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Functional MRI studies have achieved promising outcomes in revealing abnormal
functional connectivity in Parkinson’s disease (PD). The primary sensorimotor area
(PSMA) received a large amount of attention because it closely correlates with
motor deficits. While functional connectivity represents signaling between PSMA
and other brain regions, the metabolic mechanism behind PSMA connectivity has
rarely been well established. By introducing hybrid PET/MRI scanning, the current
study enrolled 33 advanced PD patients during medication-o� condition and 25
age-and-sex-matched healthy controls (HCs), aiming to not only identify the
abnormal functional connectome pattern of the PSMA, but also to simultaneously
investigate how PSMA functional connectome correlates with glucose metabolism.
We calculated degree centrality (DC) and the ratio of standard uptake value (SUVr)
using resting state fMRI and 18F-FDG-PET data. A two-sample t-test revealed
significantly decreased PSMA DC (PFWE < 0.014) in PD patients. The PSMA DC also
correlated negatively with H-Y stage (P = 0.031). We found a widespread reduction
of H-Y stage associated (P-values < 0.041) functional connectivity between PSMA
and the visual network, attention network, somatomotor network, limbic network,
frontoparietal network as well as the default mode network. The PSMA DC correlated
positively with FDG-uptake in the HCs (P = 0.039) but not in the PD patients (P
> 0.44). In summary, we identified disease severity-dependent PSMA functional
connectome which in addition uncoupled with glucose metabolism in PD patients.
The current study highlighted the critical role of simultaneous PET/fMRI in revealing
the functional-metabolic mechanism in the PSMA of PD patients.

KEYWORDS

Parkinson’s disease, sensorimotor cortex, glucose metabolism, functional connectome,
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1. Introduction

Despite the increasing number of studies that begin to shed light on cognitive impairment
of Parkinson’s disease (PD), the core symptom of this neurodegenerative disease has always
been motor deficits such as resting tremor, akinesia or postural instability (Maiti et al., 2017).
Being the cortical terminal of the cortical-basal ganglia-thalamus pathway (Calabresi et al.,
2014) that has been disrupted by basal ganglia dysfunction in PD (DeLong, 1990; Dauer and
Przedborski, 2003; McGregor and Nelson, 2019), the primary sensorimotor area (PSMA) has
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received enormous attention from various studies. Although
promising outcomes regarding the PSMA functional connectivity
and metabolic activity have been separately obtained by fMRI and
18F-fluorodeoxyglucose (FDG) PET studies (Ma et al., 2007; Wu et al.,
2011; Thibes et al., 2017), yet how functional connectome of the
PSMA associate with glucose metabolism in PD patients against the
healthy population is still obscure.

Seed-based functional connectivity studies in relation to the
PSMA were not convergent. While increased connectivity in
the primary motor area (M1) was obtained Wu et al. (2009,
2011), Sharman et al. (2013) have revealed reduced connectivity
within the sensorimotor cortex (Sharman et al., 2013) which
is consistent with a longitudinal study that obtained reduced
sensorimotor connectivity (Li et al., 2020). A potential reason for
the diverse observations among the above-mentioned functional
connectivity studies is the biased connectivity second to seed
selection. Comparably, data-driven approaches like the degree
centrality (DC) could assess the functional connectivity strength
on a voxel-wise manner which allows researchers to investigate
the functional connectome of the brain without prior selection of
seed (Zuo et al., 2011). The DC approach has been successively
applied in PD studies and researchers have consistently found
reduced connectivity strength in the PSMA (Zhong et al., 2019;
Guo et al., 2020). A thorough examination of the PSMA DC
and its association with glucose metabolism may deepen the
understanding of the functional-metabolic binding mechanism in
PD patients.

