experimental outcomes manifest the e�cacy of our proposed scheme

in terms of the average performance of recall measure, AUC, and F10-score. The

proposed method yields 92.41 ± 7.47%, 95.4 ± 4.32%, and 83.13 ± 8.59% for

k-complex detection in Scenario 1 and also achieves similar results in Scenario 2.

Comparison to state-of-the-art methods: The RUSBoosted tree model was

compared with three other machine learning classifiers [i.e., linear discriminant

analysis (LDA), logistic regression, and linear support vector machine (SVM)].

The performance based on the kappa coe�cient, recall measure, and F10-score

provided evidence that the proposed model surpassed other algorithms in the

detection of the k-complexes, especially for the recall measure.

Conclusion: In summary, the RUSBoosted tree model presents a promising

performance in dealing with highly imbalanced data. It can be an e�ective tool

for doctors and neurologists to diagnose and treat sleep disorders.
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k-complexes detection, electroencephalogram (EEG), multi-domain features extraction,
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1. Introduction

In addition to monitoring sleep disorder disease, sleep analysis
hinged on an electroencephalogram (EEG) can also play a critical
role in people’s mental and physical health (Al-Salman et al.,
2021, 2022b). K-complex, as one of the most prominent transient
waveforms in sleep stage 2, is usually utilized for sleep research and
clinical diagnosis (Al-Salman et al., 2019b; Latreille et al., 2020).
Due to this significance, the determination of the k-complex in
an epoch is extremely important for sleep experts. K-complex,
which was first discovered in Loomis et al. (1938), is a transient
waveform of more than ±75mV for a first negative sharp wave
immediately followed by a slower positive component, and it was
also reported that the frequency scales focus on 12–14Hz waves
(Richard and Lengellé, 1998). The duration of k-complexes was
between 1 and 2 s, and other studies reported that the maximum
duration is between 1 and 3 s (Al-salman et al., 2018; Al-Salman
et al., 2019b). In general, k-complex detection based on sleep
specialist visually scored is regarded as the gold standard. However,
it is time-consuming, subjective, and onerous (Lajnef et al., 2015).
Thus, more andmore researchers focus on developing an automatic
k-complex detectionmethod to speed up diagnosis and alleviate the
burden of neurologists.

A large number of studies on the automated detection of
the k-complexes have been developed, which focus on feature
extraction, feature selection, and pattern recognition stages. Some
studies presented the literature concerning feature extraction, such
as temporal information (Hassan and Bhuiyan, 2016a, 2017a; Al-
Salman et al., 2022a), spectral estimation (Herman et al., 2008;
Hassan and Subasi, 2016), and chaotic information estimation
(Peker, 2016; Al-salman et al., 2018; Al-Salman et al., 2019a; Nawaz
et al., 2020). Aykut et al. employed features based on amplitude
and duration properties of the k-complex waveform, and the results
were evaluated with the ROC analysis which proved up to 91%
success in detecting the k-complex (Erdamar et al., 2012). Hassan
et al. presented a method of analyzing EEG waveforms based
on the spectral features computed from tunable Q-factor wavelet
transform (TQWT) sub-bands, and the reported results were
significantly better than the existing results (Hassan and Bhuiyan,
2016b). The scheme based on TQWT and bootstrap aggregating
for EEG signals was developed, and the results showed that the
proposed method is superior in terms of sensitivity, specificity, and
accuracy (Hassan et al., 2016). Tokhmpash et al. used the TQWT
method to transform EEG signals, and then various features were
extracted from the TQWT sub-bands. The empirical results showed
the high efficiency of the proposed method in the analyzing of EEG
signals (Tokhmpash et al., 2021). The TQWT is also applied to
decompose an EEG signal into various sub-bands at different levels;
the findings showed that the proposed scheme with estimating
the Hjorth parameters preserves efficiency and is appropriate for
the automated identification of EEG signals (Geetika et al., 2022).
Some time and frequency analysis methods based on variational
mode decomposition were utilized to determine the k-complex,
and the highest average accuracy was obtained at 92.29% (Yücelbaş
et al., 2017). Wessam proposed an efficient method based on

fractal dimension to detect k-complexes from EEG signals, and
the findings revealed that the proposed method yields better
classification results than other existing methods (Al-Salman et al.,
2019b).

