
fnins-17-1107089 February 18, 2023 Time: 13:53 # 1

TYPE Original Research
PUBLISHED 23 February 2023
DOI 10.3389/fnins.2023.1107089

OPEN ACCESS

EDITED BY

Teresa Serrano-Gotarredona,
Spanish National Research Council (CSIC),
Spain

REVIEWED BY

Liang-Jian Deng,
University of Electronic Science
and Technology of China, China
Hongwei Mo,
Harbin Engineering University, China

*CORRESPONDENCE

Guosheng Yi
guoshengyi@tju.edu.cn

SPECIALTY SECTION

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

RECEIVED 24 November 2022
ACCEPTED 08 February 2023
PUBLISHED 23 February 2023

CITATION

Gao T, Deng B, Wang J and Yi G (2023)
Presynaptic spike-driven plasticity based on
eligibility trace for on-chip learning system.
Front. Neurosci. 17:1107089.
doi: 10.3389/fnins.2023.1107089

COPYRIGHT

© 2023 Gao, Deng, Wang and Yi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Presynaptic spike-driven plasticity
based on eligibility trace for
on-chip learning system
Tian Gao, Bin Deng, Jiang Wang and Guosheng Yi*

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Introduction: Recurrent spiking neural network (RSNN) performs excellently in

spatio-temporal learning with backpropagation through time (BPTT) algorithm.

But the requirement of computation and memory in BPTT makes it hard to realize

an on-chip learning system based on RSNN. In this paper, we aim to realize a

high-efficient RSNN learning system on field programmable gate array (FPGA).

Methods: A presynaptic spike-driven plasticity architecture based on eligibility

trace is implemented to reduce the resource consumption. The RSNN with

leaky integrate-and-fire (LIF) and adaptive LIF (ALIF) models is implemented on

FPGA based on presynaptic spike-driven architecture. In this architecture, the

eligibility trace gated by a learning signal is used to optimize synaptic weights

without unfolding the network through time. When a presynaptic spike occurs,

the eligibility trace is calculated based on its latest timestamp and drives synapses

to update their weights. Only the latest timestamps of presynaptic spikes are

required to be stored in buffers to calculate eligibility traces.

Results: We show the implementation of this architecture on FPGA and test it with

two experiments. With the presynaptic spike-driven architecture, the resource

consumptions, including look-up tables (LUTs) and registers, and dynamic power

consumption of synaptic modules in the on-chip learning system are greatly

reduced. The experiment results and compilation results show that the buffer size

of the on-chip learning system is reduced and the RSNNs implemented on FPGA

exhibit high efficiency in resources and energy while accurately solving tasks.

Discussion: This study provides a solution to the problem of data congestion in

the buffer of large-scale learning systems.

KEYWORDS

spiking neural network, adaptive LIF model, eligibility trace, presynaptic spike-driven,
on-chip learning system

Introduction

Supervised learning is a training method for neural networks widely used in the fields
of pattern recognition (Schwenker and Trentin, 2014), image processing (Aljuaid and
Anwar, 2022), and semantic segmentation (Zhou et al., 2022), which is generally realized
on the graphics processing unit (GPU) and the central processing unit (CPU). Due to
the frequent data transmission between memories and process units, the GPU and the
CPU are difficult to solve problems, such as high energy consumption and high demand
for hardware specifications. A series of hardware systems have been proposed to train
neural networks more efficiently, which presents as low-power dissipation and less hardware

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1107089
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1107089&domain=pdf&date_stamp=2023-02-23
https://doi.org/10.3389/fnins.2023.1107089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1107089/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 2

Gao et al. 10.3389/fnins.2023.1107089

resource utilization (Dundar et al., 2017; Kriegeskorte and Mok,
2017; Davies et al., 2018). In these neuromorphic systems, spiking
neural networks (SNNs) are considered to be more suitable for
digital circuits (Painkras et al., 2013; Merolla et al., 2014; Lechner
et al., 2020). It is necessary to train the neural networks on
neuromorphic hardware systems in a quick and energy-saving
way for the applications in the terminal or edge equipment (Chu
et al., 2015; Kornijcuk and Jeong, 2019; Shama et al., 2020). As
an important type of SNNs, recurrent spiking neural networks
(RSNNs) are considered difficult to be trained on chips because
of the large number of parameters and complex dynamics. While
training the RSNN, the network is usually unfolded through time,
which makes a challenge for digital circuits. A typical example
is the backpropagation through time (BPTT) algorithm, which is
thought as a common learning algorithm used to train RSNNs
(Werbos, 1990; Manneschi and Vasilaki, 2020). Although it has
been proved to perform excellently in the fields including speech
recognition (Ahmad et al., 2004; Tang and Glass, 2018) and
phoneme recognition (Hermans et al., 2015), the full-time storage
for variables and backpropagation through a long period of time are
so luxury for on-chip memories. The complex gradients of RSNNs
and the huge requirement for memories make it difficult to realize
a learning system for RSNNs.

To solve this problem, a series of algorithms and architectures
based on surrogate-gradients are proposed to train RSNNs on
circuits in a hardware-friendly way. Zhang and Li (2019) optimize
the computation of gradients without unfolding the network
through time and performing backpropagation time point by time
point, which relies on the architecture driven by time. Compared
with the backpropagation on spike-train level, the local synaptic
plasticity is expected to apply on RSNNs, which consumes fewer
computations and memories (Larsen and Sjöström, 2015; Kaiser
et al., 2020). Bellec et al. (2019, 2020) propose the eligibility
backpropagation (e-prop) algorithm to replace unfolding the
RSNN through time by the surrogate-gradient based on eligibility
traces, which is known as the fading memory of events (Liu
et al., 2020; Kalhor et al., 2021). Benefit from the local learning in
synapses, the e-prop algorithm is considered suitable for mapping
to the circuits like field programmable gate array (FPGA). However,
the buffer size is related to the length of trace, which is used to
cache the fading memory of events in the time window (Fieres
et al., 2008; Millner et al., 2010; Benjamin et al., 2014). It results
in that the requirement of buffer size is not only linearly related
to the size of neuron array, but also exponentially related to
dynamic network activity. This problem is widespread in time-
driven architectures (Moore et al., 2012; Pani et al., 2017). Park
and Jung (2020) propose a presynaptic spike-driven spike timing-
dependent plasticity (STDP) learning rule in the address domain.
This method provides a way to trace spike trains based on
timestamps and synaptic update rates in a STDP time window,
instead of storing the complex relationship between presynaptic
and postsynaptic spikes. Inspired by this, the presynaptic spike is
possible used to trigger calculations of eligibility traces based on
timestamps. In this way, the buffer size can be reduced and the
learning system works with less on-chip memory consumption.

