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Background: C-X-C motif chemokine 12 (CXCL12) is a chemokine that performs

many functions. Studies have shown that CXCL12 can aggravate inflammatory

symptoms in the central nervous system (CNS). Evidence also indicates that

CXCL12 can promote the repair of myelin sheaths in the CNS in experimental

autoimmune encephalomyelitis (EAE). Here, we investigated the function of

CXCL12 in CNS inflammation by upregulating CXCL12 in the spinal cord and

subsequently inducing EAE.

Materials and methods: CXCL12 upregulation in the spinal cords of Lewis rats was

induced by the injection of adeno-associated virus 9 (AAV9)/eGFP-P2A-CXCL12

after intrathecal catheter implantation. Twenty-one days after AAV injection, EAE

was induced and clinical score was collected; Immunofluorescence staining, WB

and LFB-PAS staining were used to evaluate the effect of CXCL12 upregulation.

In the in vitro study, oligodendrocyte precursor cells (OPCs) were harvested,

cultured with CXCL12 and AMD3100, and subjected to immunofluorescence

staining for functional assessment.

Results: CXCL12 was upregulated in the lumbar enlargement of the spinal cord by

AAV injection. In each stage of EAE, upregulation of CXCL12 significantly alleviated

clinical scores by inhibiting leukocyte infiltration and promoting remyelination. In

contrast, the addition of AMD3100, which is a CXCR4 antagonist, inhibited the

effect of CXCL12. In vitro, 10 ng/ml CXCL12 promoted the differentiation of OPCs

into oligodendrocytes.

Conclusion: AAV-mediated upregulation of CXCL12 in the CNS can alleviate the

clinical signs and symptoms of EAE and significantly decrease the infiltration of

leukocytes in the peak stage of EAE. CXCL12 can promote the maturation and
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differentiation of OPCs into oligodendrocytes in vitro. These data indicate that

CXCL12 effectively promotes remyelination in the spinal cord and decreases the

signs and symptoms of EAE.
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CXCL12, EAE, AAV, neuroinflammation, remyelination

Introduction

As a common manifestation of multiple sclerosis (MS) and
neuromyelitis optica spectrum disorders (NMOSDs), inflammatory
demyelination make an important contribution to disability in
the patients with demyelinating disorders (Kearney et al., 2015;
Ciccarelli et al., 2019; Fadda et al., 2022). Chemokines are
considered to be essential mediators that are secreted by many
kinds of cells to activate G protein-mediated signaling pathways
(Krumbholz et al., 2006; Huynh et al., 2020). Some of the
chemokines guided inflammatory cells into the central nervous
system (CNS) and played an important role in the myelin damage,
but some are not, Notably, chemokine C-X-C motif ligand 12
(CXCL12) was revealed to play a crucial role in the maintenance
of neural homeostasis, including the regulation of proliferation,
differentiation and migration of oligodendrocyte precursor cells
(OPCs) in the animal disease model system (Patel et al., 2010,
2012; Li et al., 2012; Zilkha-Falb et al., 2016). Additionally,
CXCL12 could recruit other types of endogenous stem/progenitor
cells, such as hematopoietic stem cells, mesenchymal stem cells,
endothelial progenitor cells and neural progenitor cells (NPCs),
mainly worked by interacting with CXCR4, which is one of its
natural receptors (Klein and Rubin, 2004; Dziembowska et al.,
2005; Patel et al., 2010; Carbajal et al., 2011; Huynh et al.,
2020).

The observation that up-regulation of CXCL12 were found in
the reactive astrocytes and endothelial cells in the lesions of patients
with MS, and CXCR4-positive leukocytes could further infiltrated
into CNS parenchyma (Calderon et al., 2006; McCandless et al.,
2008; Moll et al., 2009). McCandless et al. (2008) suggested
that the redistribution of CXCL12 at the blood-brain barrier
(BBB), rather than up-regulation of CXCL12 expression in lesions
of CNS, plays a more important role in leukocyte infiltration
and demyelination in MS. These phenomenon are also observed
in Experimental Autoimmune Encephalomyelitis (EAE), which
may be the most frequently used animal model system of
rodent for MS studying (McCandless et al., 2006; Cruz-Orengo
et al., 2011; Zilkha-Falb et al., 2016). Inhibition of CXCL12
signaling could result in widespread white matter infiltration of
mononuclear cells and aggravate EAE symptoms (McCandless
et al., 2006). Therefore, it is rational to speculate that the ongoing
progression of MS may result from the enhanced infiltration
of leukocytes.