However, to the best of our knowledge, one of the state-of-
the-art linear or non-linear features in the detection of k-complex
has not been undertaken yet. Hence, selecting optimal feature sets
plays an essential role in the k-complex detection system. In recent
years, various methods have been applied successfully in many
fields to realize the optimal feature subset selection (Xu et al., 2020;
Jainendra et al., 2021). Moreover, pattern recognition techniques
also offer a great potential to analyze EEG signals more effectively,
which is typically based on supervised or unsupervised approaches
(Hassan and Bhuiyan, 2017b; Zhang et al., 2022). Rakesh et al.
put forward a fuzzy neural network for k-complex and achieved
better results with an accuracy of 87.65% and a sensitivity of 94.04%
(Ranjan et al., 2018). Ankit et al. presented a sparse optimization
method, and the authors concluded that the proposed method is
promising for the practical detection of k-complex (Parekh et al.,
2015). Huy et al. proposed a hybrid-synergic machine learning
method to detect k-complex, and the results indicate that the
performance of the proposedmodel was at least as good as a human
expert (Vu et al., 2012). The ensemble model combining a least
square support vector machine, k-means, and naive Bayes is used
to identify the detection of the k-complex. The results demonstrate
that the proposed approach is efficient in EEG signals (Al-Salman
et al., 2019b).

To build a reliable detection model, adequate volumes
of k-complexes and non-k-complex datasets are necessary.
Unfortunately, the number of epochs obtained from EEG signals
with non–k-complexes is greater to a larger degree than that of
those with k-complexes. Considering that most classifiers have a
strong ability to predict instances with majority volumes while
having a weak ability to predict instances belonging to the minority
volumes. Hence, the problem to classify imbalanced data effectively
is becoming the biggest challenge in k-complex detection.

In this study, to develop and present a procedure of k-
complex detection in an epoch, a robust method for the
imbalance dataset was proposed based on TQWT coupled
with the RUSBoosted tree classifier. The block diagram of
the proposed methodology is depicted in Figure 1. Each EEG
signal of 30min was filtered with a fourth-order pass-band
Butterworth filter at 0.5–30Hz to smooth the EEG signal and
remove the environment noise caused by muscle activity and
eye movement. Then, the EEG signal was segmented into epochs
of 0.5 s with an overlapping of 0.4 s, each epoch corresponding
to a signal state for k-complex or non–k-complex. The multi-
domain features (time, spectral, and chaotic theory) were extracted
from each sub-bands of epoch based on TQWT decomposing.
To minimize the complexity and reduce the dimensionality of
features, the feature selection method based on search-based
feature selection consistency (SFS consistency) is employed before
classification. For further analysis, the RUSBoosted tree algorithm
was implemented to improve the performance in recall for the
imbalanced dataset.
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FIGURE 1

Schematic outline of the proposed computer-assisted k-complex detection scheme.

FIGURE 2

Filtered EEG signal (the blue line is EEG signals with k-complex, and

the red line represents EEG signals with non–k-complex).

2. Materials and methods

2.1. The EEG recordings

The EEG dataset analyzed in this study was acquired from 10
subjects (aged 28.1 ± 9.95 years, which consists of four men and
six women). All were recorded at a sleep laboratory of a Belgium
hospital (Brussels, Belgium) at a sampling frequency of 200Hz,
and can be found online at https://zenodo.org/record/2650142.
The waveform of k-complex and non–k-complex is presented in
Figure 2. The EEG recordings were visually scored by two experts
with the specified recommendation (Devuyst et al., 2010). As the
duration time of the k-complex is about 0.5–2 s, the EEG signals
were divided into segments for k-complex detection using the
sliding window technique (Siuly et al., 2011; Al-Salman et al., 2021).
Based on previous empirically-based studies, the window size was
selected as 0.5 s with an overlap of 0.4 s in this study (Al-Salman
et al., 2019c). The multi-domain features based on the analysis of
the EEG signals were employed to represent k-complex and non–k-
complex from each 0.5 s EEG segment. All the analyses were carried
out based on the Cz-A1 channel.