In this study, we aim to realize a high-efficient RSNN
learning system on FPGA. We implement the RSNN based on
the presynaptic spike-driven architecture to optimize synaptic
modules. When a presynaptic spike occurs, it activates the

synaptic module to search the eligibility trace value based on
the latest timestamp. Based on this architecture, the buffer size
of the on-chip learning system is reduced. We show this high-
efficient implementation and test it on two experiments. The
classification and synthesis results confirm that the RSNN reaches
a satisfactory accuracy and efficiency in resources and energy
consumption. This architecture provides a solution for the large
amounts of data transferred and stored in the buffers of large-scale
neuromorphic systems.

Materials and methods

The RSNNs tend to have inferior short-term memory
capabilities, which leads to weaker learning abilities in sequential
tasks. Bellec et al. (2018) use the RSNN with the leaky integrate-
and-fire (LIF) and adaptive leaky integrate-and-fire (ALIF)
models to enhance the short-term memory, which improves the
performance of RSNNs in sequential tests. In this study, we
implement the RSNN proposed by Bellec et al. (2018) on FPGA as
an on-chip learning system. Considering that the synaptic modules
of the ALIF models implemented on FPGA require more logic
elements than LIF models, we find a balance between the accuracy
and resource consumptions by changing the ratio of the numbers
of two models. Further, the RSNN includes the inhibitory and
excitatory neurons, which limits the synaptic weights to (−1, 0]
and [0, 1) to match the input range of the multipliers in synaptic
modules. In the implementation of the RSNNs on FPGA, the
presynaptic spike-driven architecture is applied to the synaptic
modules, which contributes to the reduction of buffer size. With
this architecture, a high-efficient on-chip learning system based on
the RSNN is realized on FPGA.

ALIF model with SFA mechanism

In the ALIF model, spike-frequency adaptation (SFA) based on
the dynamic threshold is applied to the LIF model (Benda and Herz,
2003; Wang et al., 2003; Bellec et al., 2018, 2020; Salaj et al., 2021).
The membrane potential of LIF models is calculated as:

vt
j = αvt−1t

j +

∑
i

WIn
ji xt−d

i +

∑
i

WRec
ji zt−d

i − zt−1t
j vthr (1)

α = e−1t/τv (2)

where vj
t is membrane potential of the jth neuron in hidden layer at

time t, α is the attenuation constant of membrane potential, Wji
In is

input synaptic weight from the ith neuron in input layer to the jth
neuron in hidden layer, xi

t−d is input spike from the ith neuron in
input layer at time t–d, Wji

Rec is recurrent synaptic weight from the
ith neuron in hidden layer to the jth neuron in hidden layer, zi

t−d

is the spike output by the ith neuron in hidden layer at time t–d,
zj

t−1t is the spike output by the jth neuron in hidden layer at time
t–1t, d is the transmission delay, vthr is the threshold voltage, 1t is
the timestep, and τv is the time constant of membrane potential.
If the membrane potential reaches the threshold, the LIF model
generates a spike and then enters a refractory period.

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 3

Gao et al. 10.3389/fnins.2023.1107089

The dynamics of membrane potential in ALIF models are
similar to LIF models. The ALIF model has another state variable
besides the membrane potential. The basic threshold voltage of
ALIF models is equal to the threshold voltage of LIF models. With
continuous activated by input currents, the threshold voltage of
ALIF models increases rapidly. If the membrane potential of ALIF
model is below the threshold for a long time, the threshold voltage
gradually decreases to the basic value. The dynamic threshold
voltage is described as:

Bt
j = bbase

+ βbt
j (3)

bt
j = ρbt−1t

j + (1− ρ)zt−1t
j (4)

ρ = e−1t/τa (5)

zt
j = H(vt

j) (6)

where B is the threshold voltage, bbase is the basic value, β is the
scaling factor, ρ is the attenuation constant of threshold voltage, τa
is the time constant of dynamic threshold voltage, and H(x) is the
Heaviside function.

Eligibility trace in synapses

The eligibility trace is a temporary trace of events generated
by neurons. It combines the gradient at present and in the
past to update synaptic weights and reduce the gradient of
RSNNs (Sutton and Barto, 2014). Compared with BPTT algorithm,
which has performed excellently in RNNs, the eligibility trace
allows neurons to store local gradients instead of backpropagating
through time and area. Because spikes are differentiable impulse
signals, the pseudo-derivative function is used to described the
derivative of spikes. The pseudo-derivative function is calculated
as (Bellec et al., 2018):

dz
dv
= γ max

{
0, 1−

∣∣∣∣∣v− bbase

bbase

∣∣∣∣∣
}

(7)

where ϒ is the pseudo-derivative of amplitude. When the neuron
is in refractory period, the pseudo-derivative is set to 0. For ALIF
model, the derivative of Heaviside function is defined as:

dz
dv
= γ max

{
0, 1−

∣∣∣∣v− B
bbase

∣∣∣∣} (8)

The eligibility trace is based on the presynaptic neuron. An
internal variable vector ht

∈ R is assumed as the states of dynamics
in models. The eligibility trace is defined as following:

et
ji =

dzt
j

dht
j
εt

ji (9)

εt
ji =

∂ht
j

∂ht−1
j

εt−1
ji +

∂ht
j

∂Wji
(10)

In the LIF model, hj
t is a one-dimension vector, which includes

the membrane potential vj
t . The eligibility trace in LIF models is

calculated as:

et
ji =

dzt
j

dvt
j
z̄t−d

i (11)

z̄t
i =

∑
t−d≤t′≤t

αt−t′zt′
i (12)

where eji
t is the eligibility trace of synapse from the ith neuron to

the jth neuron, and αt−t ′ is the attenuation constant of membrane
potential that decays over time. For input synaptic weights WIn, the
output of neurons z is replaced by inputs x.

