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Background: Sleep spindles are a vital sign implying that human beings have
entered the second stage of sleep. In addition, they can effectively reflect a
person’s learning and memory ability, and clinical research has shown that their
quantity and density are crucial markers of brain function. The “gold standard”
of spindle detection is based on expert experience; however, the detection cost
is high, and the detection time is long. Additionally, the accuracy of detection is
influenced by subjectivity.

Methods: To improve detection accuracy and speed, reduce the cost, and
improve efficiency, this paper proposes a layered spindle detection algorithm.
The first layer used the Morlet wavelet and RMS method to detect spindles, and
the second layer employed an improved k-means algorithm to improve spindle
detection efficiency. The fusion algorithm was compared with other spindle
detection algorithms to prove its effectiveness.

Results: The hierarchical fusion spindle detection algorithm showed good
performance stability, and the fluctuation range of detection accuracy was
minimal. The average value of precision was 91.6%, at least five percentage points
higher than other methods. The average value of recall could reach 89.1%, and the
average value of specificity was close to 95%. The mean values of accuracy and
F1-score in the subject sample data were 90.4 and 90.3%, respectively. Compared
with other methods, the method proposed in this paper achieved significant
improvement in terms of precision, recall, specificity, accuracy, and F1-score.

Conclusion: A spindle detection method with high steady-state accuracy and fast
detection speed is proposed, which combines the Morlet wavelet with window
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RMS and an improved k-means algorithm. This method provides a powerful tool
for the automatic detection of spindles and improves the efficiency of spindle
detection. Through simulation experiments, the sampled data were analyzed and
verified to prove the feasibility and effectiveness of this method.

sleep spindle detection, hierarchical fusion detection algorithm, EEG, Morlet wavelet,

SVM

1. Introduction

Sleep spindles refer to the recognizable 11-16 Hz sinusoidal
periodic pulse sequence on an electroencephalogram (EEG) during
sleep. According to the American Academy of Sleep Medicine
(AASM) (Iber et al,, 2007), the spindles mainly occur in stage
two of Non-Rapid-Eye-Movement (NREM) sleep (Schilling et al,,
2018; Chriskos et al., 2019). Spindle detection plays a crucial role
in sleep staging research and clinical disease diagnosis (Dehnavi
etal,, 2019; Zhang et al., 2020). Studies have found that the number
and density of spindles are associated with many diseases (Fogel
and Smith, 2011), such as Parkinson’s disease (Latreille et al,
2015), Alzheimer’s disease, major depression, autism, insomnia,
and schizophrenia (Limoges et al., 2005; Keshavan et al,, 2011;
Astori and Luthi, 2013; Davies et al., 2016; Spironelli et al., 2020).
In addition, the function of sleep spindles is associated with human
intelligence and sleep-dependent memory consolidation (Fogel
et al,, 2007; Ujma et al,, 2014). Notably, spindles are a reflecting
functional brain-state biomarker and have solid supplementary
diagnostic value (Zhao et al., 2017; Mensen et al., 2018).

Currently, in clinical diagnosis, spindle detection mainly
depends on the subjective experience of doctors, the so-called gold
standard of spindle detection (Dakun et al., 2015). Generally, the
manual detection of spindles allows many experts to select the
spindles simultaneously. It is challenging to detect sleep spindles
with this method due to the high detection cost and longer
detection time (Lacourse et al., 2019). Thus, Wamsley et al. (2012)
explored a method to detect spindles using the wavelet transform
automatically and found an overall number and density of 62.5%,
a result that was far from ideal. Athanasios and Clifford (2015) and
others proposed a probabilistic wavelet estimation algorithm based
on the wavelet algorithm for the automatic detection of spindles.
However, due to the spindles’ irregularities, the performance in
recall rate was not ideal, with a minimum of 14.4% and a maximum
of 83.2%. Hence, the stability of the recall rate was poor. Martin
(Martin et al,, 2012) et al. used the window root mean square
(RMS) method to detect the spindle density of young and older
people by calculating the RMS value. The accuracy was only 72%,
but the recall rate was 83%. Furthermore, concerning age, it was
found that the density, duration, and amplitude of spindles in
young subjects were greater than those in older subjects, and age
factors affected the detection of spindles. Mporas et al. (2013)
proposed the hidden Markov model (HMM) and support vector
machine (SVM) to process EEG signals. Through the fusion of
HMM and SVM (HMM&SVM), the output recognition spindle
results were combined to extract the final sleep spindle detection
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results. The average performance regarding precision was 88%, and
recall was 76%, but the process was complex, and the operation
was cumbersome, bringing great inconvenience to the experiment.
Lacourse et al. (2019) proposed a detection method for spindles,
also known as A7. The recall rate of this method reached 68%,
with no crucial change compared with the average value of 72.7%
within and between experts in sleep spindle detection (Devuyst
et al., 2006).