For the DREAMS database, only five of the 10 subjects are
annotated by two experts, and the rest are annotated by expert 1.
In this study, two different evaluation scenarios were used. The
first scenario considers the annotations marked by expert 1 for
all subjects, and the second scenario consists of the annotations
marked by expert 2 for the five subjects. Table 1 presents the
number of k-complex by the experts for Scenarios 1 and 2 in the

DREAMS database. It is found that the number of k-complex by the
first expert is dramatically greater than the number by the second
expert. Therefore, the choice of different scenarios has a direct
influence on the results and can be used to verify the performance
of the proposed method.

2.2. Tunable Q-factor wavelet transform
(TQWT)

The tunable Q-factor wavelet transform, which is proposed by
Selesnick (2011), is a flexible discrete wavelet transform (DWT).
Similar to the DWT, TQWT employs a two-channel filter bank,
which consists of a low-pass filter with parameter α and a high-pass
filter with parameter β , to decompose EEG signal into transient
components and sustained components using adjustable Q-factors.
It can be expressed mathematically as Equations 1, 2. For further
analysis, the sustained component’s output of the low-pass filter is
regarded as the input signal for the next two-channel filter bank.
The transient components’ output of the high-pass filter for each
layer is deemed as the output signal. One simple example of wavelet
transform with J level is illustrated in Figure 3.

H
J
L =

{

∏J−1
j=0 HL

(

ω/αj
)

|ω| ≤ αJπ

0 αJπ ≤ |ω| ≤ π
(1)

H
J
H

=

{

HH

(

ω/αJ−1
)
∏J−2

j=0 HL

(

ω/αj
)

(1− β) αJ−1π ≤ |ω| ≤ αJ−1π

0 others

(2)

Here,

HL = θ

(

ω+(β−1)π
α+β−1

)

HH = θ

(

απ−ω
α+β−1

)

θ (t) = 0.5 (1+ cos (t))
√
2− cos (t)

(3)

Q-factor: This parameter determines the width of the band-
pass filter. TQWT decomposition achieves flexibility by tuning
and adapting this parameter of the wavelet transform. The higher
the Q-factor is, the more effective the extraction of the sustained
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TABLE 1 Number of k-complex in each EEG recording.

Subject Scenario 1 Scenario 2

Number of segments
with k-complex

Number of segments
without k-complex

Number of segments
with k-complex

Number of segments
without k-complex

ID1 263 17,733 95 17,901

ID2 299 17,697 41 17,955

ID3 104 17,892 14 17,982

ID4 661 17,335 60 17,936

ID5 285 17,711 98 17,898

ID6 204 17,792 / /

ID7 87 17,909 / /

ID8 36 17,960 / /

ID9 26 17,970 / /

ID10 117 17,879 / /

FIGURE 3

Wavelet transform with J level using a two-channel filter bank, which consists of the low-pass filter and high-pass filter.

components. Meanwhile, the decomposing waveform based on
a lower Q-factor is suitable for extracting the features of the
transient component.

Number of decomposition levels (J): If the number of filter
bands is denoted by J, an input signal will be decomposed
into J+1 sub-bands. Among these bands, J sub-bands were
obtained from the high-pass filter of each level filter band,
and one came from the low-pass filter of the final level
filter band. With the increase of the decomposition level,
the time domain waveform becomes wider, and the features
increase dramatically.

Taking into consideration various ranges of motivation, the
TQWT is used in the proposed scheme (Hassan and Bhuiyan,
2016b). First of all, considering that k-complex waves are
characterized by the appearance of multifarious rhythms, TQWT
can improve localization in the frequency domain by varying
the Q-factor. Hence, this decomposition method is suitable for
spectral analysis. Second, the filters employed in TQWT are
more computationally efficient in the frequency domain (Selesnick,
2011). Third, EEG is a non-stationary signal and its chaos

properties alter between k-complex and non–k-complex. TQWT
decomposition can also give the wave in the time domain; hence,
it has emerged as a powerful technique in both time features
and chaos features for EEG analysis (Fraiwan et al., 2010). These
superiorities verified that the TQWT decomposition is an effective
tool for the analysis of EEG and hence it is employed in the
proposed scheme.

2.3. Multi-domain feature extraction from
TQWT sub-bands

To derive salient features from the raw EEG data that can
effectively reflect the epochs to the respective k-complex is the
main objective of the feature extraction stage of the EEG-based
k-complex detection system. Hence, a multi-domain method,
based on time domain estimation, spectral estimation, and chaotic
analysis, was employed to extract the representative features from
each 5 s EEG epoch. A total of 25 hybrid features were extracted
from each sub-band.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1108059
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li and Dong 10.3389/fnins.2023.1108059

FIGURE 4

Multi-domain features extraction framework.