In the ALIF model, hj
t consists two dimensions, i.e., the

membrane potential vj
t and the dynamic threshold voltage Bt . The

derivative of hj
t is a 2× 2 matrix described as:

dht
j

dht−1
j
=

∂vt

j

∂vt−1
j

∂vt
j

∂bt−1
j

∂bt
j

∂vt−1
j

∂bt
j

∂bt−1
j

 =

α 0

β
dzt−1

j

dvt−1
j

ρ− β
dzt−1

j

dvt−1
j

 (13)

The eligibility trace in ALIF models is calculated as:

et
ji =

dzt
j

dvt
j
(z̄t−d

i − βεt
ji) (14)

εt
ji =

(
ρ− β

dzt−1
j

dvt−1
j

)
εt−1

ji +
dzt−1

j

dvt−1
j

z̄t−d−1
i (15)

Synaptic plasticity

In this study, the RSNN is composed of ALIF and LIF
models. Connections between neurons are sparsely with a constant
connection probability 60%. The filtered and weighted outputs of
the RSNN are used as predictions, which are described as:

yt
j = (1− λ)

∑
t−d≤t′≤t

∑
i

λt−t′WOut
ji zt′

i + bOut
j (16)

λ = e−1t/τout (17)

where y is the output of RSNN, λ is the attenuation constant of
outputs, λt−t ′ is the attenuation constant that decays over time,
Wji

Out is output synaptic weight from the ith neuron in hidden
layer to the jth neuron in output layer, bj

Out is output bias of the jth
output node, and τout is the time constant of outputs. The SoftMax
function is used to activate the predictions. The output node with
the maximum value is the predicted label.

During the training period, the gradient is divided into two
parts: the eligibility trace and the learning signal (Bellec et al., 2020).
As described before, the eligibility trace updates synaptic weights
towards historical gradients. A learning signal guides the RSNN
to minimize errors between predicted targets and real targets. The
learning signal contains errors based on the loss function, which is
used to evaluate the performance of RSNNs defined as:

Lt
i =

∑
j

WBack
ij (Y t

j − Y∗tj) (18)

where Li
t is the learning signal of the ith neuron in the hidden layer

at time t, Wji
Back is feedback synaptic weights from the jth neuron

in output layer to the ith neuron in hidden layer, Yj
t is predicted

target of the jth output node at time t, and Yj
∗t is real target of the

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 4

Gao et al. 10.3389/fnins.2023.1107089

jth output node at time t. Gradients of input and recurrent synaptic
weights are defined as:

dE
dWji

=

∑
t1

dE
dht1

j

∂ht1
j

∂Wji
(19)

∂ht
j

∂Wji
:=

∂zt
j

∂ht
j

∑
t1≤t

∂ht
j

∂ht−1
j

∂ht−1
j

∂ht−2
j

. . .
∂ht1

j

∂Wji
=

∂zt
j

∂ht
j
εt

ji = et
ji (20)

dE
dzt

i
=
∑

j WBack
ij (Y t

j − Y∗tj)
(21)

The eligibility trace is restricted in a short time window and
recurrent synaptic weights are updated as:

WRec
ji =WRec

ji − η
∑

t
Lt

j ē
t
ji (22)

ēt
ji =

∑
t−d≤t′≤t

λt−t′et′
ji (23)

where η is the learning rate. The input synaptic weight Wji
In is

updated same as Wji
Rec. The output weight Wji

Out is updated by
the gradient descent algorithm. The cross entropy is used as the loss
function. Output synaptic weights are updated as:

WOut
ji =WOut

ji − η
∑

t−d≤t′≤t

λt−t′zt′
i (Y t′

j − Y∗t
′

j) (24)

All parameters mentioned in this study are shown in Table 1
(Bellec et al., 2018). Different from BPTT algorithm, the synaptic

plasticity used in this study only needs errors at present time.
In contrast, synaptic weights are generally optimized at the
end of training in BPTT algorithm. State variables during the
entire training period are stored for gradients calculation. The
requirement of on-chip memory is very luxury for FPGA.
Figure 1A shows the data flow of the eligibility trace. It does not
need to wait and store latent variables in the RSNN until the end
of training. At each timestep, the eligibility trace is calculated and
applied to gradients. Figure 1B shows the data flow of learning
signals. The learning signal is corresponding to errors between
predicted targets and real targets. At the end of training, synaptic
weights are updated with the combination of eligibility trace and
learning signal. With the eligibility trace gated by learning signal,
the RSNN learns in a hardware-friendly way.

Architecture overview

The RSNN used in this study is implemented on Altera Stratix
V Advanced Systems Development Kit with Stratix V GX FPGA
as an on-chip learning system. Figure 2 overviews the architecture
of the RSNN, which is composed of a controller, memories for
inputs, computing units and the synaptic plasticity block. The
controller contains a counter used as system clock. At the beginning
of training, the reset port is set to 1 and transmitted to all modules
in the system. Then the enable port is set to 1 and the reset port
is set to 0. The RSNN begins to receive inputs from memories
and outputs predicted targets. The RSNN implemented on FPGA
contains 8 input nodes, 4 LIF and 6 ALIF models in the hidden
layer and 5 output nodes. In the input layer, the first 2 nodes are

TABLE 1 Parameter values used in the RSNN.

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value

1t 1 bbase 0.01 d 5 β 1.8 Ref 5

η 0.01 τm 20 ϒ 0.3 τa 500 τout 20

FIGURE 1

Data flow in gradient computation. (A) Eligibility trace. (B) Learning signal.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 5

Gao et al. 10.3389/fnins.2023.1107089

TABLE 2 Energy and area consumption of data operations.

Operations Energy (pJ) Area (µm2) Operations Energy (pJ) Area (µm2)

8-bit fixed Add 0.03 36 32-bit fixed Add 0.1 137

8-bit fixed Mult 0.2 282 32-bit fixed Mult 3.1 3,495

16-bit floating Add 0.4 1,360 32-bit floating Add 0.9 4,184

16-bit floating Mult 1.1 1,640 32-bit floating Mult 3.7 7,700

FIGURE 2

Overview of the RSNN architecture implemented on FPGA.

applied as inhibitory and others are excitatory. In the hidden layer,
the first 3 LIF models are inhibitory and others are excitatory. If
presynaptic neurons are inhibitory, the synaptic weights are clipped
in (−1, 0). In a similar way, the synaptic weights are clipped in (0, 1)
when presynaptic neurons are excitatory. A buffer is implemented
on FPGA to delay outputs of neurons. When the counter reaches
the number of inputs, the enable port of neurons is set to 0 and the
update enable is set to 1. Then, the synaptic weights are updated.

The learning system is implemented based on 24-bit fixed-point
data, considering the accuracy and consumption of computing
resources. The energy and resource consumption of operations
based on different data are shown in Table 2 (Horowitz, 2014).
It shows that operations of fixed-point data cost fewer energy
and area than floating point data. A multiplier for 16-bit floating
data requires 2 DSP blocks or 51 look-up tables (LUTs) and 95
flip-flops (FFs) with a maximum working frequency of 219MHz.
But a multiplier for 16-bit fixed-point data only requires 1 DSP
block with a maximum working frequency of 300MHz. The 24-bit
fixed-point used in this study is described as:

(−1)sign
× (integer + fraction/216) (25)

where the 0-15th bits are the fraction part of data, the 16–22nd bits
are the integer part of data and the 23rd bit is the sign of data.