Glucose metabolism is the physiological basis of the
organization of functional networks as the majority of the
energy consumption is dedicated to neural communication
across species (Hyder et al., 2013). 18F-FDG-PET studies have
reliably shown abnormal glucose metabolism in PD patients,
including increased FDG-uptake in the cortical-basal ganglia-
thalamus-cortical loop and reduction of FDG-uptake in the
visual area and the frontoparietal networks (Schindlbeck and
Eidelberg, 2018). Therefore, glucose metabolism plays both
physiologically and pathologically a critical role in the architecture
of system-level networks in PD patients. Recent studies applied
multi-neuroimaging modality approach to study the inter-
relationship among the dopamine impairment, abnormal
glucose metabolism and functional network neurodegeneration
in PD patients (Ruppert et al., 2020, 2021). However, the
metabolic and functional data of these studies were acquired
separately on PET and MRI scanners, limiting the strength of
functional-metabolic investigation.

While the functional connectome described by the DC
approach reflects how PSMA is functionally associated with
the rest of the brain, the association with the metabolic basis,
as measured via FDG-uptake is poorly studied. One critical
reason is the lack of simultaneous acquisition of both the
functional as well as metabolic data, causing difficulty for the
combination of the two phenotypes. Here, we applied hybrid
PET/MRI to simultaneously measure functional connectivity
and glucose metabolism of the PSMA. Our overall aim is to
investigate the how functional-metabolic coupling of PSMA
functional connectome and glucose metabolism could vary in PD
patients. We hypothesize that the PSMA may show both impaired
functional connectivity and glucose metabolism in PD, and that
the correlation between the two phenotypes may also vary in the
two groups.

2. Materials and methods

2.1. Subjects

The study protocol was approved by the ethics committee
of Xuanwu Hospital. After providing written informed consent,
simultaneous PET/fMRI data were collected from 42 PD patients and
age-and-sex balanced 25 HCs. Our data were previously reported
(Zang et al., 2022a,b) where we investigated basal ganglia functional-
metabolic features. Here, we instead focus on the sensorimotor
cortex. Our PD patients were diagnosed with the movement
disorder (MDS)-PD criteria (Postuma et al., 2015, 2018). PD patients
who were younger than 40 years old or older than 75 years
old were excluded for age-balancing purposes with the HCs. All
participants were right-handed and reported no history of head
trauma, psychiatric disease and cerebral vascular disease. To reduce
the influence of head motion on fMRI data, we excluded eight PD
patients who exceeded 30% of time points that were larger than
0.5 mm frame-wise displacement during data acquisition. PD patients
were instructed to not use dopaminergic medication for at least 12
hours before the scan. Detailed information on all our subjects was
provided in Table 1.

2.2. Hybrid PET/MR data acquisition

All patients were fasted for at least 6 hours before PET/MR
examination. The injected dose of 18F-FDG was 3.7 MBq/kg, with
a one-hour average duration between tracer injection and hybrid
PET/MR scan. PET/MR scan was performed on a hybrid PET/MR
system (uPMR790, UIH) with 3.0T MR and a 24-channel coil. PET
acquisition was 10 min. We reconstructed PET data using time of
fly (TOF) approach based on the following parameters: iterations =
4, subsets = 20, Gaussian filter = 3 mm, matrix size = 2562 × 56,
thickness = 2.8 mm, field of view (FOV) = 300 mm × 300 mm, and
voxel size= 2.4 mm× 2.4 mm× 2.8 mm.

Before resting-state fMRI acquisition, we instructed subjects to
close their eyes, relax, and not engage in any particular mental
activity during the scan. Acquisition parameters were as follow: TR
= 2000 ms, TE = 30 ms, slice thickness = 3.5 mm, voxel size = 3.5
× 3.5 × 3.5 mm3, 0.7 mm slice gap, 31 slices, 230 × 230 mm FOV,
volume = 230 and 90◦ flip angle. The high-resolution 3-dimensional
T1-weighted images were acquired with the following parameters: TR
= 7.9 ms, TE= 3.8 ms, 176 slices, FOV= 256× 256 mm, and 1 mm3

spatial resolution.

