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Di�usion Tensor Imaging (DTI) is the most employed method to assess white
matter properties using quantitative parameters derived from di�usion MRI, but
it presents known limitations that restrict the evaluation of complex structures.
The objective of this study was to validate the reliability and robustness of
complementary di�usion measures extracted with a novel approach, Apparent
Measures Using Reduced Acquisitions (AMURA), with a typical di�usion MRI
acquisition from a clinical context in comparison with DTI with application
to clinical studies. Fifty healthy controls, 51 episodic migraine and 56 chronic
migraine patients underwent single-shell di�usion MRI. Four DTI-based and eight
AMURA-based parameters were compared between groups with tract-based
spatial statistics to establish reference results. On the other hand, following a
region-based analysis, the measures were assessed for multiple subsamples with
diverse reduced sample sizes and their stability was evaluated with the coe�cient
of quartile variation. To assess the discrimination power of the di�usion measures,
we repeated the statistical comparisons with a region-based analysis employing
reduced sample sizes with diverse subsets, decreasing 10 subjects per group
for consecutive reductions, and using 5,001 di�erent random subsamples. For
each sample size, the stability of the di�usion descriptors was evaluated with the
coe�cient of quartile variation. AMURA measures showed a greater number of
statistically significant di�erences in the reference comparisons between episodic
migraine patients and controls compared to DTI. In contrast, a higher number
of di�erences was found with DTI parameters compared to AMURA in the
comparisons between bothmigraine groups. Regarding the assessments reducing
the sample size, the AMURA parameters showed a more stable behavior than DTI,
showing a lower decrease for each reduced sample size or a higher number of
regions with significant di�erences. However, most AMURA parameters showed
lower stability in relation to higher coe�cient of quartile variation values than the
DTI descriptors, although two AMURA measures showed similar values to DTI.
For the synthetic signals, there were AMURA measures with similar quantification
to DTI, while other showed similar behavior. These findings suggest that AMURA
presents favorable characteristics to identify di�erences of specificmicrostructural
properties between clinical groups in regions with complex fiber architecture and
lower dependency on the sample size or assessing technique than DTI.
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1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an imaging
modality employed to assess diverse in vivo physiological and
pathological conditions of the human body in clinical studies. It
has been widely used in the study of the brain and neurological
disorders (Rovaris et al., 2005; Goveas et al., 2015; Galbán et al.,
2017; Mekkaoui et al., 2017). It allows the characterization of
the diffusivity of water molecules within the tissue, providing
information about the microscopic configuration and structural
connectivity of the brain, especially inside the white matter (WM).

The most relevant feature of dMRI is its ability to measure
directional variance, i.e., anisotropy, which, inside the brain, is
related to structural connectivity between areas. The most common
methodology to estimate the anisotropy is via the diffusion tensor
(DT) (Basser et al., 1994; Westin et al., 2002).

In order to use it in clinical studies, the information provided
by the DT must be translated into some scalar measures that
describe different features of diffusion within every voxel. That way,
metrics like fractional anisotropy (FA) were defined and widely
employed to characterize damaged tissues in multiple neurological
and psychiatric disorders (Kochunov et al., 2012; Bette et al.,
2016; Mole et al., 2016; Herbert et al., 2018). However, from the
early stages of DT imaging (DTI), it was clear that the Gaussian
assumption oversimplifies the diffusion process.

In the past few decades, many techniques have been proposed to
overcome the limitations of DTI, usually requiring the acquisition
of larger amounts of diffusion data (Assemlal et al., 2011; Novikov
et al., 2019). Most of these techniques rely on the estimation
of more advanced diffusion descriptors, such as the Ensemble
Average diffusion Propagator (EAP), which is the probability
density function of the motion of the water molecules within a
voxel (Wedeen et al., 2005; Özarslan et al., 2013; Tristán-Vega and
Aja-Fernández, 2021).

A complete analysis of the EAP requires many diffusion-
weighted images (DWI) with several (moderate to high) b-values
in a multi-shell acquisition. The information provided by the
EAP is usually adapted to scalar measures that describe different
aspects of diffusion. The most frequently employed measures
are the return-to-origin probabilities (RTOP), return-to-plane
probabilities (RTPP), return-to-axis probabilities (RTAP) and the
propagator anisotropy (PA) (Wu et al., 2008; Descoteaux et al.,
2011; Hosseinbor et al., 2013; Özarslan et al., 2013; Ning et al.,
2015).

The accurate estimation of these measures requires the
calculation of the EAP, which commonly involves: (1) long
acquisition times; (2) several shells with large b-values, which may
be difficult to acquire in many commercial MRI scanners; and
(3) heavy computational burdens with very long processing times.
These three issues have hindered the general adoption of EAP-
related metrics in the clinical routine, despite the growing interest
in the exploration of their potential applicability (Avram et al., 2016;
Brusini et al., 2016; Zucchelli et al., 2016; Boscolo Galazzo et al.,
2018).

To overcome these limitations and facilitate the widespread use
of advanced diffusion metrics in clinical studies, a new approach
called Apparent Measures Using Reduced Acquisitions (AMURA)
has been recently proposed (Aja-Fernández et al., 2020, 2021,

2022). The method allows the estimation of diffusion measures
such as RTOP, RTAP, and PA, while reducing the number of
necessary samples and the computational cost. AMURA canmimic
the sensitivity of EAP-based measures to microstructural changes
when only a small number of shells (even one) is available. To
do so, AMURA assumes a prior model for the behavior of the
radial q-space instead of trying to numerically describe it, yielding
simplified expressions that can be computed easily even from
single-shell acquisitions.

One additional advantage of AMURA is that it can be
easily integrated into the processing pipeline of current existing
single-shell dMRI protocols and databases to unveil anatomical
details that may remain hidden in traditional DT-based studies.
AMURA has proved its potential in some exploratory studies with
clinical data focusing on Parkinson’s disease and Mild Cognitive
Impairment (Aja-Fernández et al., 2020, 2021), as well a recent
clinical study on migraine (Planchuelo-Gómez et al., 2020c).

In this work, we aim to assess the viability of different diffusion
descriptors extracted with AMURA for the study of a neurological
disorder in DTI-type datasets. Note that, initially, AMURA was
designed to work with b-values over 2,000 s/mm2, since the effects
measured with RTOP, RTPP, and RTAP were better showed at
higher values of b. However, results in clinical data have shown
its potential at lower b-values (Aja-Fernández et al., 2022). Thus,
we will explore the viability of these technique to model DTI-
type acquisitions, i.e., dMRI datasets acquired with those protocols
usually employed for the estimation of DTI and its derived
parameters, such as fractional anisotropy (FA) or mean diffusivity
(MD). These acquisitions are commonly single-shell, and only
include one non-zero b-value, usually in the order of b = 1, 000
s/mm2.