A series of studies have examined EAE in Dark Agouti (DA)
and Albino Oxford (AO) rats (Miljković et al., 2011; Blaževski
et al., 2013, 2015). The differential resistance of these two rat
strains to EAE implies that CXCL12 is involved in the promotion
of remyelination (Miljković et al., 2011; Blaževski et al., 2013).

Many of excellent studies have shown that CXCL12 plays a positive
role in promoting the remyelination of EAE (McCandless et al.,
2006; Patel et al., 2010, 2012; Miljković et al., 2011; Blaževski
et al., 2013; Zilkha-Falb et al., 2016). The intense inflammation
and macrophage phagocytosis aggregation in the active MS lesions
are the main causes that leads to failure of remyelination, since
sufficient OPCs were found within lesions (Kuhlmann et al., 2008;
Lassmann et al., 2012; Chu et al., 2017). On the basis of the
function of CXCL12 that promote migration and differentiation
of OPCs, upregulation of CXCL12 in CNS may be a potential
therapeutic strategy to MS. Several previous studies showed that
CXCL12 acts as a T-cell chemoattractant at low doses and a
chemorepellent at high doses (Poznansky et al., 2000; Vianello
et al., 2006). So it is interesting to up-regulate CXCL12 before
the onset of EAE, and observe whether the upregulated CXCL12
can alleviate the symptoms, or even inhibit the occurrence
of EAE.

In this study, polyethylene catheters (PE-10 tubing) were placed
into the subarachnoid space near the lumbar enlargement of rats,
and overexpression of CXCL12-GFP in this area of CNS was
induced by injection of AAV through the PE-10 tubing. 21 days
after infection, EAE model was builded. The aim was to verify
whether direct upregulation of CXCL12 gene in the spinal cord
could promote the remyelination or exacerbate EAE symptoms by
enhancing leukocyte infiltration.

Materials and methods

Animals and intrathecal catheter
implantation

Ten-week-old female Lewis rats (180–220 g) were purchased
from Vital river of China and raised under specific pathogen-free
conditions. The rats were anesthetized with sodium pentobarbital
(50 mg/kg), and then a polyethylene catheter was inserted through
a hole made in the posterior atlantooccipital membrane (Chen
et al., 2020). The catheter was threaded 7 cm caudally into the
subarachnoid space of the spinal cord (Chen et al., 2020). The
end of the tube opened approximately in the lumbar enlargement.
The rostral part of the tube was sutured to the muscle for
immobilization. After intrathecal catheter implantation, the rats
were housed individually and allowed to recover for 7 days before
AAV9 was injected into the subarachnoid space through a PE-10
tube (Portex Tubing PE 0.28∗0.165 mm Bx, Scientific Laboratory
Supplies, Nottingham).
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AAV vector production

The AAV9 vectors (pAAV-CMV-bGlobin-EGFP-P2A) were
used in this study to package rat CXCL12 (GenBank ID:
NM_022177). AAV9 viral stocks with the recombinant AAV vector
were produced according to the three-plasmid cotransfection
method by Obio Technology Corp., Ltd., (Shanghai, China)
(Beckman et al., 2021). The titers of purified AAV9/eGFP
and AAV9/eGFP-P2A-CXCL12 were measured by quantitative
polymerase chain reaction (qPCR) using SYBR green technology.1

The AAVs were aliquoted and stored at −80◦C until further use.