The extraction feature methods based on the time domain
have been proven to be an efficient method for analyzing the
characteristics of EEG signals (Vidaurre et al., 2009). Though it is
widely used in speech and audio signal classification (Chu et al.,
2009), spectral features have been used for EEG signals (Hassan and
Bhuiyan, 2016b). These features are typically calculated by applying
a fast Fourier transform (FFT) to short-time window segments of
EEG signals followed by further processing. Considering that the
property of EEG signals is somewhat chaotic, in addition to the
traditional features of the EEG signal, the chaotic features based
on non-linear dynamical analysis are also highly recommended
to investigate the dynamic characteristics of EEG (Li et al., 2017;
Nawaz et al., 2020). In the current study, 12 time domain features,
seven spectral features, and six chaotic features are extracted for
further analysis, as shown in Figure 4.

We have computed the feature vector for each EEG sub-
bands based on TQWT decomposition. As the decomposed EEG
signals with J+1 sub-bands, the feature vector of J+1 sub-bands
on each epoch is computed to construct a 25∗(J+1)-dimensional
feature vector.

2.4. Search-based feature selection using
consistency measures

Considering that reducing the dimensionality of feature sets
may be improving the performance in reducing costs and
enhancing the ability of comprehensibility, another effective step
in the detection system for k-complex is to find optimal feature
subsets. Selection features based on search-based feature selection
(SFS) analyses were used in this study to research and select the

important features. The following context briefly illustrates the
selection features (Dash and Liu, 2003; Hernández-Pereira et al.,
2016).

The SFS method based on the consistency filter, as one of
the most effective methods, traverses all the candidate subsets to
find the best one using the evaluation measures based on the
independence of an inductive algorithm (shown in Figure 5). The
evaluation measure evaluates the attributes of selected features
according to the inconsistency rate (IR). If the IR for current
selection features is smaller than the pre-selection features, current
selection features are deemed as the selected features. Although
SFS has the disadvantage in time-consuming, it does not need the
stopping criterion or a pre-specified threshold.

2.5. RUSBoosted tree model for the
k-complex detection

The distribution across k-complex or not is highly skewed:
non–k-complexes have more epochs than those k-complexes.
Therefore, the detection problem for the imbalanced dataset is a
major challenge for k-complex detection. The RUSBoosted tree
model, as an efficient way to overcome this problem, can improve
the prediction performance by reducing bias between positive and
negative samples at the expense of a slight decrease in the large
group sets (Khoshnevis and Sankar, 2020; Jain and Ganesan, 2021;
Noor et al., 2022).

The present research fused a random under-sampling (RUS)
technique and adaptive boosting (AdaBoost) algorithm with a
decision tree as the RUSBoosted tree model, as shown in Figure 6.
First of all, to obtain the balanced distribution, the under-sampling
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FIGURE 5

Scheme of SFS. The dimension of feature subsets is reduced based

on features selected by SFS, and the selected features are used for

further analysis.

method was implemented to deal with the minority and majority
class size for the imbalanced training dataset. Second, considering
the AdaBoost algorithm’s ability to reduce bias and variance
mistakes, it is employed to tackle problems involving imbalanced
datasets. Hence, the RUS technique along with AdaBoost is utilized
by combining an ensemble of decision trees as a classifier for
further analysis.

In this study, the parameters (i.e., the number of classifiers was
selected as 30 for the model, with a maximum number of splits of
20 and a learning rate of 0.1) were melded into the RUSBoosted tree
for the detection of k-complex.

2.6. Performance evaluation

First, statistical hypothesis testing is performed to validate the
relevance and suitability of features according to discriminatory
capability are statistically significant or not. If the features are
not statistically significant, they have to be ignored for negative
influence on performance. To estimate the significant level of k-
complexes and non–k-complexes, we perform a one-way analysis of
variance (ANOVA). The difference is considered to be statistically
significant if the p-value is <0.05 at a 95% confidence level.