We have selected migraine as a case study. Migraine is an
attractive pathology for the evaluation of the quality of alternative
diffusion metrics, since the differences between patients and
controls that have been found using dMRI in the literature are
scarce and subtle (Planchuelo-Gómez et al., 2020b). In migraine,
differences are usually hard to find in comparison with other
disorders such as schizophrenia or Alzheimer’s disease, and they
require a large number of subjects per group and good quality data.
Thus, migraine will allow us to check the capability of different
techniques to detect subtle changes.

Migraine is a disabling primary disorder characterized by
recurrent episodes of headache, which usually last 4-72 hours
and present at least two of the following four characteristics:
moderate to severe pain intensity, unilateral location, pulsating
quality, and aggravation with physical activity (Third edition of
the International Classification of Headache Disorders, ICHD-3).
A common distinction when studying migraine is made between
episodic migraine (EM), in which patients suffer from headache
less than 15 days per month, and chronic migraine (CM), in which
patients suffer from headache at least 15 days per month.

A recent study identified statistically significant differences
in migraine using advanced diffusion measures calculated with
AMURA (Planchuelo-Gómez et al., 2020c). This study identified
higher RTOP values in CM patients compared to EM, and lower
RTPP values in EM compared to HC.

Given the fact that AMURA-derived measures have shown
promising results for the characterization of subtle WM changes
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in migraine, the main objective of this study was the assessment of
the reliability and the robustness of AMURAmetrics acquired with
a typical acquisition employed in a clinical context. Our purpose
is to validate the viability of these metrics for clinical studies even
when acquisition protocols are suboptimal for this methodology.
Specifically, we will use migraine as a case study and DTI-type
acquisitions, where only one shell is acquired at b = 1, 000 s/mm2.

2. Materials and methods

2.1. Advanced di�usion measures from
single shell acquisitions: AMURA

AMURA was proposed in Aja-Fernández et al. (2020) as a
methodology to calculate advanced diffusion metrics from reduced
acquisitions compatible with commercial scanners and general
clinical routine. It allows the estimation of different diffusion-
related scalars using a lower number of samples with a single-
shell acquisition scheme. AMURA considers that, if the amount
of data is reduced, a restricted diffusion model consistent with
single-shell acquisitions must be assumed: the (multi-modal)
apparent diffusivity does not depend on the b-value, so that a
mono-exponential behavior is observed for every spatial direction.
According to Basser and Jones (2002), in the mammalian brain,
the mono-exponential model is predominant for values of b up to
2,000 s/mm2 and it can be extended to higher values (up to 3,000
s/mm2) if appropriate multi-compartment models of diffusion are
employed.

This methodology allows shorter MRI acquisitions and very
fast calculation of scalars. Since the mono-exponential model only
holds within a limited range around the measured b-value, the
measures derived this way must be seen as apparent values at
a given b-value, related to the original ones but dependent on
the selected shell. The AMURA metrics used in this work are
(Aja-Fernández et al., 2020, 2021, 2022):

1. Return-to-origin probability (RTOP), also known as probability
of zero displacement, it is related to the probability density of
water molecules that minimally diffuse within the diffusion time
τ .

2. Return-to-plane probability (RTPP), which is a good indicator
of restrictive barriers in the axial orientation.

3. Return-to-axis probability (RTAP), an indicator of restrictive
barriers in the radial orientation.

4. Apparent Propagator Anisotropy (APA), an alternative
anisotropy metric. It quantifies how much the propagator
diverges from the closest isotropic one.

5. Diffusion Anisotropy (DiA), an alternative derivation of APA.
6. Generalized Moments, specifically we will consider the full

moments of order 2 (q-space Mean Square Displacement,
qMSD) and 1/2 (ϒ1/2).

2.2. Dataset

2.2.1. Participants
The sample of this study was originally composed of 56 patients

with CM, 54 patients with EM and 50 healthy controls (HC) that

participated in previous studies (Planchuelo-Gómez et al., 2020a,b).
Three patients with EM were discarded due to misregistration
errors.

Inclusion criteria included diagnosis of EM or CM following
the ICHD-3 (all the available versions), stable clinical situation,
and first screening related to migraine just before the recruitment.
Exclusion criteria were use of preventive treatments before theMRI
acquisition, migraine onset in people older than 50 years, recently
developed migraine (less than 1 year), frequent painful conditions,
psychiatric and neurological disorders different to migraine, and
pregnancy. Further details are available at Planchuelo-Gómez et al.
(2020b).

The local Ethics Committee of Hospital Clínico Universitario
de Valladolid approved the study (PI: 14-197). Additionally, all
participants read and signed a written consent form prior to their
participation.

The detailed demographic and clinical features of the three
groups are shown in Table 1. No statistically significant differences
in age or gender were found between the three groups. Patients with
CM showed significantly higher duration of migraine, frequency of
headache andmigraine attacks andmedication overuse, and a lower
presence of aura.

2.2.2. MRI acquisition
For patients with migraine, the images were acquired at least

24h after the last migraine attack and before 2 weeks after the
clinical visit to the headache unit. High resolution 3D T1-weighted
followed by DWI were acquired using a Philips Achieva 3T MRI
unit (Philips Healthcare, Best, The Netherlands) with a 32-channel
head coil.

The acquisition of T1-weighted images was carried out using
a Turbo Field Echo sequence with the following parameters:
repetition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip angle =
8o, 256× 256 matrix size, spatial resolution of 1× 1× 1 mm3 and
160 sagittal slices covering the whole brain.

The acquisition parameters for DWI were TR = 9,000 ms, TE
= 86 ms, flip angle = 90o, 61 diffusion gradient orientations, one
baseline volume, b-value = 1,000 s/mm2, 128 × 128 matrix size,
spatial resolution of 2× 2× 2 mm3 and 66 axial slices covering the
whole brain.

All the images were acquired in the same session with a total
acquisition time of 18 min.

2.3. Analysis of the data

2.3.1. dMRI preprocessing
Image preprocessing steps consisted of (1) denoising based on

the Marchenko-Pastur Principal Component Analysis procedure
(Veraart et al., 2016), (2) eddy currents and motion correction,
and (3) correction for B1 field inhomogeneity. TheMRtrix software
(Tournier et al., 2019) was employed to carry out these steps, using
the dwidenoise, dwipreproc, and dwibiascorrect tools (Zhang et al.,
2001; Smith et al., 2004; Andersson and Sotiropoulos, 2016; Veraart
et al., 2016). Further, a whole brain mask for each subject was
obtained with the dwi2mask tool (Dhollander et al., 2016).
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TABLE 1 Clinical and demographic characteristics of healthy controls (HC), episodic migraine (EM), and chronic migraine (CM).