Study design

To determine the functions of CXCL12 in the rat CNS
in EAE, an AAV9 vector expressing CXCL12 (AAV9/eGFP-
P2A-CXCL12) was administered, as mentioned above; an eGFP
vector (AAV9/eGFP) acted as the control. Each rat received
1 × 1012 vg/ml AAV9/eGFP-P2A-CXCL12 or AAV9/eGFP
intrathecally via a polyethylene catheter that was inserted through
a small hole made in the posterior atlantooccipital membrane.
Then, the rats were divided into three groups: CXCL12, eGFP

1 https://www.addgene.org/protocols/aav-titration-qpcr-using-sybr-
green-technology/

and CXCL12 + AMD3100. AMD3100, a CXCR4 antagonist,
was injected into the CNS through the catheter 2 days after
immunization with spinal cord homogenate (SCH) and complete
Freund’s adjuvant (CFA). AMD3100 (Sigma-Aldrich, St. Louis,
MO, USA), was dissolved in normal saline to an injection dose of
40 µg/10 µ l per rat.

Induction of EAE

Twenty-one days after AAV injection, the rats were immunized
with a 400-µl mixture containing 200 µl of spinal cord homogenate
(SCH) and an equal volume of complete freund’s adjuvant (CFA,
Sigma) by subcutaneous injection in the base of the tail. Forty-
eight hours after immunization, the rats received 400 ng of pertussis
toxin (Sigma) in 200 µl of PBS via intraperitoneal injection. The
animals were observed and scored. Scoring was completed using
a standard five-point scale: 0, no deficit; 0.5, partial loss of tail
tone or slightly abnormal gait; 1.0, complete tail paralysis or both
partial loss of tail tone and mild hind limb weakness; 1.5, complete
tail paralysis and mild hind limb weakness; 2.0, tail paralysis
with moderate hind limb weakness (evidenced by frequent foot
dragging); 2.5, no weight bearing on hind limbs (dragging) but
with some leg movement; 3.0, complete hind limb paralysis with
no residual movement; 3.5, hind limb paralysis with mild weakness
in forelimbs; 4.0, complete quadriplegia but with some movement
of the head; 4.5, moribund; and 5.0, death.

FIGURE 1

CXCL12-GFP and eGFP were upregulated in the lumbar enlargement of the spinal cord. (A) Adeno-associated virus (AAV)-mediated upregulation of
CXCL12 and eGFP in the lumbar enlargement was robust. On the 21st day after infection, immunofluorescence showed that the level of CXCL12 in
the lumbar enlargement was much higher in the CXCL12-GFP group than in the eGFP group, and the CXCL12 and eGFP signals in the white matter
were stronger than those in the gray matter of the spinal cord. The bar in the lower right represents 50 µm. (B) Western blot (WB) results also show
that the expression of CXCL12 in spinal cord of CXCL12 group, particularly in regions surrounding the cannula tip, was higher than the eGFP group.
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Histological and fluorescent
immunostaining

First, the rats were anesthetized by intraperitoneal injection of
pentobarbital sodium (50 mg/kg), and then the rats were perfused
through heart with precooled PBS followed by precooled 4%
paraformaldehyde (PFA) in PBS. The spinal cord was isolated
and fixed for 6 h and then immersed in 30% sucrose for 48 h.
After freezing in Tissue–Tek OCT compound (Sakura, Japan), the
spinal cord was sliced by a freezing microtome (CM1850, Leica
Biosystems, Heidelberg, Germany); 10-µm-thick coronal sections
were prepared and processed for Luxol fast blue periodic acid-
Schiff (LFB-PAS) (Sigma-Aldrich, St. Louis, MO, USA) staining
as well as fluorescent immunostaining for detect the severity of
demyelination in each stages. The slides were dehydrated to 95%
alcohol and incubated in 0.1% LFB solution about 10–16 h at
58◦C, then sections were differentiated in 0.05% lithium carbonate
solution and 70% alcohol then counterstained with PAS (Li et al.,
2013). For fluorescent immunostaining, the slides were washed
with PBS, treated with blocking solution (5% normal donkey
serum in PBS) for 1 h at room temperature (25◦C) and then
stained with one of the following primary antibodies (diluted
in blocking solution) in a humidified box overnight at 4◦C:
anti-MBP (1:100, Abcam, UK); anti-GFAP (1:200, CST, USA);
anti-NG2 (1:100, Abcam, UK); anti-CD45 (1:100, Abcam, UK);
anti-CXCR4 (1:100, Abcam, UK); and anti-CXCL12 (1:100, Abcam,
UK). Finally, the slides were exposed to the appropriate secondary
antibodies (1:200, Abcam, UK) for 1 h in a humidified box at room
temperature. After immunostaining, the slides were stained with
DAPI to visualize the nuclei.