ALIF model implementation

Figure 3 shows the architecture of LIF and ALIF models
implemented on FPGA. In Figure 3A, a 24-bit shift register and

a 1-bit shift register are implemented in a LIF model as synaptic
delay. When the clock increases 1, data is shifted in registers and a
new spike is output. The MUX module is used as a selector, which
has three input ports and an output port. When the Sel. is 0, data in
the first input port is chosen to be output. When the Sel. is 1, which
means that the model is in the refractory period, 0 is chosen to
be output. Figure 3B shows the architecture of dynamic threshold
voltage. In the ALIF model, Vthr in Figure 3A is replaced by Bt .

Operations of fixed-point data reduce energy and resource
consumptions with a little bit loss in accuracy. Figure 4A shows the
membrane potential of ALIF models simulated on a computer and
implemented on FPGA. Figure 4B shows the dynamic threshold
voltage of ALIF models with devices. Error evaluation is applied
to ALIF model with four criteria, including mean absolute error
(MAE), minimum root-mean-square error (RMSE), correlation
coefficient (CORR) and R-square (R2) described as:

MAE =
1
N

N∑
i=1

|Xsof (i)− Xhar(i)| (26)

RMSE =

√√√√ 1
N

N∑
i=1

(Xsof (i)− Xhar(i))2 (27)

CORR =
cov(Xsof , Xhar)

σ(Xsof)σ(Xhar)
(28)

R2
= 1−

∑N
I=1(Xsof (i)− Xhar(i))2∑N

I=1(X̄sof − Xsof (i))2
(29)

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 6

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 3

Architecture of neuron models implemented on FPGA. (A) LIF model. (B) Dynamic threshold in ALIF model.

FIGURE 4

Responses of ALIF model implemented on FPGA and simulated with MATLAB with the same inputs. (A) Membrane potential. (B) Threshold voltage.

where Xsof and Xhar are results of simulation with MATLAB and
implementation on FPGA, N is the number of data for error
evaluation, and X̄sof is the mean value of Xsof , CORR is the ratio
of covariance to two data sets computed as:

cov(Xsof , Xhar) =

N∑
i=1

(Xsof (i)− X̄sof)(Xhar(i)− X̄har) (30)

σ(x) =

√√√√ N∑
i=1

(x(i)− x̄)2 (31)

where X̄har is the mean value of Xhar . Results of error evaluation are
shown in Table 3.

Presynaptic spike-driven plasticity

The synaptic module based on eligibility trace is implemented
on FPGA to train the RSNN. The learning rule is composed
of three factors: presynaptic activities, postsynaptic activities and
errors. Errors and the postsynaptic activities are instantaneous
information. Presynaptic activities are stored in the buffer, which
requires a lot of registers. The presynaptic spike-driven architecture
is used to reduce the registers in buffers. Different with buffers used

for inputs, a counter with a FF and a MUX selector is implemented
as the buffer of synaptic module. In this way, hundreds of synaptic
modules require fewer resources.

Figure 5 shows the architecture of synaptic module
implemented on FPGA. The pseudo-derivative of Heaviside
function is limited to 0–0.3 as shown in Figure 5A. The eligibility
traces of LIF and ALIF models use Shift MUL modules as
multipliers and driven by presynaptic spikes as shown in
Figures 5B, C. Because the refractory period is equal to the
time window of eligibility traces, there is at most one spike in 5
timesteps. The FF is activated when a presynaptic spike arrives.
If the number in counter reaches 5 (the length of time window),
the counter is reset to 0. At each timestep, the counter outputs
the number to the MUX selector. Then, the MUX selector outputs
the constant data in input ports according to the three-bit selector
signal in the Sel. port. In Figure 5B, shift and addition operations
are used to replace multiplication between a constant and a
variable. Besides, the synaptic module consists of the Shift MUL

TABLE 3 Error evaluation results.

MAE RMSE R2 CORR

Membrane potential 9.1667× 10−5 1.1723× 10−4 0.9995 0.9999

Dynamic threshold 2.3894× 10−4 3.0328× 10−4 0.9930 0.9999

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 7

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 5

The architecture of synaptic module implemented on FPGA. (A) Pseudo-derivative of Heaviside function. (B) Eligibility trace of LIF model.
(C) Eligibility trace of ALIF model.

module, which is used as a multiplier between two variables.
The “Input a” of Shift MUL is expected to be 0-1 which matches
the scale of inputs. The 16–23rd bits of “Input a” are dropped
and the 0-15th bits are split to 16 MUX selectors as control
signals in Sel. ports. “Input b” is input to 16 shifters and shifted
right from 1 to 16 bits. The first input port of MUX selectors
is set to 0. When the Sel. port is 0, the MUX selector outputs
0. The second input port of MUX selectors is corresponding to
the split data of “Input a.” If the 0th bit of “Input a” is input to
the MUX selector, the “Input b” is input to this selector after
shifted right 16 bits. If the 15th bit of “Input a” is input to the
MUX selector, the “Input b” is input to this selector after shifted
right 1 bit. When the Sel. port is 1, the MUX selector outputs
the number in the second input port. If the synaptic weight
in the module is positive, it is clipped in (0, 1). If the synaptic
weight in the module is negative, it is clipped in (−1, 0). Besides,
presynaptic spike-driven plasticity module, a regular synaptic
module is designed based on shift registers as buffers to compare
with the module based on presynaptic spike-driven architecture.
The resource utilizations of these two modules are shown in
Table 4. In the regular synaptic module, five 24-bit registers are
used to store the attenuated spikes. This buffer requires times
of resources of the buffer that is based on five single-bit LUTs
and a selector. The presynaptic spike-driven plasticity module
requires less resources on FPGA than the regular module. It
reduces 38.9% LUTs, 49.5% registers, and 34.8% dynamic power

consumptions. For an on-chip learning system implemented
on FPGA, there are hundreds or thousands of synapses in
RSNN. It greatly contributes to the high-efficient performance of
learning system.

Classifier implementation

When the last pixel is input to the RSNN, output nodes
are activated by SoftMax function, which is used as a classifier.
The SoftMax function reduces the complexity of gradients of the
output weights. It normalizes the outputs of RSNN and then maps
them to the possibility of predicted labels. The output node with
the maximum probability becomes the prediction of RSNN. The
SoftMax function is described as:

Si =
ei∑
j ej (32)

TABLE 4 Resource utilization of synaptic plasticity.