HC (n = 50) EM (n = 51) CM (n = 56) Statistical test

Gender, male/female 11/39 7/44 6/50 χ2
(2,N=157) = 2.74

(22/78%) (14/86%) (11/89%) p = 0.25 †

Age (years) 36.1± 13.2 36.6± 7.9 38.1± 8.7 χ2
(2) = 2.79, p = 0.25‡

Duration of migraine history (years) 13.1± 10.5 19.6± 10.4 U = 932.5, p = 0.002⋄

Time from onset of chronic migraine (months) 24.5± 32.9

Headache frequency (days/month) 3.6± 1.9 23.3± 6.3 U = 40.0, p < 0.001⋄

Migraine frequency (days/month) 3.6± 1.9 13.9± 6.9 U = 99.5, p < 0.001⋄

Medication overuse 0 (0%) 42 (75%) p < 0.001∗

Aura 9 (18%) 1 (2%) p = 0.006∗

†Chi-square test. ‡Kruskal-Wallis test. ⋄Mann-Whitney U-test. ∗Fisher’s exact test. Data are expressed as means± SD.

2.3.2. Di�usion measures estimation
Two groups of diffusion measures were extracted. The former

group is composed of three DTI classical metrics: FA, MD, axial
diffusivity (AD), and radial diffusivity (RD). We considered only
thesemeasurements as they are the ones employed inmost previous
studies, particularly in the literature migraine, with no studies
applying other measurements excluding the one carried out with
this sample or the use of kurtosis (Ito et al., 2016).

These measures were estimated at each voxel using the dtifit

tool from the FSL software (Jenkinson et al., 2012). FAmeasures the
degree of anisotropy in the diffusion of water molecules inside each
voxel, which reflects the degree of directionality of water diffusivity.
MD is the average magnitude of water molecules diffusion. AD
measures the water diffusion in the principal direction of WM
fibers. RD describes the perpendicular diffusion of the principal
direction (Pelletier et al., 2016).

The latter group includes the seven proposed q-space metrics
calculated with AMURA: RTOP, RTAP, RTPP, APA, qMSD, DiA,
and ϒ1/2. The measures were calculated using dMRI-Lab1 and
MATLAB 2020a. AMURA measures rely on the expansion of
spherical functions at a given shell in the basis of spherical
harmonics (SH). Even SH orders up to six were fitted with a
Laplace-Beltrami penalty λ = 0.006. A fixed value of τ = 70 ms
has been assumed for all the AMURAmetrics. A visual comparison
of the DTI and AMURA measures is shown in Figure 1.

2.4. Experiment with synthetic data

The main hypothesis of this work is that AMURA metrics
are able to detect different diffusion properties than DTI in the
white matter. In order to quantify this assumption, an illustrative
synthetic experiment was carried out. We simulated a simple
diffusion model that diverges from the diffusion tensor (DT). The
simplest case is a 2-compartment model in which we considered
that the main anisotropic diffusion was ruled by a zeppelin-
shaped compartment (Alexander, 2008) and there was an isotropic

1 Available at www.lpi.tel.uva.es/dmrilab.

compartment that stands for the free water fraction (Tristán-Vega
et al., 2022):

S(b) = f · Zp(b, d||, d⊥)+ (1− f ) · exp(−bD0)

where Zp() is the zeppelin compartment,D0 is the diffusivity of free
water at body temperature (nearly 3.0 · 10−6 µm2/s), d|| (µm2/s)
and d⊥ (µm2/s) are the parallel and perpendicular diffusivities that
model the zeppelin and (1− f ) is the free-water fraction.

For the experiment, different values of f were considered,
ranging from 0.3 to 1. The value of d|| was fixed and d⊥ was changed
as a function of f for two different cases

1. The FA obtained after estimating the DT from S(b) is constant.
2. The MD obtained after estimating the DT from S(b) is constant.

Sixty-one gradient directions and b = 1,000 s/mm2 were
considered. DTI and AMURA metrics were calculated from the
synthetic signal.

In comparison with previous studies that assessed EAP-derived
measures (Fick R. H. J. et al., 2016; Zucchelli et al., 2016),
we employed a simpler model due to the different objective
of our study. The previous studies were focused on a detailed
characterization of the microstructure with the assessment of the
sensitivity of the EAP measures under different conditions with a
three-compartment model. The intracellular volume fraction and
dispersion were additionally included compared to our experiment
for the three-compartment model. In our study, the main objective
was the assessment of AMURA measures compared to DTI in
the context of clinical studies, i.e., comparison between clinical
groups, with a reduced dMRI acquisition. Therefore, this synthetic
experiment worked as a proof of concept to appreciate different
properties of the AMURA and DTI measures, and not as a detailed
analysis of the parameters in relation to microstructural features.

2.5. Statistical analysis

2.5.1. ROI analysis and TBSS
To test the capability of AMURA measures at b = 1,000

s/mm2 to be used in clinical studies, two different statistical
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FIGURE 1

Visual comparison of di�usion tensor imaging (DTI) and measures from apparent measures using reduced acquisitions (AMURA). The first row
contains the DTI measures, and the last two, the AMURA metrics.

analyses were considered: a region-oriented analysis and tract-
based spatial statistics (TBSS) assessment. For both approaches,
statistical differences between EM, CM, and HC were assessed with
two-by-two comparisons. Forty-eight different regions of interest
(ROIs) were identified using the Johns Hopkins University ICBM-
DTI-81WhiteMatter Atlas (JHUWM) (Oishi et al., 2008). The first
steps of the two assessing methods were common. The FA volumes
were non-linearly registered to the Montreal Neurological Institute
(MNI) space using the JHUWM template as reference. In the MNI
space, the mean FA image for all the subjects was extracted and it
was used to generate the white matter skeleton using a minimum
FA value of 0.2. For each subject, the FA values were projected to
the skeleton. For all the non-FA measures, the same registration
used for the FA maps and projection to the skeleton obtained from
the FA volumes were carried out.

For the ROI-based analysis, to obtain more robust measures,
the average value of the metrics for each subject was obtained using
voxels exclusively included in the white matter skeleton within the
2% and 98% percentiles of the corresponding skeleton values. Then
we carried out a two-sampled-two-tailed, pooled variance t-test
between each pair of groups (EM-HC, CM-HC, and EM-CM) for
every measure and ROI.