The performance index of the above algorithms is in the range
of 60-70%, and thus their performance is not ideal. Currently,
there is a shortage of public databases for spindle detection,
and the lack of databases has led to difficulties in validating the
stability of different detection algorithms (Wendt et al,, 2015). The
performance of spindle detection can be further improved on the
original basis.

Herein, a new notion of hierarchical fusion algorithm is
proposed to improve the defects of expert manual detection and
the automatic detection of spindles. It addresses the advantages and
disadvantages of the automatic detection methods of sleep spindles
by combining the advantages of the spindle detection method
and overcoming the shortcomings of previous methods to detect
spindles. The Morlet wavelet and RMS algorithms are used as the
first layer of the basic algorithm. After fusing the results of the two
automatic detection methods, the k-means algorithm in the second
layer is used for clustering to get the final result. The Morlet wavelet
detection method, window RMS detection method, HMM&SVM
algorithm, and the newly proposed hierarchical fusion algorithm
are compared in the detection results. The data results optimized
by the hierarchical fusion algorithm substantially improve the
performance of spindle automatic detection. In order to improve
the efficiency and accuracy of spindle detection, we propose a new
spindle detection algorithm, which combines the Morlet wavelet
detection algorithm, RMS algorithms, and k-means algorithm. The
average accuracy of this method is 91.6%, at least five percentage
points higher than other methods.

2. Materials and methods

2.1. Data sources and methods

The experimental data came from the sleep monitoring room
of Beijing Xuanwu Hospital. This experiment was designed to
collect sleep data from 20 subjects with sleep disorders, all of whom
were between 20 and 40 years old in order to avoid the effect
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of age differences on the number of spindles. Their average age
was 31 years old, 11 participants were female, and they were all
recruited from the community. Twenty subjects were scored on
the Pittsburgh Sleep Quality Index before EEG acquisition. Those
with a score greater than or equal to 11 were patients with sleep
disorders. Table 1 shows the Pittsburgh Sleep Quality Index scores
of the 20 subjects in this paper. The higher the score, the worse the
sleep quality.

The data collection equipment adopted polysomnography
(PSG). The equipment could record many channels simultaneously
during the subjects’ sleep, such as EEG, ECG, EOG, EMG, airflow,
and oxygen saturation. As shown in Figure 1, the international
10 / 20 standard electrode placement system shows the electrode
positions of the relevant EEG signals collected in this paper. Based
on the relevant research on the brain regions with frequent spindles,
this study collected and analyzed the EEG signals collected from
only six channels. Thus, the EEG data of the left and right channels
collected in this experiment included F3 \F4 \C3 \C4\O1\O2. Here,
F3 and F4 are frontal brain regions, C3 and C4 are central brain
regions, and O1 and O2 represent the occipital regions. Spindles
appear most frequently at these positions, and C3/C4 have the most
spindle appearances. The sampling frequency of the EEG signal
acquisition equipment used in this experiment was 1,024 Hz.