Western blot analysis

The spinal cord tissue of Lewis rats about 0.5 cm upstream
and downstream of the PE-10 tube’s end was obtained, and then
cut the tissue into 1–2 mm3 small pieces with ophthalmic scissors.
After adding 3–5 times the volume of RIPA lysis buffer (Beyotime,
China) and resuspending, the tissue was homogenized and then
gets ultrasonication for 30 s. Centrifuged the homogenate at
14,000 g 4◦C for 10 min for the supernatant and detected the
protein concentration by the BCA kit (Beyotime, China). Diluted
the sample protein concentration to 2 µg/µl with RIPA lysis
buffer. The protein samples (30 µg/each) denatured in 5x loading
buffer at 100◦C for 5 min. Samples were loaded and separated
electrophoretically using 8% SDS-PAGE gel operated at 100 V
(for 1 h) and then 130 V (for 1.5 h), respectively. Following
electrophoresis, samples were transferred to PVDF membranes
(invitrogen, USA) using transfer buffer contain 25 mM Trisbase,
192 mM Glycine and 20% methanol. Membranes were blocked
with 5% skimmed milk in Tris–buffered saline/0.1% Tween (TBST)
for 1 h at room temperature, followed by incubation with primary
antibody (rabbit anti-CXCL12, 1:1000, Abcam, UK; rabbit anti-
GFP, 1:1000, Abcam, UK; mouse anti-β-actin, 1:1000, Abcam, UK)
in blocking buffer (3%BSA in TBST) for 16 h at 4◦C. Membranes
were washed 3 × 15 min in TBST, and then incubated with goat
anti-rabbit or goat anti-mouse IgG (H + L) secondary antibodies
conjugated to horse-radish peroxidase (1:1000, Beyotime, China)

for 1 h at room temperature, washed 3 × 15 min in TBST, and then
visualized with ECL substrate (Thermo Scientific, USA) and imaged
with ChemiDoc MP system (Bio-Rad, USA).

Culture of OPCs

Oligodendrocyte precursor cells (OPCs) of WISTAR rats were
purchased from CHI Scientific Co., Ltd., (1-5110). OPCs were
cultured in Dulbecco’s modified Eagle’s medium (DMEM):F12
media (Gibco company, USA) supplemented with HEPES (Sigma,
USA), bFGF (human recombinant, 20 ng/ml, PeproTech, USA)
and EGF (mouse recombinant, 20 ng/ml, PeproTech, USA),
all from PeproTech Company, USA. The culture medium was
renewed every 2 days. For the differentiation experiments, OPCs
were cultured in the presence or absence of 10 ng/ml CXCL12
(PeproTech, USA) in differentiation medium. To demonstrate
the mechanism underlying the promotion of OPC differentiation,
cells were treated with AMD3100 (100 ng/ml) and incubated
for 12 days in differentiation medium. AMD3100 medium was
replaced every day.

Image analysis

All images were captured using a Leica DM4000B microscope.
The software settings for imaging kept exactly identical
among spinal cord sections in each immunostaining. Areas
of demyelination in the lumbar enlargement of spinal cords were
quantified using a 0–4 points semiquantitative scale system (Zhang
et al., 2019), where 0 = no demyelination; 1 = rare and focal
demyelination; 2 = multiple focal demyelination; 3 = large or
confluent demyelination; 4 = large and confluent demyelination.
All slides were read in a blinded manner. The fluorescence intensity
was calculated as the percentage of the antibody (anti-MBP, anti-
GFAP, anti-NG2, and anti-CD45) positive stained area to the total
area of spinal cord in the figure, and results from each rat were
counted in three slides. Statistical analysis was undertaken using
ImageJ software (version 1.39, NIH, USA).