2.3. PET images processing

PET images were processed in SPM12. PET images were firstly
co-registered to T1 images and then spatially normalized to the
standard MNI template. An 8-mm full width at half maximum
(FWHM) Gaussian kernel was used for spatial smoothing.

An iterative data-driven approach (Nie et al., 2018) for the ratio
of standard uptake value (SUVr) was applied: (1) initial reference
was defined as the whole brain, named “Ref0”; (2) the mean value
of “Ref0” was used as global confounds for a voxel-wise two-sample
t-test w between the preprocessed images of PD patients and HC; (3)
The significant regions defined by the two-sample t-test was defined
as “SigRegion” based on a Puncorrected < 0.05 threshold; (4) create a
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TABLE 1 Demographic information of subjects.

Healthy controls Parkinson’s disease P-value Statistics

Number 25 33 (42 recruited)

Sex (m/f) 8 / 17 12 / 21 0.73 χ2
= 0.12

Age (±SD) 60.00± 4.54 62.33± 6.50 0.13 T=−1.53

FD Power (±SD) 0.22± 0.09 0.21± 0.08 0.66 T= 0.44

H-Y Stage (±SD) 2.94± 0.77

UPDRS III (±SD) 59.73± 15.24

Disease Duration (±SD) 9.58± 4.10

MMSE (±SD) 23.07± 3.66

MoCA (±SD) 26.67± 2.97

Dopamine equivalent (±SD) 879.88± 432.81 (mg/day)

Mean ± Standard deviations are shown. FD Power, Power’s Frame-wise displacement; H-Y Stage, Hoehn and Yahr Stage; UPDRS III, Unified Parkinson’s Disease Rating Scale part III; MMSE,
Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.

new reference region “Ref1” by excluding “SigRegion” from “Ref0”;
5) use “Ref1” as the new global confound, and repeat steps 2-5 until
the residual deviation between the “Ref1” and “Ref0” was reduced by
less than 5%; (6) The latest “Ref1” was accepted as the data-driven
unbiased reference region.

One patient was excluded due to enormous imaging artifacts,
resulting in 58 subjects in total for further analyses (25 HC, 33 PD).

2.4. fMRI data processing

Image processing followed the standard routine
in Statistical Parametric Mapping software (SPM12,
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/): (1) realigned
for head motion correction; (2) slice timing (3) co-registering to
the high-resolution 3D T1 images; (4) segmentation, and (5) spatial
normalization of functional images via T1 images (resampled to 3
× 3 × 3 mm3). An 8-mm FWHM Gaussian kernel was applied for
spatial smoothing. After spatial smoothing, we further regressed out
the time series of white matter (WM 99% probability SPM map),
cerebrospinal fluid (CSF 90% probability SPM map) (Zang et al.,
2018), global mean time course, six head motion parameters from
the realignment step, and the frame-wise displacement (FD) (Power
et al., 2012). As mentioned above, we excluded subjects with over
30% time points that exceeded 0.5-mm FD. A 0.01-0.1 Hz band pass
filtering was applied.

2.5. PSMA functional connectome

Firstly, we calculated voxel-wise binary degree centrality (DC)
(Zuo et al., 2011). Voxel-by-voxel connections with r > 0.2 were
counted as 1 while connections with r ≤ 0.2 were counted as 0.
Each voxel’s value on the resulting DC map indicates the number of
voxels in the brain surpassed the 0.2 threshold (Wang et al., 2014;
Takeuchi et al., 2015). For normalization purpose, the resulting DC
map was normalized by dividing the individual’s mean DC value
across the brain.

Since we specifically focus on the functional connectome and
the association with glucose metabolism in the PSMA, we applied

the bilateral precentral gyrus and postcentral gyrus from the AAL
template (Tzourio-Mazoyer et al., 2002) for group analyses. We
applied a two-sample t-test with age, sex and FD as covariate of
non-interests to localize the PSMA cluster that showed significant
DC difference between PD and HCs. Clusters were defined using the
following criteria: 1) peak voxel surviving family-wise error (FWE)
correction (i.e., PFWE < 0.05) within the PSMA mask and 2) cluster
size > 10 voxels (i.e., 270 mm3) with Puncorrected < 0.001 threshold.
PSMA DC represents the functional connectome between PSMA and
the rest of the brain.