Second, to evaluate the detection ability of the proposed
method, some metrics based on the confusion matrix (shown in
Table 2) were used. In Table 2, TP describes the situation that both
the actual k-complexes and predicted states are yes. FN represent
the situation that predicted k-complexes as no while actual k-
complexes as yes. FP means the actual state is not k-complexes,
which is adverse to the predicted label based on an algorithm. TN
means the situation that both the actual k-complexes and predicted
states are no.

To evaluate the performance of the detection algorithm,
Cohen’s kappa coefficient, recall, and F-measure are computed. In

FIGURE 6

Flowchart for the RUSBoost implementation.

TABLE 2 Confusion matrix of the k-complex detection problem.

Predicted k-complexes

Yes No

Actual
k-complexes

Yes True positive
(TP)

False negative
(FN)

No False positive
(FP)

True negative
(TN)

addition to these metrics, the area under the ROC curve (AUC) was
also used to estimate the performance of a classifier. Further details
about the metrics are provided in the following paragraphs.

The kappa coefficient, calculated based confusion matrix, as a
measurement for consistency tests, can also be used to measure
classification accuracy. It is defined as Equation 4 as follows:

kappa =
TP+TN

TP+FN+FP+TN − Pe

1− Pe
(4)

Here, Pe is obtained as follows:

Pe =
∑

i sum(M(i, :))× sum(M(:, i))

(
∑

M)2
;M is confusion matrix (5)
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FIGURE 7

Variation of kappa and recall value with J for the detection of k-complexes.

FIGURE 8

Variation of kappa and recall value with Q for the detection of k-complexes.

Recall measure, which is also called sensitivity measurement,

reflects the proportion of the actual positive prediction.

It can be expressed mathematically from Equation 6

as follows:

Recall =
TP

TP + FN
(6)
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TABLE 3 The P-value of the proposed features computed from various TQWT sub-bands indicates the di�erence in features between k-complex and

non–k-complex.

Features Sub-band 1 Sub-band 2 Sub-band 3 Sub-band 4

Time features Maximum 0.023802 0.000803 NaN 0.87868

Mean 0.291217 0.702964 0.308926 0.458965

Standard deviation 0.010885 0.007884 0.546545 0.861432

Skewness 0.008726 0.000836 NaN 0.881254

Kurtosis 0.05654 0.72175 0.048551 0.731241

Shape factor 0.001473 0.008128 0.548529 0.816636

Crest factor 0.00672 0.000878 NaN 0.916789

Impulse factor 0.037651 0.092862 0.01697 0.206266

Margin factor 0.000359 0.008451 0.031723 0.683969

Short energy 9.47E-17 2.54E-16 0.279627 0.01927

Zero-crossing rate 1.68E-13 4.13E-27 2.52E-10 9.76E-19

Time centroid 6.49E-22 1.36E-08 5.27E-05 0.951018

Spectral features Band energy ratio 0.956247 0.007944 0.889128 0.289102

Spectral flux 0.004931 0.733733 0.797405 0.780187

Spectral centroid 0.008618 6.77E-01 0.793363 0.002373

Band width of SC 0.709624 0.946816 0.363672 0.023152

Spectral flatness
measurement

0.561545 0.701588 0.077005 0.263733

Spectral roll-off 0.594201 8.66E-05 7.65E-05 2.65E-11

Spectral irregularity 0.01874 0.127941 0.000109 5.51E-07

Chaotic features Correlation dimension 0.087149 6.52E-01 0.395171 0.000795

Kolmogorov entropy 0.346332 0.309228 0.309228 0.865964

Largest Lyapunov
exponent

7.69E-01 0.007019 0.031744 0.890812

Lyapunov exponent
spectrum

0.318448 0.318448 0.813963 0.988225

Box dimension 0.803216 1.88E-09 0.00112 2.02E-17

Generalized dimension 1.51E-09 2.39E-13 7.73E-24 7.73E-24

It is noted that the features with not statistically significant are highlighted in bold.

F-measure is the top priority measurement in analyzing the
overlapping between the two sets. It can be defined by weighted
recall and precision, and β reflects the relative importance.

Fβ =
(1+ β2)× Precision× Recall

(

β2 × Precision
)

+ Recall
(7)

If the parameter of β > 1, it means that recall has more
influence on F-measure. 0 < β < 1 reflects that precision has
a broader effect on F-measure, compared with recall. β = 1
represents the measurement degenerates into standard F-measure.
It is noted that β = 10 is selected.