Data statistics

The data were expressed as mean ± SEM (standard error
of mean). 1-way ANOVA (analysis of variance) was used to test
significant differences among three groups, and 2-tailed unpaired
Student’s t-test was used for two groups at each time point. P < 0.05
was considered statistically significant.

Results

Upregulation of CXCL12 in the spinal
cord lumbar nlargement of Lewis rats

After 21 days of the intrathecal injection of AAV9 (CXCL12 or
eGFP), rats were sacrificed for immunofluorescence analysis and
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Western blot (WB) tests (Figure 1). We found green fluorescence
in both groups (CXCL12 and eGFP) in the lumbar enlargement of
the spinal cord in Lewis rats (Figure 1A). The signal of CXCL12
were significantly higher in the CXCL12 group than in the control
group (eGFP group) (Figure 1A), and WB of spinal cord tissue
homogenates confirmed that (Figure 1B).

Upregulation of CXCL12 in the CNS can
alleviate EAE clinical scores

Experimental autoimmune encephalomyelitis (EAE) was
induced in the three groups: the eGFP group, CXCL12 group
and CXCL12 + AMD3100-treated group. Each group contained
nine rats. The clinical scores of all rats were collected and then
statistically analyzed. The results indicated that the EAE symptoms
of the AMD3100 treatment group were observed the earliest (8th
day), followed by the eGFP group (10th day) and the CXCL12
group (13th day) (Figure 2A). At the peak stage of EAE (12–
14 days), the mean of clinical scores of the CXCL12 group were
significantly lower than that of the other two groups, and no
relapse of EAE was observed in the CXCL12 group between the
24th and 30th day after EAE induction (Figure 2A). In addition,
at the recovery stage (33–38 days), the clinical scores of CXCL12
group were still significantly lower than that of the other two
groups (Figure 2A). Daily injection of 40 µg of AMD3100 after
induction of EAE through a PE-10 tube inserted in the back of
the head caused earlier onset of symptoms and extended the
duration of remyelination. The LFB-PAS staining showed that
there were no difference among three groups at the initial stage
(2–4 days) of EAE, however, higher demyelination scores of eGFP
and CXCL12 + AMD3100 groups compare to CXCL12 group in the
spinal cord at the peak stage and the recovery stage (Figures 2B,
C). The above results indicate that upregulation of CXCL12 in the
white matter of the spinal cord can effectively reduce clinical scores
and alleviate symptoms in the EAE model. Moreover, upregulated
CXCL12 appeared to inhibit the recurrence of EAE (Figure 2A;
25–27 days).

Upregulation of CXCL12 can effectively
reduce demyelination in EAE

Glia cells in the CNS, including microglia, astrocytes and
oligodencrocytes, are very important for homeostasis maintaining
and involved in the pathogenesis of MS directly (Stavropoulos et al.,
2021). Oligodencrocytes are responsible for generating myelin
sheaths and white matter tracts (Nave and Werner, 2014), and
crosstalk between astrocytes and oligodendrocytes is closely related
to the progress of MS (Patel et al., 2010; Stavropoulos et al., 2021).
The immunofluorescence assay results revealed no significant
differences in the expression levels of Myelin Basic Protein (MBP,
a marker of mature oligodendrocytes) and Glial Fibrillary Acidic
Protein (GFAP, a marker of astrocytes) among the three groups
at the initial (Figure 3) and recovery stages (Figure 5) of EAE.
However, at the peak stage of EAE, the fluorescence signals of MBP
and GFAP in the spinal cord of the CXCL12 group were higher than
those in the eGFP and CXCL12 + AMD3100 groups. The above

immunofluorescence results are consistent with LFB-PAS staining
results. Taken together, the results indicate that upregulation of
CXCL12 can effectively alleviate the symptoms of EAE by reducing
myelin damage.