The TBSS approach was conducted to mimic a clinical study
following the basic procedure implemented in Planchuelo-Gómez
et al. (2020c) and Planchuelo-Gómez et al. (2020b). In this
assessment, the statistical comparisons were conducted using the
randomize tool from FSL (Nichols and Holmes, 2002), which

performs a permutation test. Specifically, 5,000 permutations and
the threshold-free cluster enhancement (TFCE) procedure were
employed (Smith and Nichols, 2009). Briefly, TFCE enhances zones
of the voxelwise statistic maps that show spatial contiguity to
obtain spatial clusters without using specific values to delimitate
different spatial areas with similar values. We considered that an
atlas-defined region presented statistically significant differences,
after family-wise error correction and TFCE, when the voxels with
differences contained a volume greater than 30 mm3. Each ROI
from the atlas could be part of one or more clusters defined by the
TFCE procedure, i.e., TFCE was applied independently from the
JHUWM atlas and the voxels for each region were extracted within
the defined clusters by TFCE.

The threshold for statistical significance for all the statistical
assessments was p < 0.05. It is worth noting that the purpose
of the ROI-based analysis was not to carry out a complete and
accurate clinical study, but to analyze the behavior of each measure
separately. Thus, the results in this case were not corrected for
multiple comparisons, causing some variations with the results
reported in the literature. For the same reason, clinical covariates
were not included in all the statistical comparisons.

Further, in relation to the ROI-based analysis, Cohen’s
D value was calculated over the different ROIs to quantify
the effect size of the different DTI and AMURA scalars. In
addition, the Cohen’s D-value was obtained for the full WM
to better describe what happened with each measure in the
whole brain.
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FIGURE 2

Experiment with synthetic data: a two-compartment model is considered, zeppelin + free water. The parameters of the zeppelin are modified so that
the estimated di�usion tensor in every case shows: (A) constant FA; (B) constant MD. AMURA metrics have been calculated. Measures are normalized
for better visualization.

2.5.2. Resampling of di�usion measures
To better understand the discrimination power of each

measure, we analyzed their statistical significance in relation to
the number of subjects in each group, i.e., the sample size. To
that end, a resampling experiment was carried out. The number
of subjects of each group (EM, CM, and HC) was progressively
decreased from the original number to 10 subjects in each
group, reducing five subjects for each iteration. For each iteration,
5,001 different subsamples were randomly obtained following
a bootstrapping procedure. For each subsample, the ROI-based
approach described in Section 2.5.1, i.e., the uncorrected t-tests
of the diffusion descriptors from each JHU WM atlas ROI within
the WM skeleton, was repeated. Specifically, for the tests with
statistically significant differences in the reference comparisons
with the whole sample, two-by-two comparisons between HC, EM,
and CM groups were carried out. For each ROI, diffusion metric
and specific configuration, a ROI was considered to have significant
differences if at least the two-by-two comparison in 2,501 out of the
5,001 subsamples showed p < 0.05, value established as threshold
for statistical significance, as in the whole sample. No kind of
statistical correction was used for this experiment considering that
our purpose was to study the behavior of the different metrics with
the sample size.

2.5.3. Analysis of stability
The coefficient of quartile variation (CQV) was used tomeasure

the stability across groups. The CQV is a measure of homogeneity
(Altunkaynak and Gamgam, 2019) and it was used to assess the
inter-subject variability, considering the diverse sample sizes from

the analysis described in the previous section. The CQV is one of
the most robust statistical measures as it depends on the quartiles,
being less sensitive to outliers. Its use is as follows:

CQV =
Q3 − Q1

Q3 + Q1
· 100 (1)

where Q1 and Q3 are the first and third quartile, respectively.
The CQV is calculated for each group and ROI, considering as

figure of merit the median value of all the CQV of the different 5001
subsamples used in this experiment. The 95% confidence interval
(95% CI) was set taking the 2.5 and 97.5 percentiles of the whole
CQV values for each group of values. This 95% CI was compared
between the diverse measures and regions for each sample size.

3. Results

3.1. Experiment with synthetic data

Results for the experiment with synthetic data are gathered in
Figure 2: constant FA (Figure 2A) and constant MD (Figure 2B).
All measures have been normalized for better visualization and
comparison. When FA is set to constant, in this simple scenario,
anisotropy-related metrics (PA and DiA) behave similarly. The
other AMURAmetrics detect the underlying change and grow with
f , presenting qMSD, ϒ1/2 and RTOP similar but higher slopes of
opposite sense compared to MD, which decreases with f , begin
the change of the RTAP almost identical to the one shown by the
MD. On the other hand, when MD is set to constant, Figure 2B,
all the AMURA measures are able to detect the changes in the
signal, and the DiA presented a similar steep rate compared to the
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FA, and higher steep rate values were appreciated in the case of
APA. This example illustrates that, although interpretation of some
AMURA measures can be similar to DTI measures, they are not
really quantifying the diffusion signal in the same way. The variety
of AMURA measures allows not only to detect similar patterns
compared to DTI, but also to find complementary results.

3.2. ROI based statistical analysis

Eleven different measures were considered for the analysis:
four DT-based measures (FA, AD, MD, RD) and seven AMURA-
based (RTOP, RTAP, RTPP, qMSD, ϒ1/2, APA, and DiA). Table 2
shows a p-value scheme for the 48 ROIs considered for each of
the measures. Those ROIs that exhibit differences with statistical
significance above 95% (p < 0.05) are highlighted in green and
above 99% (p < 0.01) in amber. The size of the effect (Cohen’s D)
is shown for those ROIs with significant differences (in bold face
those values in which D > 0.5).

Note that those metrics based on the DT showed a limited
amount of differences with only three ROIs with statistically
significant differences above 99% for EM vs. CM, two for CM vs.
EM and two for CM vs. HC. In the EM vs. HC comparisons,
the highest differences between AMURA and DTI metrics, with
a greater number of statistically significant results for AMURA,
were found: even in those cases in which the DT found differences,
like the pontine crossing tract (PCT), the equivalent AMURA
metrics showed a smaller p-value and higher effect sizes. RTOP,
qMSD, and DiA were the metrics providing a higher number of
statistically significant differences with the higher significance (see
amber ROIs) and the greater effect size.

Regarding the other two sets of comparisons (CM-EM and
CM-HC), AMURA metrics showed no clear higher number of
differences compared to DTI metrics. In fact, AD and MD were
able to detect more differences in the comparisons between CM and
EM, coherently with previous studies (Planchuelo-Gómez et al.,
2020b). This case suggests the complementary nature of DTI and
AMURA. As shown in the preliminary example, both methods are
quantifying different microstructure effects. Thus, AMURA seems
more sensitive to changes between EM and controls, while DTI
seems more sensitive to changes between the two types of migraine.

It is important to note that in all three comparisons, RD did
not find any significant differences in any ROI, which is consistent
with the findings reported in Planchuelo-Gómez et al. (2020b).
Therefore, to streamline the presentation of data in the figures and
tables that follow, RD will be omitted in the following experiments.