To further illustrate the effectiveness of features selected using
a feature selection-based consistency-based filter, the separability
analysis using Fisher criteria was applied, which is obtained from
Equation 9 as follows:

JF = tr(S−1
w Sm) (8)

Here, Sw and Sm represent the within-class and between-class
scattermatrix, respectively. tr(S)means the trace of squarematrix S.

To evaluate the performance of the proposed method, the 5-
fold cross-validation method is utilized. The k-complex segments
and non–k-complex segments are divided into five groups,
respectively. For each time, the training dataset consists of four k-
complex groups and four non–k-complex, while the resting groups
are deemed as testing groups. All groups are tested in turn. In this
study, the overall performance is computed over the five iterations.

3. Results and discussion

3.1. Parameter selection for TQWT

The selected optimal parameters to decompose the EEG epoch
are J and Q. The detection performance (kappa measures and recall
value) based on the aforementioned procedure of feature extraction
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FIGURE 9

Illustration of the comparison for AUC and time in all features and selected features. Each box represents the 25–75th percentiles, the central line is

the median value, and the tiny vertical lines extend to the most extreme data not considered outliers, which are plotted individually.

and selection has been analyzed sequentially for incremental values
of Q range from 1 to 10 with an increment of one. Figures 7, 8 depict
the influence of parameters on detection performance for the k-
complex. It is observed from Figure 7 that the optimal parameter
of J is 3, in which the best kappa measures and recall value are
achieved. The optimal value for J is determined in the same way.
From our experimental analyses, as shown in Figure 8, it has been
observed that the best matrices are achieved for Q= 4.

3.2. Quality evaluation for feature
extraction and selection

In this section, the results of all the features computed from
various TQWT sub-bands were present in terms of significance, as
shown in Table 3. The test is performed at a 95% confidence level.
It can be observed from Table 3 that the features highlighted in
bold are not significant (p > 0.05), and a difference is statistically
significant if p ≤ 0.05. The results show that the performance
of time domain features to classify k-complex was significantly
better than other features for sub-bands 1 and 2. In sub-band
3, spectral features significantly outperformed time and chaotic
features. However, the statistical performance of time features in
sub-band 4 was the worst in all three kinds of features. Based on
these results, we can conclude that not all of the sub-bands features
achieved good discriminatory capability for k-complex detection.
Hence, it is necessary to select some of these features to improve the
k-complex detection performance and decrease time consumption.

We investigate the AUC and time performance for two
different feature sets, namely all features and selected features. The

comparisons of the performance are shown in Figure 9. It is evident
that the AUC based on selection features is slightly incremented
than all feature sets. Compared with the performance of all feature
sets, there is a dramatic decrement in time comparison for selected
feature sets.

In this study, we also investigate the separability of the two
different feature sets using JF . The larger the value of JF is, the
more separable the features are. Figure 10 presents the value of
JF and compares different feature sets (all features or selected
features are used). It is evident that the JF based on selected
features is higher, which confirmed that the selected features can
characterize the k-complex effectively. It can be confirmed by the
inferences drawn from Figure 9. According to these results, the
feature selection method was more effective, particularly in AUC,
time comparison, and separability estimation. Furthermore, the
experimental outcomes presented in Figures 9, 10 confirm that the
feature selection method is more effective.

3.3. Performance for various classification
models

For this research, we have verified several classificationmethods
such as linear discriminant analysis (LDA), logistic regression,
linear support vector machine (linear SVM), and RUSBoosted tree.
Figure 11A indicates the receiver operating characteristic (ROC)
curve for different classification methods. According to the results,
the line in the upper left represents better performance in the
detection of k-complexes. The area under the curve (AUC) of
1 indicates a perfect classification performance. Although this
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comparison is for the data set of subject 1, it has to be noticed that
the k-complex classification can be improved using RUSBoosted
tree methods. Figure 11B demonstrates a box plot of the area under
the curve (AUC) for different pattern recognition methods. The
AUC was obtained as 0.931 ± 0.085, 0.814 ± 0.166, 0.925 ±
0.127, and 0.954 ± 0.043 for LDA, logistic regression, linear SVM,
and RUSBoosted tree, respectively. According to these results, we
conclude that the AUC of the RUSBoosted tree is significantly better
than others.