To further analyze which network contributes to the difference
of PSMA DC between PD patients and HCs, we decomposed the
PSMA connection with other voxels in the brain into nine networks
and analyzed the PSMA connection in each network. In detail, we
calculated the ratio of voxels with r > 0.2 coefficient against the
total number of voxels within each network as representation of
network-specific DC linked to PSMA (PSMA DC ratio). The nine
brain networks contained Yeo’s seven networks (Yeo et al., 2011),
the subcortical network as well as the cerebellum. We concatenated
the thalamus, caudate, putamen, and globous pallidus for the
construction of the subcortical network and all 26 subdivisions of
cerebellar areas for the cerebellum from the AAL template.

2.6. Correlation analyses

We extracted the mean SUVr value from the significant PSMA
cluster as the representation of FDG-uptake. Spearman’s correlation
was applied to calculate the association between PSMA functional
connectome and FDG-uptake, as well as the clinical measurements
(UPDRS III score, H-Y stage and disease duration). P < 0.05 was
defined as the threshold for significance.

3. Results

3.1. Clinical and demographic data

The clinical and demographic data are summarized in Table 1.
Thirty-three PD patients and 25 age (P = 0.13) and sex (P = 0.73)
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FIGURE 1

Display of significantly reduced degree centrality in the PSMA. (A) Shows the spatial distribution of the PSMA cluster (Punccorrected < 0.001). (B) Shows the
bar plots of normalized DC from the bilateral PSMA cluster. (C) Shows the correlation between normalized DC and the H-Y stage in PD patients. Error bars
represent standard errors.

matched HCs were used for statistical analyses. PD patients exhibited
balanced FD during fMRI scan (P= 0.66) compared to the HCs.

3.2. Reduced degree centrality in the PSMA

Compared with HCs, PD patients exhibited reduced DC in the
PSMA (right PSMA: peak T = 5.38, PFWE = 0.003, MNI = [63
−9 30], cluster size = 103 voxels at Puncorrected < 0.001; left PSMA:
peak T = 4.97, PFWE = 0.014, MNI = [– 42 −9 36], cluster size
= 145 voxels at Puncorrected < 0.001; Figures 1A, B). Age, sex and
FD were controlled as covariate of non-interests. Post-hoc analysis
revealed a significant negative correlation between PSMA DC and the
H-Y stage in the PD patients (rho = −0.38, P = 0.031, Figure 1C).
No significant correlation was found between the PSMA DC and
other clinical scores (UPDRS III, Disease duration, Mini-Mental State
Examination, Montreal Cognitive Assessment P-values > 0.18).

3.3. PSMA DC ratio distribute di�erently in
PD patients

Reduced PSMA DC in the PD patients and HCs distributed
widely in the brain (Puncorrected < 0.001, Supplementary Figure S1).
The ratio of PSMA DC with r > 0.2 against the each of the nine
network were significantly decreased in PD patients in the visual
network (T=−4.19, P < 0.001), somatomotor network (T=−4.44,
P < 0.001), dorsal attention network (T=−4.28, P < 0.001), ventral
attention network (T = −4.55, P < 0.001), limbic network (T =
−3.65, P = 0.001), frontoparietal network (T = −4.47, P < 0.001)
and the default mode network (T = −4.42, P < 0.001). However,
there was no group difference of the PSMA DC ratio in the subcortical

network (P > 0.49) and the cerebellum (P > 0.12). Group differences
of PSMA DC in the nine networks are shown in Figure 2.