To better understand the behavior of both sets of measures, let
us deeply analyze three specific regions. We selected the PCT, right
inferior cerebellar peduncle (ICP-R) and the right external capsule
(EC-R) for being the ones with the highest number of differences
and the greatest effect sizes in Table 2. For each ROI, a box plot
of the three groups is shown for each measure in Figure 3A. The
boxes mark the median and 25 and 75 percentiles of the values of
the differentmeasures over the skeleton of the FA for all the subjects
in each group. For better visualization, the median of each group is
marked in red. The box plots are repeated in Figure 3Bmerging EM
and CM in a single group that includes all migraine patients.

In the PCT, regarding DTI, the statistical analysis found
differences between EM and HC for MD and AD, and between
CM and HC for AD, but no differences were found between both
migraine groups. In Figure 3A, we can see that, actually, MD
showed a higher median value of EM and CMwhen compared with
HC. These differences were kept in Figure 3B when considering
the joint migraine group. On the other hand, AMURA showed
significant differences between EM-HC and CM-EM. Only RTPP
(a metric related to AD) and ϒ1/2 Regarding the other two sets
of comparisons (CM-EM and CM-HC), AMURA metrics showed
no clear higher number of differences compared to DTI metrics.
In fact, AD and MD were able to detect more differences in the
comparisons between CM and EM. This would mean that AMURA
better discriminates EM in this ROI. According to Figure 3A, that is
precisely what is happening. See, for instance, RTOP and qMSD. In
both cases, there is almost no difference betweenHC and CM, while
EM shows smaller median and a reduced variance. On the other
hand, RTPP behaves more similarly to AD: both migraine groups
were similar but differ from the control-group.

For the ICP-R, according to Table 2, MD and AD differences
were found for the EM-HC case, AMURA found differences for
EM-HC and CM-HC and no differences were found for CM-EM. If
we check Figure 3A we can see that bothmigraine groups presented
similar values in this ROI. Statistically significant differences were
found between CM and HC, presenting the RTOP, qMSD, and
RTAP lower values in CM.

A similar effect can be observed in the EC-R, where no
differences were found for DTI parameters, but for AMURA in the
comparisons between HC and the two migraine groups. If we see
Figure 3A, we can observe that AMURAmetrics (RTOP and qMSD,
for instance) discriminated CM and HC better than MD and AD.
While in the MD and AD cases there is a reduction in the variance
of the CM group, the change in the median is smaller, compared to
CM and EM. If we pay attention to Figure 3B, we can see migraine
and HC showed similar AD andMD values, while differences could
be appreciated with RTOP, qMSD, and RTAP.

3.3. E�ect size

In Table 2, the values of the Cohen’s D were shown for those
ROIs with significant differences. Figure 4 shows the absolute value
of Cohen’s D for eight selected ROIs (those with the largest number
of differences) and for the three group comparisons.

The comparison between EM and HC, the AMURA metrics
showed the largest effect sizes as measured by larger Cohen’s
D-values. Specifically, qMSD, RTOP, and DiA were consistently
getting values over 0.5 (the threshold for medium effect) and, in
some cases, near 0.8. In the right external capsule (EC-R), for
instance, most AMURA metrics showed a moderate-large effect
size while DTI metrics did not get to 0.5. Even in those regions
where DTI values showed statistical differences and a moderate
effect (PCT, ML-R), AMURA outperformed them. There is only
one case, the MD in the ICP-R, where a DTI metric showed a
moderate effect size. However, if we check Table 2, we can see that
the effect size for MD is 0.75, but this value was slightly lower than
the value for the qMSD (0.75 vs. 0.76).
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TABLE 2 Results of the ROI-based statistical analysis and Cohen’s D: EM vs. HC, CM vs. EM, and CM vs. HC.

Two-sample t-tests for DTI and AMURA measures and each of the ROIs defined by thee JHU WM atlas. The p-values represent the probability that a certain measure has identical means for

both groups. ROIs exhibiting differences with statistical significance above 95% (p < 0.05) are marked in green and above 99% (p < 0.01) in amber. The Cohen’s D of those ROIs showing

statistical differences is included.

Regarding the comparison between CM and EM (Figure 4B),
most measures showed low effect sizes, both for DTI and AMURA.
The middle cerebral peduncle (MCP) for the AD and the right
sagittal stratum (SSR) showed Cohen’s D-values over 0.5 for the
AD, while AMURA only achieved medium effects in the pontine
crossing tract (PCT).

Finally, in the comparison between CM and HC (Figure 4C),
the right external capsule (EC-R), the right medial lemniscus
(ML-R) and the left medial lemniscus (ML-L), the APA and
the DiA reached absolute values of Cohen’s D higher than 0.5,
showing at the same time significant differences. FA also showed
moderate effect in ML-R and ML-L, while RTOP, qMSD, and
ϒ1/2 showed values over 0.5 in the right inferior cerebellar
peduncle (ICP-R).

It is also interesting to analyze the behavior of each measure
over the whole WM. Figure 5 shows the absolute Cohen’s D in the
whole WM for each measure. The biggest effect sizes were obtained
for the comparison between EM vs. HC for AMURA. Coherently,

this comparison also produced the highest number of ROIs with
significant differences. The qMSD or the RTOP measures reached
absolute Cohen’s D-values close to 0.6, and, respectively, 27 and 22
ROIs with significant differences for the ROI analysis, 43 and 41
in TBSS. On the other hand, the comparison between CM and HC
presented the lowest Cohen’s D-values, none of them reaching 0.5.
Regarding the comparison between CM and EM, the AD, MD were
the measures with greatest Cohen’s D-values, over 0.5.

3.4. Change of the sample size

Figure 6 shows the effects of changing the sample size
for different DTI and AMURA-based measures for the three
comparisons considered. We have selected 8 out of 11 metrics
for better visualization of the graphics. Among the DTI measures,
results with MD showed a relatively high number of ROIs
with statistically significant differences using bigger samples sizes,
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FIGURE 3

Boxplots of the distribution of di�erent measures for EM, CM, and HC for three specific regions: PCT, ICP-R, and EC-R. The star marks those regions
with statistically significant di�erences in the ROI analysis. (A) 3 sets (HC, CM, EM). (B) 2 sets (HC and migraine).

especially for the EM-CM comparison, as can be seen in Figure 6C.
However, even in that case, the number of significant ROIs
drastically decreased for a group sample size of 40. In addition,
few ROIs with statistically significant differences were found
for the rest of DTI measures and for the other two group
comparisons, in any sample size, which made the assessment
of the relationship between DTI measures and sample size
unfeasible.