The infiltration of peripheral immune cell into the CNS are the
early events in EAE development, and are also observed in brains of
MS patients (Floris et al., 2004; Ortiz et al., 2014). To determine the
underlying mechanisms of CXCL12’s effects on the myelin sheath
in the CNS, the signal of CD45 (a common leukocyte antigen)
was detected in the three stages of EAE. At the initial stage, there
were no significant differences in the CD45 signal among the three
groups (Figure 3). However, during the peak stage and recovery
stage, the CD45 signal in the CXCL12 group was significantly lower
than that in the other groups (Figures 4, 5). Thus, there was less
leukocyte infiltration in the CXCL12 group (Figures 3–5), which
might be an important mechanism underlying the alleviation of
the symptoms of EAE since lower leukocyte infiltration usually
indicates reduced neuroinflammation.

CXCL12 upregulation promotes the
differentiation of OPCs into
oligodendrocytes

In the CNS, Oligodorocytes is differentiated from OPCs. As
shown in Figures 3, 4, NG2 (a biomarker of OPCs) was significantly
upregulated in the spinal cord in the peak stage of EAE in the
eGFP and CXCL12 + AMD3100 groups; the same trend was also
observed in the recovery stage. This finding indicates that OPCs are
actively involved in remyelination of the myelin sheath. However,
in the CXCL12 group, it was difficult to detect OPCs at all stages
of EAE, and the duration of the peak time (from the 13th to 22nd
day) in the CXCL12 group was shorter than that of the other
two groups (13 days on average), which might be because the
upregulated CXCL12 promoted the mature differentiation of OPCs
into oligodendrocytes, thus promoting regeneration of the spinal
myelin sheath.

In vitro, OPCs of WISTAR rats were cultured in differentiation
medium with either 0 or 10 ng/ml CXCL12. Exogenous
CXCL12 (10 ng/ml) promoted the differentiation of OPCs
into oligodendrocytes, as shown by immunostaining for
MBP (Figure 6). AMD3100 was added to OPCs cultured in
differentiation medium in the presence of CXCL12 (10 ng/ml).
After 12 days, compared to the control differentiation culture
(10 ng/ml CXCL12), AMD3100 administration strongly inhibited
the differentiation of OPCs (Figure 6). Moreover, NG2 and
CXCR4 coexpression in OPCs was assessed (Figure 7). The
results were consistent with previous studies suggesting that the
CXCL12/CXCR4 axis promotes the differentiation of OPCs in vitro
and in vivo (Patel et al., 2010, 2012; Zilkha-Falb et al., 2016).

Discussion

Oligodendrocyte precursor cells (OPCs) originate in
subventricular zones that region is distant from white matter areas
within the CNS. The migration, proliferation, and differentiation
of OPCs are essential for repairment of demyelinated lesions.

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1105530
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1105530 March 11, 2023 Time: 14:44 # 6

Lin et al. 10.3389/fnins.2023.1105530

FIGURE 2

Upregulation of CXCL12 in the spinal cord can effectively reduce the clinical scores and demyelination of experimental autoimmune
encephalomyelitis (EAE). (A) EAE was induced in Lewis rats (n = 15 in each group). The clinical scores were determined as described in the Methods
section. The horizontal bars show the stages of EAE progression (the initial stage was 2–4 days, the peak stage was 12–14 days, and the recovery
stage was 38–40 days). The rats were sacrificed for immunofluorescence detection at the each stage. (B) Representative images of Luxol fast blue
periodic acid-Schiff (LFB-PAS) staining in the spinal cord at three stages in all three groups. The bar in the lower right represents 50 µm.
(C) Demyelination score based on LFB-PAS staining in spinal cord. Data presented as the mean ± SEM. “*” represents value of P < 0.05,
“**” represents value of P < 0.01, “***” represents value of P < 0.001 by 2-tailed unpaired Student’s t-test or 1-way ANOVA.
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FIGURE 3