The data collection for each subject lasted from 9:30 p.m.
to 6:30 a.m. The start and end times of the subjects entering
sleep were not wholly consistent. Thus, sleep EEG data of up
to 8 h from the first entering sleep stage were intercepted based
on the stage of sleep for research to facilitate and accurately
analyze the characteristic differences in individual and overall sleep
spindles in the later stages. Professional sleep researchers operated
and guided the monitor used in the sleep monitoring room. To
ensure the accuracy of the physiological signal collection, the
subjects were required to prohibit the intake of alcohol and the
consumption of caffeine, sedatives, hypnotics, and other relevant
drugs that could affect data collection 1 week before the sleep
monitoring. Before data acquisition, the subjects were required
to have taken a bath and cleaned their heads to ensure good
contact between the electrodes and the skin to assist the collecting
of data as much as possible. Furthermore, the subjects were
required to urinate in advance or place a disposable night pot
next to the hospital bed to avoid the disproportionate impact
of large-scale activities at night on data acquisition. Next, the
experimenter recorded the subjects name, weight, gender, age,
and other essential information. The relevant electrode connection
points were wiped with a cleaning paste specifically used to
clean the electrodes before the electrodes were connected. When
the electrode was placed, the accuracy and firmness of the
electrode’s position could be secured, and the electrodes were
placed in a specified order. After the work preparation, before
collection was completed, the monitor was opened to record the
data collected by the software. During the acquisition process,
the cell phones of the subject and experimenter were turned
off to keep the environment quiet to avoid the interference of
external environmental sound on the experimental data. After
data collection in the morning, the experimenter turned off the
equipment and woke up the subject. At this point, the experimental
data collection was finished.

The sampling frequency of the experimental data was 1,024 Hz,
which was downsampled to 512 Hz during the pre-processing
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for this paper. In this experiment, the bilateral mastoid was
used as the mean reference for re-referencing. The Morlet
wavelet-based and RMS automatic detection methods used in
this experiment both require band-pass filtering of the data
prior to spindle wave detection. The raw EEG signal was pre-
processed with band-pass filtering from 5 to 35 Hz prior to
automatic spindle wave detection using Morlet wavelets. Pre-
processing of the raw data with 11-16 Hz bandpass filtering was
conducted before using the RMS algorithm, where the frequency
band was chosen based on the standard definition of the spindle
frequency distribution.

2.2. Proposed algorithm

Figure 2 is the flowchart of the newly proposed hierarchical
fusion spindle automatic detection algorithm. Two single detection
algorithms, the Morlet wavelet and window RMS were used in the
fusion algorithm, merged with the improved k-means algorithm.

The specific steps of the hierarchical fusion algorithm were as
follows:

Firstly, the collected sleep EEG signal was pre-processed. The
resultant sleep signal was transmitted to the Morlet wavelet and
window RMS spindle automatic detector to judge the true and false
spindle of the two detectors’ output results.

The Morlet wavelet function was closer to the spindles and
more conducive to spindle detection. Spindle detection function
based on the Morlet wavelet was defined as:

f(x) = (nFp) ™% exp(2miFcx) exp(—x*/Fp) (1)

Where Fj is the bandwidth of wavelet transform, Fp = 252, and
s =n/2nFc. The value of Fg depends on the magnitude of the values
of n and F¢. The n represents the number of cycles of the Morlet
wavelet. Fc is the center frequency. Here, set n =7 is a typical default
value when balancing the time-frequency domain.

The Morlet wavelet function performed time-frequency
conversion on the pre-processed EEG signal, and a threshold
function was used to detect the spindle. After all pre-processing, the
threshold was defined as 4.5 times the average signal amplitude. The
average moving value was calculated using a 0.1 s sliding window to
extract the spindle in the frequency band. When the wavelet signal
exceeded the threshold and the duration was in the range 0f 0.5-3 s,
it was deemed a spindle. If the distance between the two spindles
was less than 1 s and the duration was less than 3 s, the spindle
was combined. This detection result was reserved for the fusion of
later experiments.

The window RMS algorithm used a linear phase finite impulse
response filter for 11-16 HZ band-pass filtering of the EEG original
signal in the NREM period of the C3 channel, doubling the order
of the filter. The filtered EEG signal was determined using a time
window of 0.25 s, and the threshold value was 0.95 times the mean
value. The spindle was identified as two consecutive root mean
squares calculated time points, exceeding the threshold and lasting
between 0.5 and 3 s. The RMS value was calculated every 5 s by
employing the following formula:

N y2
RMS — A = ,/Lf?\;x" @)
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TABLE 1 Pittsburgh sleep quality index score.