FIGURE 10

Comparison of JF values between all features and feature selection

for k-complex detection.

The purpose of this investigation is to establish the suitability
of the RUSBoosted tree algorithm for imbalanced dataset problems.
The performance of the RUSBoosted tree algorithm is investigated
for several traditionally state-of-the-art classifiers including LDA,
logistic regression, and linear SVM. For further evaluation,
Figure 12 reports the performance of some of these classifiers
for the proposed scheme. The kappa coefficient, recall measure,
AUC, and F10-score were used to evaluate the effectiveness
of the proposed scheme. The proposed method achieved an
average performance of recall measure, AUC, and F10-score of
92.34 ± 7.06%, 95.4 ± 4.32%, and 83.59 ± 8.23%, respectively.
Depending on the results, the performance based on the kappa
coefficient, recall measure, and F10-score provided evidence that
the RUSBoosted tree surpassed other algorithms in the detection
of the k-complexes. However, the performances based on the
kappa coefficient using the RUSBoosted tree (54.22 ± 4.04%) are
slightly worse than linear discriminant analysis (59.26 ± 14.67%).
In summary, the prediction results confirmed a superiority value
for different metrics and a balanced classification performance.
It also indicated that the prediction algorithm based on the
RUSBoosted tree model was tending to outperform than the
traditional classifiers, especially for the minority classes.

3.4. Performance comparison of the
proposed method based on the ratio of
segment number

To verify the performance of the proposed methods, the
execution time, recall, and F10 scores are used. Figure 13 presents
the execution time of the RUSBoosted tree model and the others
classifiers. For further analysis, we assume that the number of the

FIGURE 11

(A) Evaluation of the ROC curves (the plot of sensitivity vs. (1-specificity) for distinguishing k-complexes) for subjects 1. (B) Comparison of AUC for

di�erent methods.
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FIGURE 12

Performance comparison of the proposed method with di�erent

machine learning algorithms for the detection of k-complexes [LDA

(red diamond), logistic regression (green circle), linear SVM (blue

diamond), and RUSBoosted tree (pink star)]. Error bars correspond

to the standard error of the mean.

segments of the k-complex is fixed at 263, and the number of
the segments of the non–k-complex is outnumbering k-complex
(the number of segments of the non–k-complex increased from
1 to 10 times compared to the number of the segments of k-
complex, and the number of segments was selected randomly
from the database). The time to train the classification model was
deemed as execution time. According to Figure 13, the slowest
execution time was recorded with the RUSBoosted tree model
compared with other classifiers. Along with the increasing number
of segments, the execution time is also increased dramatically. In
addition, the performance was also compared with the other three
classifiers based on recall and F10 scores. Figure 14 achieves the
results that the proposedmethod is slightly increased along with the
increase in the ratio of the number of the segments between non–
k-complex and k-complex. While the other classifiers’ performance
significantly decreased. High F10 values mean that the proposed
method is inclined to small samples. From these results, we can get
the conclusion that the proposed method was suitable to deal with
the imbalanced dataset.

3.5. Comparison with existing methods
based on Scenario 1

According to previously reported methods, some of the
automatic k-complex detection methods have been estimated using
the same database as discussed in Section 2.1. In Table 4, the
proposed method is compared with existing methods. Krohne
et al. (2014) detected k-complexes using wavelet transformation
combined with feature thresholds with the same database. In this
study, pseudo-k-complexes were identified from each EEG segment
and then the feature threshold method was used to reject false
positives. A mean recall of 74% was achieved. Parekh et al. (2015)

FIGURE 13

Relationship between the execution time and ratio of segment

numbers for subject 1 (the number of k-complex is fixed as 263, and

the segment number of non–k-complex is multiple of the number

of k-complex from 1 to 10).

reported their results of the k-complex detection using a fast non-
linear optimization algorithm, an average recall and kappa of 61%
and 0.54 were achieved, respectively. Another study was made by
Ranjan et al. (2018), in which a fuzzy algorithm combined with
an artificial neural network was used to detect k-complex, they
reported an average accuracy and specificity of 87.65 and 76.2%,
respectively. A fractal dimension coupled with an undirected graph
features technique was utilized by Al-Salman et al. (2019b) to
detect k-complexes. The accuracy and specificity of 97 and 94.7%
were reported, and the performance was highest than others.
Oliveira et al. (2020) focused on designing a multitaper-based k-
complex detection method in EEG signals and achieved a recall of
85.1%. The proposed method outperforms the other methods in
almost all performance metrics (accuracy and specificity), except
the method of fractal dimension coupled with undirected graph
features (Al-Salman et al., 2019b). In terms of recall and kappa,
the proposed method achieves the highest performance. These
results demonstrated that the proposed method achieved a better
performance in terms of detection performance.