Upregulation of CXCL12 did not induced peripheral immune cell infiltration in the spinal cord at the initial stage. At the initiation stage of
experimental autoimmune encephalomyelitis (EAE), the expression of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was similar
in all three groups, indicating that the myelin sheath was intact. During this period, the OPC (NG2 +) and leukocyte (CD45 +) signals in the spinal
cord were low. The bar charts show fluorescence intensity. Data presented as the mean ± SEM. “*” represents value of P < 0.05, “**” represents value
of P < 0.01, “***” represents value of P < 0.001 by 2-tailed Student’s t-test or 1-way ANOVA, n = 4 rats. The bar in the lower right represents 50 µm.
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FIGURE 4

Upregulation of CXCL12 alleviated the spinal cord aberrations of experimental autoimmune encephalomyelitis (EAE) at the peak stage. At the peak
stage of EAE, the significant differences in the glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) signals between the three groups
showed that there was severe demyelination in the eGFP group and CXCL12-AMD3100 group. There were also significant differences in the CD45
and NG2 signals, suggesting that leukocyte infiltration likely led to deterioration of demyelination and that oligodendrocyte precursor cells (OPCs)
were actively involved in remyelination. Data presented as the mean ± SEM. “*” represents value of P < 0.05, “**” represents value of P < 0.01, “***”
represents value of P < 0.001 by two-tailed Student’s t-test or one-way ANOVA, n = 4–6 rats. The bar in the lower right represents 50 µm.
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FIGURE 5

At the recovery stage of experimental autoimmune encephalomyelitis (EAE), upregulation of CXCL12 promoted the remyelination of spinal cord.
During the recovery stage of EAE, the glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) signals indicated that the spinal myelin
sheath was restored in the eGFP group and CXCL12 + AMD3100 group, but the infiltration of leukocytes (CD45 +) and the migration of OPCs
(NG2 +) were still stronger than those in the CXCL12 group. Data presented as the mean ± SEM. “*” represents value of P < 0.05, “**” represents
value of P < 0.01, “***” represents value of P < 0.001 by two-tailed Student’s t-test or one-way ANOVA, n = 4–6 rats. The bar in the lower right
represents 50 µm.
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FIGURE 6

Differentiation of oligodendrocyte precursor cells (OPCs) into
oligodendrocytes in vitro requires the induction of CXCL12. In vitro,
10 ng/ml CXCL12 promoted the differentiation of OPCs. Moreover,
400 ng/ml AMD3100 combined with CXCL12 inhibited
differentiation. The bar in the lower right represents 50 µm.

FIGURE 7

Oligodendrocyte precursor cells (OPCs) cultured in vitro
coexpressed CXCL12 and its receptor CXCR4. The bar in the lower
right represents 50 µm.

Therefore, the expression of chemoattractant which regulate neural
precursor cells migrate and mature to replace damaged cells is
essential for CNS injury response. CXCL12 and its receptors
are widely expressed in the CNS and play an important role
in the differentiation and maturation of NPCs and OPCs (Chu
et al., 2017). Several previous studies have shown that CXCL12
can promote the migration of leukocytes to the lesion area of
demyelination in the CNS during the progression of MS, thus
aggravating the disease (Williams et al., 2014). In contrast, CXCL12
also promotes the migration and differentiation of OPCs to the
lesion, thereby enhancing remyelination (Patel et al., 2010, 2012;
Zilkha-Falb et al., 2016). In summary, the role of CXCL12 in the
onset and progression of MS is complicated.