In addition, we found significant negative correlations between
H-Y stage and PSMA DC ratio in the visual network (rho=−0.47, P
= 0.006), somatomotor network (rho = −0.50, P = 0.003), dorsal
attention network (rho = −0.46, P = 0.007), ventral attention
network (rho = −0.51, P = 0.003), limbic network (rho = −0.46,
P = 0.007), frontoparietal network (rho = −0.48, P = 0.005),
default mode network (rho = −0.46, P = 0.006) and the subcortical
network (rho=−0.36, P= 0.042). Disease duration was significantly
negatively correlated with PSMA DC ratio in the somatomotor
network (rho = −0.39, P = 0.024), dorsal attention network (rho
= −0.37, P = 0.035), ventral attention network (rho = −0.39, P
= 0.025), frontoparietal network (rho = −0.35, P = 0.045) and the
default mode network (rho = −0.36, P = 0.041). Although UPDRS
III score was positively correlated with H-Y stage (P = 0.005), it did
not correlate with PSMA DC ratio in any of the nine networks (P
values > 0.5). Detailed correlation results between PSMA DC ratio
and the clinical measurements are shown in Table 2.

3.4. PSMA DC associate di�erently with
FDG-uptake in PD patients against HCs

We extracted the mean SUVr value from the PSMA cluster. Post-
hoc analysis revealed no significant group difference between PD and
HCs (P > 0.14) with age and sex as covariate of non-interests. There
was a significant positive correlation between the PSMA DC and
SUVr value in the HCs (rho = 0.42, P = 0.039, Figure 3A), but not
in the PD patients (P > 0.44, Figure 3B).

We performed two-sample t-test on the PET data and found
increased FDG-uptake in different clusters within the PSMA
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FIGURE 2

Display of nine networks and the group di�erence of PSMA DC ratio with the networks. (A) Illustrates the spatial pattern of Yeo’s seven networks and the
subcortical network as well as the cerebellum. (B) Shows the bar plots of PSMA DC ratio di�erences. Significant reduced PSMA DC ratio could be
obtained in Yeo’s seven networks (P-values < 0.01). Error bars represent standard errors.

TABLE 2 Spearman’s correlation (rho) between clinical measurements and PSMA FCS with brain networks.

Visual S.Motor D. Attention V. Attention Limbic FP Default Subcortical Cerebellum

UPDRS III −0.088 −0.114 −0.117 −0.113 −0.067 −0.106 −0.087 −0.091 −0.036

H-Y Stage −0.469∗∗ −0.503∗∗ −0.464∗∗ −0.505∗∗ −0.460∗∗ −0.478∗∗ −0.460∗∗ −0.356∗ −0.298

Duration −0.324 −0.393∗ −0.367∗ −0.390∗ −0.331 −0.351∗ −0.358∗ −0.213 −0.142

S.Motor, Somatomotor; D. Attention, Dorsal Attention; V. Attention, Ventral Attention; FP, Front parietal; ∗P < 0.05; ∗∗P < 0.01.

FIGURE 3

Correlation between PSMA DC and FDG-uptake. (A) Significant correlation was identified between PSMA DC and FDG-uptake in the HCs (rho = 0.42, P =
0.039). (B) The correlation between PSMA DC and FDG-uptake was not significant in PD patients (P > 0.44).

(Puncorrected < 0.001, Supplementary Figure S2). However, there was
no spatial overlap between the increased FDG-uptake cluster and
the reduced PSMA DC cluster. The SUVr value extracted from the
Puncorrected < 0.001 cluster in PSMA did not correlate with PSMA DC
in any groups (P-values > 0.8), nor did it correlate with any clinical
measurements (P-values > 0.15).

4. Discussion

In the current simultaneous PET/fMRI study, we investigated the
functional connectome and the association with glucose metabolism
in the primary sensorimotor area (PSMA) in PD patients. Our
main results were: (1) significant reduced PSMA degree centrality
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(DC) in PD patients, which was also correlated with H-Y stage; (2)
the PSMA degree centrality reduction in PD could be attributed
to reduced DC ratio in the visual, attention, somatomotor, limbic,
frontoparietal and default mode network and (3) the significant
correlation between PSMA DC and glucose metabolism in the
healthy population disappeared in PD patients. The main results will
be discussed in the following paragraphs.