3.6. Comparison based on di�erent
scenarios

As already mentioned, some of the automatic k-complex
detection methods have been proposed and compared with the
proposed method with the regard to the scenarios previously
discussed, as shown in Table 5. In Scenario 1, the proposedmethods
achieved a mean accuracy of 92.19 ± 3.9% and a mean recall
of 92.41 ± 7.47%. The proposed method achieved a dramatically
better recall than others (Devuyst et al., 2010; Yazdani et al., 2018;
Oliveira et al., 2020), but slightly worse accuracy. A higher recall
value indicates that the proposed method is able to detect the most
of small samples (true k-complex marked by an expert).
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FIGURE 14

Relationship between the performance-based kappa and F10 and the ratio of segments number for subject 1 (the number of k-complex is fixed as

263, and the segment number of non–k-complex is multiple of the number of k-complex from 1 to 10).

TABLE 4 Performance comparisons between the proposed method and other di�erent detection methods with the same datasets based on Scenario 1.

Methods Accuracy (%) Recall (%) Specificity (%) Kappa (%)

Wavelet transformation (Krohne et al., 2014) / 74 / /

Spare optimization (Parekh et al., 2015) / 61 / 54

Fuzzy neural network (Ranjan et al., 2018) 87.65 / 76.2 /

Short-term event extraction algorithm (Yazdani et al., 2018) / 67.79 / /

Fractal dimension coupled with undirected graph features (Al-Salman
et al., 2019b)

97 / 94.7 /

Multitaper-based method (Oliveira et al., 2020) / 85.1 / /

Proposed methods 92.18 92.41 92.41 54.54

The bold value indicates the best performances are highlighted compared with other methods.

TABLE 5 Performance comparisons between the proposed method and other existing methods for Scenarios 1 and 2.

Methods Scenario 1 Scenario 2

Accuracy (%) Recall (%) Accuracy (%) Recall (%)

Devuyst et al. (2010) 98.59 61.72 99.29 60.94

Yazdani et al. (2018) 98.78 67.79 99.3 73.02

Oliveira et al. (2020) / 85.1± 5.05 / 77.2± 15.5

Proposed methods 92.19± 3.9 92.41± 7.47 87.95± 6.16 80.85± 11.33

The bold value indicates the best performances are highlighted compared with other methods.

In Scenario 2, compared to previous studies, the trade-off
accuracy and recall obtained from the proposed method are similar

to those obtained in Scenario 1. Compared to Scenario 1, the
mean accuracy and recall are smaller, i.e., 87.95 ± 6.16% and 80.85
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± 11.33%, respectively. The reason why the recall and accuracy
decrease for the scenario may be that the second expert marked
few labels as k-complex compared to expert 1. It is consistent with
Table 1. It is denoted that the proposed method was effective to
detect the k-complex.

4. Conclusion

This study developed a k-complex detection scheme,
consisting of TQWT, multi-domain features, feature selection,
and RUSBoosted tree algorithm to overcome the shortages of the
existing classification–misclassification of classifier training from
the imbalanced data. According to the results, the highest recall
value was achieved for the proposed scheme. The results denoted
that the methods could be worth utilizing in the automatic identify
the k-complex for sleep specialists. It has been evidenced that
the proposed scheme is comparable to or better than the state-
of-the-art classifiers. The results also show that the ability of the
RUSBoosted tree model to deal with the imbalanced classification
problems compared with the state-of-art methods is quite well. In
general, according to the experimental outcomes, we can conclude
that the proposed scheme can relieve physicians of the burden of
visually inspecting a large volume of EEG data.

However, the study suffers from several drawbacks. First, it is
necessary for researchers to locate the locations of the k-complex
in the related epochs. Second, the proposed scheme relied on a
single channel to detect k-complex. While as one of the important
features of brain activity, the interaction between brain regions is
not fully utilized.
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