In this study, we up-regulated CXCL12 in the lumbar
enlargement of spinal cord by AAV. This specific region was
selected because the lesions of EAE predominantly distributed in
the lumbosacral region of the spinal cord (Gibson-Corley et al.,
2016). Immunofluorescence detection showed that the region of
upregulated CXCL12 was limited to the vicinity of the PE-10 orifice.
Immunofluorescence suggested that the level of CXCL12 in this
region of the spinal cord was significantly higher in the CXCL12-
GFP group than in the eGFP group (Figure 1A), and WB of SCH

also confirm that (Figure 1B). Upregulated CXCL12 effectively
alleviated the symptoms of EAE, reduced the clinical scores, and
inhibited recurrence between days 24 and 30 in the EAE model. The
MBP and GFAP signals in the CXCL12 group were stronger than
those in the eGFP group at the peak stage of EAE. Moreover, a high
level of CXCL12 did not induce significant leukocyte infiltration
into the white matter of the spinal cord. Taken together with the
results of the CXCL12 + AMD3100 group, these findings suggest
the effect of CXCL12 can alleviate the symptoms at peak stage
of EAE and inhibited the relapse. However, since the high level
of CXCL12 did not induce more leukocyte infiltration, CXCL12
overexpression may not be a necessary or sufficient condition to
induce leukocyte migration into the CNS.

Previous studies have shown that remyelination in rodents is
closely related to OPCs migration and differentiation (Lombardi
et al., 2019). At the peak stage of the EAE model, the level of
CXCL12 was upregulated in the spinal cord; this is consistent with
several studies that have shown that CXCL12 enhanced the process
of remyelination (Zeis et al., 2018; Gao et al., 2019; Beigi et al.,
2020). Furthermore, the findings of the current study indicated
that the NG2 signal (OPCs) in the spinal cord of the CXCL12
group was significantly lower than that of the other two groups
at the peak stage and recovery stage, while the MBP signal was
much stronger, suggesting that the differentiation of OPCs into
oligodendrocytes in the CXCL12 group was due to the continuously
upregulated CXCL12. In vitro, CXCL12 (10 ng/ml) promoted the
differentiation of OPCs into oligodendrocytes (Figure 6), and the
CXCR4 antagonist AMD3100 strongly inhibited the differentiation
of OPCs (Figure 6). This finding suggests that CXCL12 protects
the CNS of rats by promoting the differentiation of OPCs into
oligodendrocytes.

The clinical scores of the CXCL12 group were significantly
lower than those of the eGFP group and the AMD3100
treatment group, and there was no recurrence during days 24–
30. In vitro, 10 ng/ml CXCL12 promoted the differentiation of
OPCs into oligodendrocytes, which is consistent with previous
studies (Zilkha-Falb et al., 2016). These results suggest that
upregulation of CXCL12 can alleviate EAE symptoms and inhibit
EAE recurrence through the underlying mechanism of initiating
OPC maturation and differentiation. No significant difference in
leukocyte infiltration in the EAE initial phase was found between
the CXCL12 group and the other two groups using CD45 detection.
At the EAE peak stage, the CXCL12 group had a significantly
lower D45 + signal than the other groups. Yamasaki et al. (2014)
reported that infiltrating monocyte-derived macrophages initiate
demyelination; therefore, less infiltration of macrophages may
delay the onset of EAE and alleviate the symptoms of EAE in
the peak stage. In vivo, several previous studies have reported
that CXCL12 acts as a T-cell chemoattractant at low doses and
a chemorepellent at high doses (Poznansky et al., 2000; Vianello
et al., 2006). Furthermore, Meiron et al. (2008) demonstrated that
CXCL12 could transform effector Type 1 T helper (Th1) cells in
the CNS into regulatory T cells that produce interleukin (IL)-10, an
anti-inflammatory cytokine, thereby reducing neuroinflammation
and further reducing the infiltration of leukocytes. This observation
may explain why the infiltration of leukocytes was lower in the
CXCL12 group than in the other groups.

The data presented in this study indicate that upregulation
of CXCL12 in in the lumbar enlargement of the spinal cord can
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significantly reduce the symptoms and recurrence of EAE in a
rat model. Furthermore, the CXCL12/CXCR4 axis may enhance
remyelination by promoting the differentiation and maturation
of OPCs, suggesting that the CXCL12/CXCR4 axis could be a
promising therapeutic candidate to improve remyelination in MS.
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