LUTs Registers Dynamic
power
(mW)

Static
power
(mW)

Spike-driven 1976 229 54.96 902.55

Regular 3232 453 84.26 903

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 8

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 6

The architecture of classifier implemented on FPGA. (A) SoftMax function. (B) Exponent module. (C) Reciprocal module based on Newton-Raphson.

FIGURE 7

Pseudocode of initial approximate reciprocal value in the reciprocal module.

Figure 6A shows the architecture of SoftMax function. It is
mainly composed of the exponent module and the reciprocal
module. Ten exponent (EXP) modules are implemented to
calculate the exponents of outputs of RSNN. A parallel adder is
used to sum outputs of EXP modules and transmit the result
to the reciprocal module. Exponent results are multiplied with
the reciprocal and become the probabilities of predicted labels.
In Figure 6B, values 1/7, 1/6, . . ., 1 are stored in 7 24-bit
registers. Once the adder and multipliers in the EXP module finish
operations, the constant address of registers is shifted right 1.
When the 7th value is input to the multiplier, the EXP module
outputs the exponent result. Figure 6C shows the architecture of
reciprocal module. The reciprocal module is designed based on
Newton-Raphson (NR) method. The approximate reciprocal value
is obtained by three cycles of calculation. The key problem of
the implementation of Newton-Raphson method is how to get
an accurate initial approximate reciprocal value. In this study, an
architecture based on shift operation is proposed to find the initial
approximate reciprocal value. The pseudocode of this method
is shown in Figure 7. When a data is input to the reciprocal
module, the highest bit with value 1 of the input data determines

the shift operations. When data below this bit in the integer
part are “1, . . ., 1,” the initial approximate reciprocal value is
the same as the input data. If the data is between 1.5 and 2,
the initial approximate reciprocal value is set to 1/2. If the data
is smaller than 1.5, the initial approximate reciprocal value is
set to 1. Since exponents are positive, the sign bit is set to 0.
The same error evaluation is applied to the exponent module
and reciprocal module. Figure 8A shows the exponent operation
simulated in MATLAB and implemented on FPGA. Figure 8B
shows the reciprocal module evaluation in the same way. The
evaluation results are shown in Table 5.

Results

Results of experiments

Before implementing the RSNN on FPGA, we first test it on
the computer based on the restricted e-prop algorithm and BPTT
algorithm to confirm it converge to a similar loss value. We limit
the RSNN to 8-10-5 nodes in view of the resources on FPGA.

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 9

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 8

Results of exponent and reciprocal modules simulated in MATLAB
and implemented on FPGA. (A) The exponent module on FPGA and
EXP function in MATLAB. (B) The reciprocal module on FPGA and
1/x function in MATLAB.

Accordingly, the MNIST dataset is divided into two parts. One
includes images of number 0–4, and the other one is composed
of images of number 5–9. The RSNN is trained on Xeon(R) Silver
4114 CPU for 100 epochs. We show the loss values of RSNNs at
each epoch in Figure 9. In Figure 9A, the loss of network trained
by BPTT algorithm based on 0-4 images decreases rapidly in the
first 20 epochs. After 20 epochs, it enters a steady period. The loss
of RSNN based on the e-prop algorithm decreases slower than the
loss of BPTT algorithm. Trained after 40 epochs, the loss gradually
stabilizes at a level slightly higher than the BPTT algorithm.
Although it converges more slowly, it reaches a stable result with
such a small size. In Figure 9B, the loss values of two RSNNs
exhibit the same trend as in Figure 9A. The results of loss values
in the training process show that the e-prop algorithm have similar
convergence to the BPTT algorithm in such small-scale RSNNs.

After simulations on the computer, we implement this RSNN
on Stratix V GX FPGA using Quartus Prime software. There are 8
input nodes, 10 neuron modules in the hidden layer and 5 output
nodes in the RSNN. The input layer consists of 2 inhibitory and
6 excitatory LIF nodes, and the hidden layer includes 3 inhibitory
LIF nodes, 1 excitatory LIF node and 6 excitatory ALIF nodes.
Inhibitory models are coupled with inhibitory synaptic weights,
which are limited to (−1, 0). Excitatory models are coupled with
excitatory synaptic weights, which are limited to (0, 1). Synaptic
modules are placed in each connection between neuron modules.
We start tests with a spatio-temporal spike patterns classification
task (Mohemmed et al., 2012). Spike trains with five spike patterns
are presented sequentially to the RSNN. Each pattern is given by
8 random spike trains with a certain frequency distribution, which
continues 900 timesteps. The RSNN is expected to map these input
patterns to specific targets. We set three groups of τv and τa of
ALIF models to explore how the dynamics in threshold voltage
contributes to the learning ability. With τv = 20 and τa = 20, the
membrane potential and dynamic threshold are in the same time
scale. The threshold voltage decreases rapidly with the membrane
potential after a spike generation in the ALIF model. Considering

TABLE 5 Error evaluation results.

MAE RMSE R2 CORR

Exponent 0.0155 0.0412 0.9999 1.0000

Reciprocal 2.9869× 10−4 9.7972× 10−4 0.9999 1.0000

that neurons in the RSNN are activated sparsely, the threshold
voltage decreases to the base value before the next activation, which
means that ALIF models present no improvement in short-term
memory. In Figure 10A, the RSNN with this group of τv and τa
reaches an accuracy of 1 after trained 300 epochs. With τv = 40 and
τa = 100, the membrane potential and dynamic threshold are in a
similar time scale. The RSNN learns faster than the former network,
but still requires at least 300 epochs to reach an accuracy of 1. With
τv = 20 and τa = 500, the threshold voltage is at a much larger time-
scale than the membrane potential. The slowly changing threshold
enriches the inherent dynamics of ALIF models. As a result, the
RSNN is stabilized at an accuracy of 1 trained after 100 epochs.
The dynamic threshold voltage in a large time-scale makes up for
inferior short-term memory capabilities in RSNNs.