Results showed a stable behavior of AMURA measures in
relation to the sample size, which can be understood as a linear
dependence between the group sample size and the number of
statistically significant ROIs. In Figure 6A, this behavior can be
better understood and interpreted in measures such as qMSD,
which was the most robust one in the comparison between EM and
HC. Furthermore, RTOP, qMSD, and DiA also showed a robust
behavior in the CM vs HC comparison. Notice that AMURA
measures reached the lack of statistical significance ROIs for a

group sample size of 10. However, when reducing the sample size
to half (N = 25), most AMURA metrics still were able to find
differences between groups, while only a few differences remained
for the DTI case.

In order to better understand this effect, we now analyze
the behavior of the measures in selected ROIS. We have chosen,
according to results in Table 2, those 13 regions in which DTI
measures showed differences with the original sample size for
EM vs. HC (see Figure 7A). For those 13 ROIs, in 7 of them FA
showed significant differences for N = 50, 5 for MD and 5 for
AD (see ROIs marked in amber). Then, we look at the results
for those specific ROIs for a reduced sample size of N = 25.
Note that, in that case, when the number of subjects is reduced
to half, the FA was only able to detect one ROI (out of 7), MD
only one (out of 5), and AD none (ROIs marked in red). When
we look to the AMURA metrics, we see that they were able to
still keep most of those differences even for a reduced sample size
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FIGURE 4

Absolute value of e�ect sizes (absolute Cohen’s d) for associations between (A) EM and HC; (B) EM and CM; (C) CM and HC. Di�erent DTI and
AMURA metrics are considered for eight selected ROIs (MCP, PCT, SCC, ML-R, ML-L, ICP-R, SS-R, EC-R) according to the JHU WM Atlas. The star
marks those regions with statistically significant di�erences in the ROI analysis.

(see ROIs marked in green): DiA and APA, anisotropy measures
similar to the FA, were able to, respectively find 4 and 7 out of
the original 7 FA ROIs. RTAP, and ϒ1/2 succeed in finding 2 of
the 5 MD ROIs, while RTOP finds 3 and qMSD 4 of them. In
addition, with RTPP, 2 out of the 5 AD ROIs were identified for
the reduced sample size. All in all, for this comparison, AMURA
outperformed DTI in keeping the differences even for a smaller
sample size.

As an illustration, in Figure 7B, the 13 considered ROIS
are depicted. For each ROI, the metrics that showed significant
differences for a sample size of N = 25 are displayed.

3.5. TBSS (original sample)

As we have previously stated, the ROI analysis carried out
in the previous sections could be an illustrative example of the
performance of the different metrics and it gives a valuable

insight on the relation among them. However, since no statistical
correction was considered, the results could not be acceptable
for clinical studies. Thus, in order to mimic an actual clinical
study, we have now repeated the analysis using TBSS for the three
comparisons.

Using the DTI measures (FA, MD, AD, and RD), statistically
significant differences between CM and EM patients were observed
for two parameters. Patients with CM showed lower AD and MD
values than EM in 40 and 38 out of 48 regions from the JHU-
WMAtlas, respectively. No statistically significant differences were
found using DTI measures between EM and HC or between CM
and HC.

For the AMURA metrics, the comparison between patients
with EM and HC showed the highest number of parameters with
statistically significant differences. Significant lower RTOP, RTAP,
qMSD, APA, DiA, and ϒ1/2 values in EM compared to HC were
found in 41, 39, 43, 27, 29, and 9 ROIs out of 48, respectively.
Concerning the comparison between both groups of patients,
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A B C

FIGURE 5

Absolute value of Cohen’s D-values for the three group comparisons in the Full WM: (A) Episodic Migraine (EM) vs. Healthy Controls (HC); (B) EM vs.
Chronic Migraine (CM); (C) CM vs. HC. DTI and AMURA measures are depicted. For each measure, the total number of ROIs that presented
statistically significant di�erences obtained with the ROI and TBSS statistical approaches are also noted.

A B C

FIGURE 6

Number of ROIs with statistically significant di�erences by the resampling of di�usion measures reducing the number of subjects per group (sample
size). (A) Episodic Migraine (EM) vs. Healthy Controls (HC). (B) Chronic Migraine (CM) vs. HC. (C) CM vs. EM. No statistical correction was considered.
For each case the median of 5,001 permutations considered.

higher values in CM compared to EM were identified for the RTPP
and ϒ1/2 in 4 and 32 regions, respectively.

Figure 8 shows the TBSS results including all the ROIs that
presented statistically significant differences together with the FA
skeleton. On the one hand, for EM vs. HC and CM vs. HC
comparisons, all the AMURA measures which showed significant
differences are merged and depicted in the figure, that is, RTOP,
RTAP, APA, qMSD,ϒ1/2 and only DiA for EM vs. HC. On the other
hand, DTI and AMURA measures can be distinguished in the last
CM vs. EM comparison. For DTI, the merged measures depicted
are AD andMD, while for AMURA are RTPP andϒ1/2. As it can be
seen, AMURA measures showed differences in group comparisons
where the DTI ones did not, as shown in the green circles. A
summary with the previous TBSS results regarding the number of
ROIs and the group comparisons can be found in Figure 9.

3.6. Analysis of stability

Figure 10 depicts the average values of CQV for all the DTI
and AMURA-based diffusion measures. The measures with the
highest stability (lowest CQV) were the RTPP and the APA, with an

approximate average CQV of 2% considering all the regions. Other
measures with relatively high stability were the three DTI measures
(FA, MD, and AD), ϒ1/2 and DIA, with CQV average values
between 2% and 5%. The remaining DTI and AMURA descriptors
(RD, RTAP, and RTOP), presented a moderate-high stability, with
CQV average values between 5% and 10%. The descriptor with the
lowest stability was the qMSD, with CQV average values between
15% and 20%.

Regarding the comparisons between the three groups of
interest, after reducing the group sample size to 45 subjects, the
assessment of the CQV 95% CI showed that the HC presented
a general higher variability than patients with EM and CM. The
parameters with a higher number of regions with statistically
significant differences betweenHC andmigraine patients according
to the 95% CI were the three AMURA measures (RTOP, RTPP,
and RTAP) and the MD, with 14–22 regions presenting differences.
Additionally, in the comparison between HC and CM, the CQV of
APA orϒ1/2 were significantly higher inHC thanCM in 13 regions.
The number of regions with CQV differences between CM and EM
was lower compared to the comparison betweenHC and the patient
groups. FA and MD were the descriptors with a higher number
of regions (nine) that showed higher variance in EM compared to
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FIGURE 7

Significant ROIs found for a reduced sample size (N = 25). (A) Table of ROIs found at N = 25 compared to the original sample size (EM vs. HC). In
amber, the ROIS with di�erences for DTI at the original sample size; in red, those ROIS with di�erences for DTI for a reduced sample size (N = 25); in
green, those ROIS with di�erences for AMURA for a reduced sample size (N = 25). (B) The 13 ROIs detected by DTI at the original sample size are
shown in the white matter. For each ROI, we have added the label of those metrics that show significant di�erences for a sample size of N = 25.