10.3389/fnins.2023.1105696

Subject Age Sex Score Subject Age Sex Score
DS1 21 Male 14 DS11 24 Male 12
DS2 35 Male 17 DS12 40 Female 18
DS3 40 Female 19 DS13 31 Female 20
DS4 25 Male 16 DS14 22 Male 16
DS5 34 Female 16 DS15 30 Female 15
DS6 20 Female 18 DS16 37 Female 20
DS7 36 Female 11 DS17 25 Male 18
DS8 29 Male 13 DS18 33 Female 17
DS9 38 Female 16 DS19 34 Male 14
DS10 32 Male 14 DS20 29 Female 16

DS represents subjects with sleep disorders. Subjects with a score greater than or equal to 11 are subjects with sleep disorders.

N\

reference
reference

FIGURE 1
International 10 / 20 standard electrode placement system.

RMS-A refers to the root mean square of the spindle wave
frequency band. Where X;? is the square of the amplitude of the
sampling point i, and N is the number of sampling points within 5 s.

Let us repeat the spindle detection link. The spindle detected by
the Morlet wavelet and RMS method was divided into coincident
and non-coincident spindles. When the spindle detected using the
two methods overlapped in the time series, they were considered
coincident spindles. As can be seen in Figure 3A, the coincident
spindle was regarded as the effective result of the fusion algorithm
detection. When the spindle time did not repeat, it was considered
a non-coincident spindle, as can be seen in Figure 3B.

This study identified the coincident spindle as the same spindle
and directly classified it into the final automatic detection result
set. The non-coincident spindle set was treated as the sample of
clustering input. After cluster analysis, many non-spindle clusters
were removed, and the samples of the remaining clusters and the
coincident spindle set were taken as the final output result.

The non-coincident spindle needed to be further analysed
and processed by the K-means clustering method. The K-means
algorithm was relatively stable, and had a very smooth clustering
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FIGURE 2
Flowchart of the fusion algorithm.

effect. The K-means clustering algorithm needed to calculate the

distance between the points of each cluster. The distance metric

commonly used in the k-means algorithm is Euclidean distance.
Euclidean distance (L2):

diz = /a1 — 202 + 01 — y)? 3)

The density was the distance between points to judge the
abnormal points. After removing the outliers, the data were put
into K-means clustering, improving the accuracy of clustering,
reducing the amount of clustering data, and enhancing data
processing speed.

The sum of squared errors (SSE) was used as the objective
function to evaluate the clustering effect so that the clustering
result can obtain the minimum SSE value (Klampanos et al., 2009).
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The local outlier factor detection method optimized K-means
clustering, addressing the detection problem of amplitude affecting
the spindle.

The amplitude of the spindles was in the range of 10-60 ,,v.
When clustering the non-coincident spindles, the amplitude was
used as the input. Five categories were clustered based on the
amplitude, and the maximum and minimum were removed. The
remaining three categories were used as data for further analysis.
After clustering, clusters with many non-spindles were discarded,
leaving the actual spindle clusters.

Finally, the final fusion result was the clustering and the
coincident spindle.

In this paper, when using the k-means algorithm for clustering,
the method of calculating the difference statistics was adopted to
select the k value.

2.3. Evaluation method

Twenty subjects were tested manually using the gold standard
of spindle detection to prove the reliability of the hierarchical
fusion spindle automatic detection method. The gold standard
adopted was three experts conducting the sample’s artificial spindle
detection. The intersection of the three experts’ detection results
were determined as spindles here, and the detection results not
within the intersection were regarded as non-spindle sets.

Then according to the confusion matrix and the gold standard
of spindle detection, the evaluation indexes, such as TPR (recall),
specificity, accuracy, precision, and Fl-score, were calculated to
evaluate the detector’s performance.