Finally, we test the performance of RSNNs based on MNIST
dataset. Since the RSNN implemented on FPGA only consists of 23
nodes and 180 synapses, the dataset is divided into two parts. One
set includes images of number 0-4 and another one includes images
of number 5–9. The pixels in each image are presented sequentially
to input nodes, which have uniform increasing thresholds from
0.125 to 1. When the gray value of pixel is higher than the
threshold, the input node generates a spike. Benefit from the
reconfigurable neuron and synaptic modules in the learning system,
the module types can be easily switched between LIF and ALIF
neuron modules. Thus, we compare the classification accuracy
of two RSNNs in Figure 10B. One RSNN only includes LIF
models and another RSNN consists of LIF and ALIF models. The
classification accuracy of the RSNN with LIF and ALIF models for
each number in the 0–4 MNIST dataset is 97.9, 96.7, 82.6, 72.3, and
91.1%, respectively, which is 88, 81, 84.6, 79.1, and 88.7% in the
5–9 MNIST dataset. The total accuracy of the tests on these two
datasets is 88.7 and 84.4%. In contrast, the accuracy of the RSNN
with only LIF models for each number in the 0–4 MNIST dataset
is 43.1, 54.3, 66, 26.1, and 44.6%, which is 62.5, 79.7, 48.3, 76.9, and
73.1% in the 5–9 MNIST dataset. The total accuracy of the tests
is 49.2 and 67.6%, which is much lower than the RSNN with LIF
and ALIF models. This comparison further confirms that the ALIF
models greatly contribute to computational power of the RSNNs.

Hardware consumption evaluation

The experiment results show that the learning system solves
tasks accurately. A hardware consumption evaluation is then
performed on the system to test the hardware efficiency. We
measure the hardware consumption in FPGA in terms of LUTs,
registers and power. In order to illustrate the advantages of the
presynaptic spike-driven architecture, we compare the compilation
results of our implementation of the RSNN with previous works
based on other architectures. In Table 6, we show the resource
utilization and power cost of three networks implemented on
FPGA. The first implementation by Vo (2017) is a SNN trained
by BP algorithm. Vo (2017) uses the pre-backpropagation block
and backpropagation block to calculate errors and update synaptic
weights in SNNs. The second one is a SNN implemented based on a
clock-driven architecture proposed by Pani et al. (2017). The clock
drives all neural models and synaptic modules to be updated at
every simulation step, regardless of the spiking activity. Note that all

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 10

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 9

Loss value of RSNN based on BPTT and eligibility trace. (A) Half of the dataset consists of number 0–4 images. (B) Another half of the dataset
consists of number 5–9 images.

results are normalized to the same network scale and the resource
utilization does not include the external memories in this table. The
LUTs utilization of our learning system is reduced to half of the
implementation by Vo (2017). A more significant difference is in
the usage of registers. Implementations by Vo (2017) and Pani et al.
(2017) consume almost the same number of registers/slices because
of the similar architecture they apply to SNNs. Only 18,081 registers
are used in our architecture, which is almost 1/7 of theirs. This
result suggests that our architecture performs excellent in resource
utilization, especially in registers. Besides the resource utilizations,
we also show the power cost in Table 6, which is estimated by
the PowerPlay Power Analyzer Tool in Quartus Prime software.
Although the static power consumption is different between FPGA
development boards, our learning system consumes about 3.3W
power less than the system proposed by Pani et al. (2017), which
indicates that our learning system works at a low power level.

Discussion

In this study, we use the restricted e-prop algorithm to train
RSNNs, which updates the synaptic weights by surrogate gradients.
This surrogate gradient is based on eligibility traces. Different
from the global gradients backpropagated from the top layer, the
eligibility trace represents the events of neurons, which means it is
only related to a local spike. Based on this algorithm, we apply a

FIGURE 10

(A) Results of the learning system presented by five classes of spike
patterns. The first number in the legend is τv. The second number in
the legend is τa. (B) Results of the learning system with two kinds of
neuron models and with only LIF model based on MNIST dataset.

presynaptic spike-driven architecture to the RSNN and implement
it on FPGA. When a spike from presynaptic neuron arrives at the
buffer, it activates this module to search the value of eligibility trace
in a LUT. A learning signal from output layer is also used to guide
the behaviors of neurons, which provides the global gradient to gate
the eligibility trace.

Besides the spike-driven architecture, the time-driven
architecture is also used to implement the RSNNs on FPGA.
We compare the presynaptic spike-driven architecture with
implementations by Vo (2017) and Pani et al. (2017) to illustrate
the mechanisms of these two architectures, and discuss the possible
sources of high resource and power consumptions of their works.
The earlier studies generally focus on improving the throughput of
systems to optimize accelerators. Vo (2017) uses backpropagation
(BP) algorithm to train a small SNN on FPGA. Although the
implementation presents satisfactory accuracy in test, a large
amount of on-chip memories are used to store variables over time.
The same problem exists in the clock-driven architecture proposed
by Pani et al. (2017). The clock drives all neural models and
synaptic modules to be updated at every simulation step, regardless
of the spiking activity. As a results, many invalid activities and
variables occupy the memories and computing resources. Even
the neuron is in the refractory period, its output is also stored
and the synaptic module is updated. In contrast, the synaptic
modules in this study are activated sparsely and the activities of
neurons are limited to timestamps. This intermittent activation
mode makes the RSNN work in a lower energy manner than
previous works. The power consumption in Table 6 suggests the
high power-efficiency of our learning system.

In recent years, many event-driven/spike-driven architectures
are proposed for implementations of SNNs on FPGA. Compared
with time-driven/clock-driven architecture, spikes occupy a smaller

TABLE 6 Resource and power utilization of implementations for
networks.

LUTs Registers/
Slices

Power
(W)

Platform

Vo (2017) 253,727 134,467 – Spartan-3

Pani et al. (2017) 160,667 139,443 8.5 Virtex-6

This study 121,855 18,081 5.183 Stratix V GX

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 11

Gao et al. 10.3389/fnins.2023.1107089

bit width in the data transmission and storage between modules
(Moore et al., 2012; Pani et al., 2017). This is reflected in the
utilization of registers in Table 6. Sankaran et al. (2022) use
the single spike control BPTT algorithm to train the RSNN and
implement this on FPGA based on the event-driven architecture.
This architecture depends on the number of spikes instead of spike-
time information and weight values stored on on-chip memories.
But it relies on the request-acknowledge cycles between layers to
allow the layer’s time execution. The request-acknowledge cycles
access information in each layer frequently. High-throughput data
transmission and power consumption are both challenges in this
architecture. Park and Jung (2020) use the latest timestamp and
the synaptic modification rate to trace the exponential decay STDP
function (Sim et al., 2019). This architecture converts the complex
relationship between activities in pre and postsynaptic neurons to
the timestamps in the address domain. It greatly contributes to
the reduction of buffer size. Inspired by this, we use timestamps
to represent traces of spikes instead of entire eligibility traces.
The spike is simultaneously used as an enable signal for synaptic
modules, which prevents all modules in RSNNs from updating at
every time step. Only those synaptic modules that receive spikes
are driven to be updated, which reduces the inefficient works. We
confirm that the combination of eligibility traces and presynaptic
spike-driven architecture can reduce the buffer size of synaptic
modules, which leads to the reduction of resource utilization of the
entire learning system.