CM, andMDwas also the parameter withmore regions (eight) with
significantly higher variance in CM.

4. Discussion and conclusions

In this study, we assessed the viability of advanced diffusion
descriptors obtained with a novel approach, AMURA, in
comparison with traditional DTI parameters. To this end, their
capability to discriminate difference between clinical groups of
interest was compared, together with the stability of these results for
reduced sample sizes. Using synthetic and real data with a single-
shell and low b-value, we observed that AMURA is sensitive to
changes of parameters associated with the dMRI signal, showing
a higher capability of discrimination between clinical groups, even
for decreased sample sizes. Specifically, with AMURA we detected
a larger number of ROIs with statistically significant differences
between groups, or results complementary to those identified with
DTI, presenting higher effect size but lower stability than DTI
metrics.

Advanced diffusion descriptors such as RTOP, RTAP and APA
have shown to be useful for the analysis of the WM of the brain
(Aja-Fernández et al., 2020; Planchuelo-Gómez et al., 2020b,c).

However, their conventional calculation requires acquisition
protocols including several b-values, a high number of diffusion
gradient directions and very long processing times. This makes
them unfeasible for their use in clinical practice or in many
commercial MRI scanners. Besides, the use of these metrics in
retrospective studies is usually impossible since the acquisition
protocols do not allow for it.

AMURA was proposed to allow the estimation of apparent
versions of these advanced diffusion measures from reduced
acquisitions (Aja-Fernández et al., 2020, 2021, 2022). It provides a
fast and straightforward method to compute them from a single
shell and very short processing times. Metrics calculated with
AMURA have shown a high correlation with measures calculated
using a multishell approach, such as MAP-MRI (Özarslan et al.,
2013), MAPL (Fick R. H. et al., 2016), or MiSFIT (Tristán-
Vega and Aja-Fernández, 2021), for high b-values (at least
2,000 s/mm2). For lower values, these measures show a weaker
correlation since the underlying features measured are better visible
at higher b-values (Aja-Fernández et al., 2020, 2022). However,
we hypothesized that AMURA metrics can still provide useful
information at lower b-values, complementary to that obtained
from DTI-based measures. This paper focuses precisely on that
hypothesis and tries to elucidate whether AMURA-based measures
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FIGURE 8

Results of TBSS analysis: statistically significant clusters of voxels distinguishing between DTI and AMURA approaches. Mean FA image at the
background, FA skeleton colored in blue and significant ROIs colored in red-yellow. (A) Episodic Migraine (EM) vs. Healthy Controls (HC): merged
AMURA measures (RTOP, RTAP, APA, qMSD, ϒ1/2, and DiA). (B) CM vs. EM: merged DTI (AD and MD) and AMURA (RTPP and ϒ1/2) measures. DTI
measures do not detect any significant ROI either in EM vs. HC nor CM vs. HC. Green circles showed the areas where AMURA measures showed
di�erences in group comparisons where the DTI ones did not.

FIGURE 9

Summary of the statistically significant di�erences found with DTI (in red) and AMURA measures (in dark blue) for the comparison of the three
groups. (A) ROI based analysis (no statistical correction). (B) TBSS analysis (with family-wise error correction).
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FIGURE 10

Mean CQV for each group of study considering the 48 ROIs of JHU-WM atlas. Healthy Controls (HC), Episodic Migraine (EM), and Chronic Migraine
(CM). DTI and AMURA measures are shown. The measures with the higher stability have lower CQV.

obtained from standard DTI-type acquisitions are useful in group
studies.

To that end, we have resorted to migraine as our target
pathology, because of several reasons. First, diffusion MRI studies
in the literature show that differences between patients and HC,
or between different groups of patients (EM vs. CM) are subtle, as
studies using small sample sizes have often reported no differences
and even contradictory findings have been published (Chong and
Schwedt, 2015; Messina et al., 2015; Neeb et al., 2015; Gomez-
Beldarrain et al., 2016; Shibata et al., 2018; Coppola et al., 2020;
Planchuelo-Gómez et al., 2020a).

To study the viability of AMURA-based measures, two
different statistical analysis were carried out, including a ROI-
based analysis and conventional TBSS, together with the assessment
of the behavior of the diverse measures from reduces sample
sizes and of the stability. We show that AMURA measures
obtained from DTI-type acquisitions were able to successfully find
statistically significant differences between the three groups under
study (HC, EM, and CM), including differences that were not
detected using DTI-based measures. Although AMURA showed
additional differences between groups in a preliminary previous
study (Planchuelo-Gómez et al., 2020c), the magnitude of the
additional differences, particularly those between EM and HC, was
unexpected.

With a single-shell and low b-value acquisition, AMURA
shows itself as a method complementary to DTI, as reflected
by the results from the TBSS analysis (Figure 9B). On the one
hand, DTI-based AD and MD showed a good performance for
the comparison between EM and CM, with a great number of
ROIs with statistically significant differences, while AMURA-based

measures detected equivalent but a lower number of differences. On
the other hand, in the comparison between EM andHC, differences
were only found using AMURA-based measures, and in a relatively
large number of ROIs. The reason of these differences may be
that both techniques represent changes associated with diverse
pathophysiological mechanisms, as shown in the example with
synthetic data, where only AMURA was able to identify changes
of the free water fraction. Further studies on disorders with better
characterized pathophysiology than migraine must be carried out
to understand the different sensitivity to varied biological processes
of DTI and AMURA.

Regarding the behavior of the DTI and AMURA measures in
the synthetic experiment for diverse free water fractions, some
AMURA parameters showed higher sensitivity to the free water
changes. For constant FA, qMSD,ϒ1/2, and RTOP presented higher
changes for small changes of the free water fraction than the MD,
while DiA and APA remained constant. For constant MD, DiA and
FA showed similar changes and the APA showed higher changes
than the FA, without constant values of any AMURA parameter.
These results suggest that AMURA can better determine differences
caused by changes of free water fraction in comparison with DTI,
as some parameters presented higher sensitivity. Therefore, the
consequence would be that AMURA measures may be able to find
subtler differences between clinical groups compared to DTI, in line
with previously reported results in migraine (Planchuelo-Gómez
et al., 2020c).

The complementary nature of DTI- and AMURA-based
measures is confirmed by the ROI-based analysis (Table 2 and
Figure 9A). In the comparison between CM and EM, for instance,
the MD was the metric that detected a higher number of regions
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with statistically significant differences, but there were some ROIs
with differences exclusively identified by one or more AMURA-
based measures (e.g., the PCT). In the same way, there were ROIs
with differences exclusively found with the MD or AD (e.g., the
SS-R), and ROIs with differences identified by both DTI- and
AMURA-based measures (e.g., the EC-L).