The following was the meaning and relevant calculation
formula of these evaluation indicators:

recall = TP/(TP + FN) (4)
precision = TP/(TP + FP) (5)
specificity = TN /(TN + FP) (6)

accuracy = (TP + TN) /(TP + FP 4+ TN + EN) (7)

Fl— 24 pression s recall ®)

pression + recall

Morlet

indle(1 % \
C3 VL, H.,.W;Mﬁﬂfﬂwﬁf ,&m)”_‘ AT ,%!W‘ﬁ M Mwlm. T

1 1 1

0 2 4 6 é

10(s)
RMS
spindle(2 ‘ A
C3 gy, w’"""’lnl'\'y d-\Iv?*'u"‘v"«vg\f)\ ...-wv.»w“w*)‘v‘l{L"lniﬂlﬁ M / g e P,
1 1 1 1
0 2 4 6 8 10(s)
FIGURE 3
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TP plus FN was the sample set of the actual spindles detected
by experts, and TP plus FP was the sample set predicted as actual
spindles by the detection algorithm. TP represents samples that
were actually true spindle waves and detected by the automatic
detection algorithm as true spindle waves; FP represents samples
that were non-spindle waves but detected as true spindle waves;
FN represents samples that were actually true spindle waves but
predicted by the detection algorithm as non-spindle waves; and
TN represents samples that are actually non-spindle waves and
predicted by the detection algorithm as non-spindle waves.

3. Analysis of experimental results

The spindle detector automatically detected the spindle and
contrasted it with the spindle detected by experts. R-spindles
represented the actual spindle in the automatically detected
spindles and A-spindles denoted all spindles automatically
detected by the algorithm. The E-spindles symbolized the
actual spindle detected by experts, and the intersections of the
three experts’ two or three detection results were considered
E-spindles.

Table 2 shows the number of spindle waves detected
by the Morlet wavelet, windowed RMS, HMM&SVM, and
hierarchical fusion algorithms compared to the real spindle
waves labeled by experts. In Table 2, A-spindle represents the
number of all spindle waves automatically detected by the
algorithm, R-spindle represents the number of true spindle
waves among the automatically detected spindle waves, and
E-spindle represents the true spindle waves detected by the
expert.

As shown in Table 2, the total number of spindles
automatically detected by the four methods differed for the
same data. The four methods detected the most spindles in
sample DS15, while the total spindles detected in sample
DS6 were the least. The number of samples detected by the
Morlet wavelet algorithm was small. Compared with the
wavelet algorithm, the RMS-based algorithm could detect
more spindles. The average number of R-spindles detected by
HMM&SVM was 712, higher than the Morlet wavelet and RMS

Morlet

spindle(1
C3 A Vil “M»‘v\' ".-."qr\/‘ﬁ;g-""“‘\‘(r 'Kv)—\../‘lw".*‘xﬂsﬂhrﬂrﬂﬁii\v.l“n.

| I I I
0 2 4 6 8

10(s)
RMS
spindle(2
C3 "”*"V"'"u'f [d‘nmrlf"il‘l'\ﬁ'j1.-."‘7-\‘)"ryl?v' —'“‘w_(,- "«l...r-w*uhﬁﬂvﬂnn‘]\‘ ol
1 I 1 L
0 2 4 6 8 10(s)

Spindle automatic detection results of the Morlet wavelet and root mean square (RMS). (A) Morlet wavelet and RMS detect the coincident spindle. (B)

Morlet wavelet and RMS detect non-coincident spindle
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TABLE 2 Comparison of the results of different detection algorithms.

10.3389/fnins.2023.1105696

Subject | Morlet wavelet algorithm RMS algorithm HMM-SVM algorithm Fusion algorithm E-spindle
A-spindle R-spindle A-spindle | R-spindle | A-spindle | R-spindle | A-spindle | R-spindle
DS1 732 647 1409 998 1258 994 1124 1005 1136
DS2 467 424 831 602 802 685 725 668 730
DS3 263 229 518 383 617 527 511 472 551
DS4 231 204 589 406 523 436 456 429 493
DS5 439 376 977 747 821 765 792 763 848
DS6 184 160 632 491 635 532 530 487 590
DS7 702 605 1346 984 866 603 1063 994 1073
DS8 479 427 746 590 733 616 630 581 657
DS9 212 187 692 526 805 668 621 578 706
DS10 643 574 846 669 762 694 792 706 779
DSI1 752 629 1415 1070 1238 1035 1248 1125 1265
DS12 525 481 968 708 774 688 834 761 819
DS13 596 528 724 571 729 605 634 583 676
DS14 381 334 898 639 880 763 759 702 798
DS15 1066 938 1635 1323 1458 1237 1507 1359 1491
DS16 539 456 736 608 664 503 687 643 736
DS17 551 492 939 712 875 756 835 765 839
DS18 572 489 929 674 802 701 790 688 763
DS19 360 324 727 598 768 654 689 640 702
DS20 736 635 965 763 1033 789 856 784 891
DS-average 521 457 926 703 852 712 804 737 827

algorithm, demonstrating that this algorithm could recall more
spindles.