Conclusion

In this study, we realize a high-efficient RSNN learning system
on FPGA with excellent software-to-hardware reproduction.
This architecture is based on the spikes generated by RSNNs,
which is compatible with FPGA. Meanwhile, it provides flexible
reconfigurability for modifying the network connectivity, model
types and other parameters. We provide several modules that
simplify computation, such as the Shift MUL module and SoftMax
module. We perform two inference applications to test the RSNNs
implemented on FPGA, which are the spike patterns classification
and the MNIST handwriting digits classification. In the former
test, we implement ALIF models with three groups of parameters
and explore how dynamics in threshold voltage contributes to the
learning ability. In the latter test, we implement two RSNNs with
different neuron modules and further confirm the contributions
of ALIF models to the computational power of RSNNs. The
compilation results and power estimation of RSNNs on FPGA
show that the requirements of LUTs, registers and dynamic power

consumptions of synaptic modules are respectively reduced by
38.9, 49.5, and 34.8%. The presynaptic spike-driven architecture
contributes to reduce the resource utilization of the entire on-chip
learning system while accurately solving the tasks, as the buffer
size for caching events is greatly reduced. This architecture for
RSNNs provides an alternative way for realizing the large-scale
neuromorphic learning systems, as the transmission and storage
of data on chips greatly limit the scale of systems (Li et al., 2015;
Que et al., 2022). The spike-driven architecture may offer a solution
for these problems.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: http://yann.lecun.com/exdb/mnist/.

Author contributions

All authors contributed to the different phases of the research
and to the writing of this manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (grant nos. 62071324 and 62006170).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmad, A. M., Ismail, S., and Samaon, D. F. (2004). “Recurrent neural network with
back propagation through time for speech recognition,” in Proceedings of the IEEE
international symposium on communications and information technology, Sapporo.
doi: 10.1109/ISCIT.2004.1412458

Aljuaid, A., and Anwar, M. (2022). Survey of supervised learning for medical image
processing. SN Comput. Sci. 3:292. doi: 10.1007/s42979-022-01166-1

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).
“Long short-term memory and learning-to-learn in networks of spiking neurons,” in

Proceedings of the neural information processing systems (NeurIPS), Montréal, Canada.
doi: 10.5555/3326943.3327017

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Subramoney, A., Legenstein, R., et al.
(2019). “Eligibility traces provide a data-inspired alternative to back propagation
through time,” in Proceedings of the neural information processing systems (NeurIPS),
Vancouver, Canada.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
et al. (2020). A solution to the learning dilemma for recurrent networks

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ISCIT.2004.1412458
https://doi.org/10.1007/s42979-022-01166-1
https://doi.org/10.5555/3326943.3327017
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 12

Gao et al. 10.3389/fnins.2023.1107089

of spiking neurons. Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17
236-y

Benda, J., and Herz, A. V. M. (2003). A universal model for spike-frequency
adaptation. Neural Comput. 15, 2523–2564. doi: 10.1162/089976603322385063

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,
Bussat, J. M., et al. (2014). Neurogrid: A mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.2014.
2313565

Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B. H., et al. (2015).
Neuromorphic hardware system for visual pattern recognition with memristor array
and CMOS neuron. IEEE Trans. Ind. Electron. 62, 2410–2419. doi: 10.1109/TIE.2014.
2356439

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Dundar, A., Jin, J., Martini, B., and Culurciello, E. (2017). Embedded streaming deep
neural networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst.
28, 1572–1583. doi: 10.1109/TNNLS.2016.2545298

Fieres, J., Schemmel, J., and Meier, K. (2008). “Realizing biological spiking
network models in a configurable wafer-scale hardware system,” in Proceedings
of the IEEE international joint conference on neural networks (IEEE world
congress on computational intelligence), Hong Kong. doi: 10.1109/IJCNN.2008.463
3916

Hermans, M., Dambre, J., and Bienstman, P. (2015). Optoelectronic systems trained
with backpropagation through time. IEEE Trans. Neural Netw. Learn. Syst. 26, 1545–
1550. doi: 10.1109/TNNLS.2014.2344002

Horowitz, M. (2014). “1.1 Computing’s energy problem (and what we can do about
it),” in Proceedings of the IEEE international solid-state circuits conference digest of
technical papers (ISSCC), San Francisco, CA. doi: 10.1109/ISSCC.2014.6757323

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics for deep
continuous local learning (DECOLLE). Front. Neurosci. 14:424. doi: 10.3389/fnins.
2020.00424

Kalhor, E., Noori, A., and Noori, G. (2021). Cancer cells population control in a
delayed-model of a leukemic patient using the combination of the eligibility traces
algorithm and neural networks. Int. J. Mach. Learn. Cybern. 12, 1973–1992. doi:
10.1007/s13042-021-01287-8

Kornijcuk, V., and Jeong, D. S. (2019). Recent progress in real-time adaptable
digital neuromorphic hardware. Adv. Intell. Syst. 1:1900030. doi: 10.1002/aisy.2019
00030

Kriegeskorte, N., and Mok, R. M. (2017). Building machines that adapt and compute
like brains. Behav. Brain Sci. 40:269. doi: 10.1017/S0140525X17000188

Larsen, R. S., and Sjöström, P. J. (2015). Synapse-type-specific plasticity in local
circuits. Curr. Opin. Neurobiol. 35, 127–135. doi: 10.1016/j.conb.2015.08.001

Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., and Grosu, R. (2020).
Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2, 642–652.
doi: 10.1038/s42256-020-00237-3

Li, S., Wu, C., Li, H., Li, B., Wang, Y., and Qiu, Q. (2015). “FPGA
acceleration of recurrent neural network based language model,” in Proceedings of the
annual international symposium on field-programmable custom computing machines,
Vancouver, BC. doi: 10.1109/FCCM.2015.50

Liu, B., Ye, X., Zhou, C., Liu, Y., Zhang, Q., and Dong, F. (2020). “The improved
algorithm of deep Q-learning network based on eligibility trace,” in Proceedings of
the international conference on control, automation and robotics (ICCAR), Singapore.
doi: 10.1109/ICCAR49639.2020.9108040

Manneschi, L., and Vasilaki, E. (2020). An alternative to backpropagation
through time. Nat. Mach. Intell. 2, 155–156. doi: 10.1038/s42256-020-
0162-9

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673. doi: 10.1126/science.
1254642