If we focus on those regions selected in Figure 3 (PCT, ICP-
R, and EC-R) we can better understand what is happening with
the behavior of the distribution of the different metrics inside
the selected ROIs. First, let us focus on the anisotropy measures,
FA, APA, and DiA. According to Table 2, there are no differences
between groups for the FA for any of the three ROIs. On the other
hand, APA and DiA reflected differences for EM vs. HC (for the
three ROIs), for EM vs. CM (in the PCT) and CM vs. HC (both
in EC-R). These results are confirmed by the boxplots in Figure 3,
where AMURA-anisotropy measures were able to better separate
the three groups. It is of interest to note that when migraine is
considered as a single set, results are more similar for the three
metrics, confirming that anisotropy differences between controls
are migraine were really present. Regarding the other metrics, AD
and MD were able to find significant differences in most cases for
the three ROIs, according to Figure 3. However, AMURA metrics
always find the same differences but with a greater size effect. As an
example of this, we can focus on the PCT for EM vs. HC, where we
can see that all the metrics succeed in finding differences but with
different effect sizes.

All in all, from the results in Table 2 and Figure 3, we can see
that the behavior of AMURA and DTI is similar, although MD and
AD showed a lower variance for the CM group. The separation
between the groups follows very similar trends within the three
ROIs considered. However, AMURA manages to better find these
existing differences, and with a larger effect size.

The sensitivity of AMURA-based measures was analyzed
by further comparing the effect size found in the different
comparisons between groups. A classical method to determine
the magnitude of the differences between groups is Cohen’s
D, which considers the variability of the sample in relation
to the average value. As illustrated in Figures 4, 5, DTI-based
and AMURA-based measures showed comparable effect sizes for
the EM-CM and CM-HC comparisons. In the first case, DTI-
based AD and MD reached medium effect sizes (0.5; for the
whole WM), while Cohen’s D for FA barely exceeded small
effect size threshold (0.2). For this last comparison, Cohen’s
D for AMURA-based measures varied between the small and
the medium effect thresholds. For the comparison between CM
and EM, however, Cohen’s D-values were notably lower for all
measures, barely reaching 0.3 for DTI-based AD. Finally, regarding
the comparison between EM and HC, while DTI-based FA and
MD reached Cohen’s D-values around 0.3, AMURA-based RTOP,
qMSD, and DIA reached values over 0.5. These differences in effect
sizes among different measures and different group comparisons
offer a good explanation for the results shown in Table 2
and Figure 9.

Whereas it may be tempting to think about EM and CM as
different degrees of the same pathological process, recent results
(Coppola et al., 2020; Planchuelo-Gómez et al., 2020a) support
the hypothesis of EM and CM being different entities at the

microstructural level, each accompanied by different changes in
the WM. Following this hypothesis, DTI-based measures seem
well-fitted to detect WM changes in CM, while AMURA-based
methods perform remarkably well for the changes that occur in
EM. Although the interpretation of changes in DTI or AMURA-
based measures is not straightforward, results suggest that WM
changes in EM with respect to HC (specifically, lower RTOP and
RTAP) might be related to changes in the transverse diffusivity,
while changes in CM with respect to EM (such as higher RTPP and
lower AD)might be more related to changes in the diffusivity in the
axonal or main direction. As previously stated, the complementary
use of DTI andAMURAmay be useful to detect changes of different
nature using data obtained with a low b-value and single-shell
acquisition. The specific pathophysiological mechanisms related to
changes of diverse essence in AMURA must be assessed in future
studies.

Considering the difficulty to obtain large sample sizes in group
studies, it is important to assess the behavior of the diverse diffusion
measures when the number of subjects per group is reduced. As
depicted in Figure 6, both DTI-based and AMURA-basedmeasures
shared the expected trend, meaning that the number of ROIs with
statistically significant differences decreases as the sample size is
reduced. However, as shown in the experiment in Figure 7, when
the number of samples is reduced to half, DTI metrics were no
longer able to detect the differences between groups in most ROIs,
whereas AMURA could. From the 13 ROIs considered in the
experiment, DTI lost 11 of them when reducing the sample size,
while AMURA only lost 2 of them. This effect favors the usage of
AMURA metrics in studies with a small sample size.

The assessment of the stability provides another interesting
perspective for the evaluation and comparison between different
diffusion measures. The diffusion measures that showed higher
stability (lower CQV) were AMURA-based APA and RTPP, and the
DTI-basedmeasures, while AMURA-based qMSD seems to present
low stability. This high variability was expected, since qMSD is a
quadratic measure, so it must show a greater range of variability.
Interestingly, it presented a relatively high number of regions
with statistically significant differences in the comparisons of both
migraine groups against controls for diverse sample sizes despite
their low stability. Therefore, the results of this study suggest that
qMSD is able to characterize specific microstructural properties
that are particularly difficult to find with other parameters.
Moreover, as it has been suggested previously in this section,
differences between both groups of patients with migraine and
controls may be qualitatively distinct compared to the differences
between CM and EM. Furthermore, qMSD is especially sensitive to
short diffusion time scales (Ning et al., 2015).

It is important to note that the AMURA-based measures
employed in this paper must be considered as apparent values
at a given b-value, and their interpretation in terms of the
microstructure properties may be different from that of the original
EAP-based diffusion measures. Although the relationship between
AMURA-based measures and their original counterparts deserves
further study, in this paper we deliberately chose not to pursue this
comparison to focus on the viability of AMURA-based measures to
complement DTI in scenarios where EAP-based measures cannot
be obtained.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1106350
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Martín-Martín et al. 10.3389/fnins.2023.1106350

This study presents limitations that must be pointed out. First,
the pathophysiological interpretation of the different trends of the
AMURA-based measures is not totally clear, so a description of the
microstructural properties according to the values of each measure
cannot be provided. As mentioned previously, the apparent nature
of AMURA-based measures and their complex relationship with
the original EAP-based measures prevent the direct adoption of
interpretations from those EAP-based measures. Microstructural
studies like those conducted for DTI-based measures (Alexander
et al., 2007; Winklewski et al., 2018) are needed to fully understand
the results obtained with AMURA.

Furthermore, the results obtained in this study cannot
be directly translated to other pathologies affecting the
WM of the brain. Even though AMURA can be expected
to be a useful information to detect differences in group
studies targeting other diseases, further research is needed to
confirm that.

In conclusion, this study showed that the new AMURA-based
measures can be easily integrated in group studies using single-shell
dMRI acquisition protocols, and they can reveal WM changes that
may remain hidden with traditional DT-based measures. The wide
variety of AMURA, a fast and relatively simple approach, provides
measures that allow to extract values that are able to find differences
between groups for restricted sample sizes and dMRI acquisition
protocols.
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