Compared with the Morlet wavelet method, the R-spindle/A-
spindle ratio of the hierarchical fusion algorithm was higher,
reaching 91.67%, indicating that the hierarchical fusion algorithm
improved the recall rate. Compared with the RMS algorithm and
the HMM&SVM algorithm, the number of A-spindles of the
hierarchical fusion algorithm decreased by 122 and 48, respectively,
without a substantial change. The number of R-spindles did not
decrease but instead increased by 34 and 25, respectively, showing
that the accuracy of the newly proposed algorithm had been
substantially enhanced.

The A-spindle of the hierarchical fusion algorithm had
the recombined set of the two spindle detection results. After
clustering, they had the Morlet, the RMS, and the non-recombined
sets. The maximum number of spindles detected reached 1,507
in DS15 samples and 530 in DS6 samples, and the average
value was 804. However, the maximum value of R-spindles
reached 1,359 in DS15 samples, and the average value was 737.
The fusion algorithm was closest to the actual spindle value
detected by experts.

Figure 4 contrasts the hierarchical fusion algorithm with
the other three automatic detection algorithms by calculating
five performance evaluation indexes: Precision, Recall, Specificity,
Accuracy, and F1-score.

Frontiers in Neuroscience

The fusion algorithm represented the newly proposed
hierarchical fusion algorithm, and Morlet wavelet, RMS, and
HMM&SVM represented the Morlet wavelet, window RMS, and
HMM and SVM, respectively. Figure 4 shows that the Precision
of the spindle detection based on the Wavelet algorithm could
meet the accuracy requirements under the current standard,
scoring more than 85%. However, a critical gap existed between
the maximum and minimum values of Recall, which had large
fluctuations, and its stability needs to be improved. Only the
evaluation index of Specificity of spindle automatic detection
based on the RMS algorithm reached more than 90%. Likewise,
the Specificity evaluation index of the HMM&SVM algorithm was
more than 90% but lower than the other three detection algorithms.
In the subject samples, the Recall index of the hierarchical fusion
algorithm reached 92.9% at its highest, 81.9% at its lowest, and
with an average of 89.1 & 8.84%. In the performance of Precision,
the maximum value reached was 96.3%, the minimum value was
87.1%, and the average value was 91.6 £ 3.06%. This Precision
average value was better than those with the RMS and HMM&SVM
algorithms and slightly better than those with the Morlet wavelet
algorithm. The performances of Specificity, Accuracy, and F1-score
were also ideal, and the average values were higher than those of
the other three methods. The average values in the subject samples
were 96 £ 2.89, 90.4 £ 6.50, and 90.3 £ 2.49%, respectively. The
maximum, minimum, and average of each evaluation index of
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FIGURE 4

Performance comparison of detection algorithms based on subject data.

the hierarchical fusion algorithm were substantially improved
compared with the other three algorithms.

4. Discussion

As sleep spindles are a characteristic index to evaluate sleep
quality, the pursuit of the accurate detection of sleep spindles
is imperative. The fusion method proposed in this paper was
based on the Morlet wavelet and the Window RMS algorithm,
combined with the improved k-means algorithm, and then the
data results of algorithmic optimization. The fusion detection
spindle algorithm combined the advantages of the three algorithms.
Compared with previous research on spindle automatic detection,
it improved calculation and effectiveness. The spindle detection
results of the hierarchical fusion algorithm are shown in Figure 4,
demonstrating better consistency with the expert detection results
than the other methods. The detection rate of actual spindles
was critically improved compared with the previous detection
methods, effectively improving the accuracy and speed of the
automatic spindle detection. This proposed method improved
the shortcomings of the existing spindle detection methods and
effectively enhances the detection efficiency of doctors, and reduces
the visual inspection workload of sleep clinicians and the cost of
detection (Jiang et al,, 2021).