Millner, S., Grübl, A., Meier, K., Schemmel, J., and Schwartz, M. O. (2010). A VLSI
implementation of the adaptive exponential integrate-and-fire neuron model. Adv.
Neural Inf. Process. Syst. 2, 1642–1650. doi: 10.5555/2997046.2997079

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2012). SPAN: Spike
pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural
Syst. 22, 1659–1685. doi: 10.1142/S0129065712500128

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A. (2012).
“Bluehive – A field-programable custom computing machine for extreme-scale real-
time neural network simulation,” in Proceedings of the international symposium on
field-programmable custom computing machines, Toronto, ON. doi: 10.1109/FCCM.
2012.32

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C.,
et al. (2013). SpiNNaker: A 1-w 18-core system-on-chip for massively-parallel neural
network simulation. IEEE J. Solid State Circuits 48, 1943–1953. doi: 10.1109/JSSC.2013.
2259038

Pani, D., Meloni, P., Tuveri, G., Palumbo, F., Massobrio, P., and Raffo, L. (2017).
An FPGA platform for real-time simulation of spiking neuronal networks. Front.
Neurosci. 11:90. doi: 10.3389/fnins.2017.00090

Park, J., and Jung, S. D. (2020). Presynaptic spike-driven spike timing-dependent
plasticity with address event representation for large-scale neuromorphic systems.
IEEE Trans. Circuits Syst. I 67, 1936–1947. doi: 10.1109/TCSI.2020.2966884

Que, Z., Nakahara, H., Nurvitadhi, E., Boutros, A., Fan, H., Zeng, C., et al. (2022).
Recurrent neural networks with column-wise matrix–vector multiplication on FPGAs.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 30, 227–237. doi: 10.1109/TVLSI.
2021.3135353

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., and Maass,
W. (2021). Spike frequency adaptation supports network computations on emporally
dispersed information. ELife 10:e65459. doi: 10.7554/eLife.65459

Sankaran, A., Detterer, P., Kannan, K., Alachiotis, N., and Corradi, F. (2022). “An
event-driven recurrent spiking neural network architecture for efficient inference
on FPGA,” in Proceedings of the international conference on neuromorphic systems,
Knoxville, TN, United States. doi: 10.1145/3546790.3546802

Schwenker, F., and Trentin, E. (2014). Partially supervised learning for pattern
recognition. Pattern Recognit. Lett. 37, 1–3. doi: 10.1016/j.patrec.2013.10.014

Shama, F., Haghiri, S., and Imani, M. A. (2020). FPGA realization of Hodgkin-
Huxley neuronal model. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1059–1068. doi:
10.1109/TNSRE.2020.2980475

Sim, J., Joo, S., and Jung, S. O. (2019). “Comparative analysis of digital STDP
learning circuits designed using counter and shift register,” in Proceedings of the
international technical conference on circuits/systems, computers and communications
(ITC-CSCC), JeJu. doi: 10.1109/ITC-CSCC.2019.8793424

Sutton, R. S., and Barto, A. G. (2014). Reinforcement learning an introduction second
edition. Cambridge, MA: MIT Press.

Tang, H., and Glass, J. (2018). “On training recurrent networks with truncated
backpropagation through time in speech recognition,” in Proceedings of the IEEE
spoken language technology workshop, Cambridge, MA. doi: 10.1109/SLT.2018.
8639517

Vo, H. M. (2017). “Implementing the on-chip backpropagation learning algorithm
on FPGA architecture,” in Proceedings of the international conference on system science
& engineering, Ho Chi Minh City. doi: 10.1007/s11265-005-4961-3

Wang, X., Liu, Y., Sanchez-Vives, M. V., and McCormick, D. A. (2003).
Adaptation and temporal decorrelation by single neurons in the primary visual cortex.
J. Neurophysiol. 89, 3279–3293. doi: 10.1152/jn.00242.2003

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
Proc. IEEE. 78, 1550–1560. doi: 10.1109/5.58337

Zhang, W., and Li, P. (2019). “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” in Proceedings of the neural information processing
systems (NeurIPS), Vancouver, Canada. doi: 10.5555/3454287.3454988

Zhou, Y., Ren, Y., Xu, E., Liu, S., and Zhou, L. (2022). Supervised semantic
segmentation based on deep learning: a survey. Multimedia Tools Appl. 81, 29283–
29304. doi: 10.1007/s11042-022-12842-y

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1107089
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1162/089976603322385063
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/TIE.2014.2356439
https://doi.org/10.1109/TIE.2014.2356439
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/TNNLS.2016.2545298
https://doi.org/10.1109/IJCNN.2008.4633916
https://doi.org/10.1109/IJCNN.2008.4633916
https://doi.org/10.1109/TNNLS.2014.2344002
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1007/s13042-021-01287-8
https://doi.org/10.1007/s13042-021-01287-8
https://doi.org/10.1002/aisy.201900030
https://doi.org/10.1002/aisy.201900030
https://doi.org/10.1017/S0140525X17000188
https://doi.org/10.1016/j.conb.2015.08.001
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.1109/FCCM.2015.50
https://doi.org/10.1109/ICCAR49639.2020.9108040
https://doi.org/10.1038/s42256-020-0162-9
https://doi.org/10.1038/s42256-020-0162-9
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.5555/2997046.2997079
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.3389/fnins.2017.00090
https://doi.org/10.1109/TCSI.2020.2966884
https://doi.org/10.1109/TVLSI.2021.3135353
https://doi.org/10.1109/TVLSI.2021.3135353
https://doi.org/10.7554/eLife.65459
https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1016/j.patrec.2013.10.014
https://doi.org/10.1109/TNSRE.2020.2980475
https://doi.org/10.1109/TNSRE.2020.2980475
https://doi.org/10.1109/ITC-CSCC.2019.8793424
https://doi.org/10.1109/SLT.2018.8639517
https://doi.org/10.1109/SLT.2018.8639517
https://doi.org/10.1007/s11265-005-4961-3
https://doi.org/10.1152/jn.00242.2003
https://doi.org/10.1109/5.58337
https://doi.org/10.5555/3454287.3454988
https://doi.org/10.1007/s11042-022-12842-y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Presynaptic spike-driven plasticity based on eligibility trace for on-chip learning system
	Introduction
	Materials and methods
	ALIF model with SFA mechanism
	Eligibility trace in synapses
	Synaptic plasticity
	Architecture overview
	ALIF model implementation
	Presynaptic spike-driven plasticity
	Classifier implementation

	Results
	Results of experiments
	Hardware consumption evaluation

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