In the study of Warby et al. (2014), the amplitude and duration
of the spindle decreased with age, probably damaging the spindle
recognition performance. Therefore, in this experiment, we also
paid attention to the interference of other unnecessary sample
factors. PSG equipment was used to experiment on 20 subjects,
and sleep data of 8 h were intercepted for research and analysis.
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Specificity

Accuracy F1-score

The age of the subjects was controlled between 20 and 40 years
old. The experimental data were truncated (Herrmann et al., 2016)
to ensure a specific length of sample time. The wavelet automatic
spindle detection method proposed by Wamsley et al. (2012) is
more hierarchical than the fusion algorithm. The wavelet automatic
detection algorithm needs much calculation and cumbersome
experiments. The hierarchical fusion algorithm simplified the
calculation, solving this problem. After completing the automatic
spindle detection, the outliers and misjudged spindles were first
eliminated. Then clustering processing was conducted to improve
the effectiveness of spindle detection and simplify the process.

The number of actual spindles detected by the Wavelet
algorithm proposed by Athanasios and Clifford (2015) was less
than that detected by experts, so it cannot replace expert detection
methods. This study used a sliding window to calculate the
corrected moving average of the signal for the threshold setting.
This method shortened the detection time and improved the
accuracy. The spindles detected by the Martin et al. (2012)
window root mean square method contained more false spindles.
The hierarchical fusion algorithm clustered the non-coincident
spindles automatically detected, improving the stability of spindle
detection. The hierarchical fusion algorithm combined the Morlet
wavelet and window RMS. It adopted the ideal accuracy of the
wavelet method and the ideal recall rate of the window RMS
detection method. Thus, the fusion algorithm realized both high
levels of precision and recall and could achieve high evaluation
indexes.

The HMM&SVM algorithm (Lofhede et al., 2008) also inspired
the improvement of the algorithm in this paper. The influence
of spindle amplitude on spindle detection was avoided, as the
fluctuation range is too large to be ideal for the stability of the
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accuracy of the HMM&SVM algorithm. The hierarchical fusion
algorithm advanced the experimental data to sample clustering,
improving the detection speed through iterative clustering (Ding
etal., 2018), and optimized the algorithm before clustering.

The figures reveal that the average Recall rate of the wavelet
fusion method was 91.4%. The average Recall rate of the Precision
method was 91.4%, which can be improved by 91.4% compared
with that of the previous method, and the average Recall rate of
the Precision method is improved by 90.4% compared with that of
the Precision method. It met the requirements of improving the
performance index and stability of the spindles.

Accurate and effective detection of sleep spindles is a
methodological challenge. The spindles have a necessary judgment
basis for diagnosing human diseases (Manoach et al., 2020). The
hierarchical fusion algorithm is a favorable and feasible method for
liberating the “gold standard” detection of experts, and reducing
the shortcomings of the cumbersome, expensive, and strongly
subjective spindle detection methods of the past (Parekh et al,
2017). This method could be popularized for clinical disease
diagnosis instead of artificial spindle detection as it improves the
speed of disease diagnosis and enables patients to receive rapid
treatment (Imtiaz and Rodriguez-Villegas, 2014). At the same time,
according to this test, the study of spindles on human intelligence
and memory can save substantial experimental time (Wei et al,
2020). Therefore, effective and rapid spindle detection method is
a common research direction.

The experiment mentioned in this paper only used the spindle
samples of 20 subjects for analysis due to the limitation of
the number and age of subjects and limited conditions; as a
sample base, this is insufficient. In future research, increasing
the sample base will improve the credibility of the results
further. In the spindle detection algorithm, the spindle detection
used in this paper was based on a single-channel C3, which
uses too few channels. We could use dual-channel or multi-
channels to detect the spindle automatically in future research.
Concurrently, we could combine more deep learning models to
classify the spindles and explore the prospects of deep learning in
spindle classification.
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