Degree centrality (DC) measures the number of connection
linking to a node in the brain network. Here, we found reduced
DC in the bilateral PSMA, meaning that the degree of functional
strength decreased in PD patients. Similar observation was reported
in a recently published meta-analysis study that cognitively
normal PD patients showed reduced functional connectivity in
the precentral gyrus (Wolters et al., 2019). In the current study,
we also detected significant negative correlation between the
PSMA DC and H-Y stage where severer PD patients showed
severer loss-of-connection in PSMA. In addition, the location
of significant PSMA DC reduction overlapped with pathological
lesions corresponding to Braak’s stage 5 and 6 (Braak et al., 2003),
supporting the idea that PSMA DC reduction is a disease-severity
functional feature.

By decomposing the functional connectome of PSMA into nine
brain networks, we found significantly reduced connection between
PSMA and visual, attention, somatomotor, frontoparietal, limbic
and the default mode network. Further, connections between PSMA
and these networks showed unanimously negative associations with
H-Y stage and disease duration, suggesting a widespread disease
severity-dependent pattern of PSMA functional connectome in PD
patients. Loss-of-connection effect in the PSMA was reproducible
in PD patients as similar observation was reported in previous
studies (Guo et al., 2020; Suo et al., 2022). Further, PSMA DC
could be significantly modulated by the deep brain stimulation
in the subthalamic nucleus and internal globus pallidus, and the
magnitude of PSMA DC alteration between on-off conditions was
significantly correlated with motor behavior improvement (Zhang
et al., 2021). Interestingly, the dysconnectivity of PSMA with the
default mode network and the visual network may be associated
with cognitive decline and visual hallucination (Tessitore et al.,
2012; Zarkali et al., 2020), suggesting that the imbalanced network
coupling of both motor and non-motor aspect that was influenced
by the pathophysiology of parkinsonism. In addition, the reduced
connectivity of the frontalparietal network may contribute to the
lack of capability task-set maintenance in PD patients (Tinaz
et al., 2016), as the frontal-parietal network was key to cognitive
control and motor execution (Husárová et al., 2013). Together,
the reduced functional connectivity strength of the PSMA in PD
patients may denote an impairment of coordination within the large-
scale network.

The network functional connectome exhibited only mediocre
reliability (Noble et al., 2017) and a proportion of the reason
being the variability of brain functions. Therefore, simultaneous
PET/fMRI data acquisition is the base of capturing precise functional-
metabolic coupling in PD patients. Comparable to previous study
(Wu et al., 2013; Matthews et al., 2018), significant increased
FDG-uptake in the PSMA was obtained. However, the cluster
showing increased FDG-uptake located in adjacent to the paracentral
lobule, which did not overlap with the cluster showing PSMA
DC reduction. That being said, we did not obtain significant

difference of FDG-uptake in the cluster showing the most significant
PSMA DC reduction. Although the FDG-uptake in the PSMA
DC cluster did not differ between PD patients and healthy
populations, association between FDG-uptake and PSMA DC
exhibited differently. In healthy population, a significant positive
correlation between FDG-uptake and PSMA DC was obtained,
indicating a coupling effect between PSMA functional signaling
and energy consumption (Attwell and Laughlin, 2001; Harris et al.,
2012). However, this coupling effect was disrupted in PD patients
as the significant correlation between FDG-uptake and PSMA
DC disappeared.

There are several limitations in the current study. Firstly, we
recruited moderate to severe patients which limit the capability to
explore how PSMA connectome and glucose metabolism distributed
in mild even de novo PD patients. Secondly, although we found
different correlations between PSMA DC and FDG-uptake between
HC and PD, the clusters showing altered FDG-uptake distributed
at a more superior level which is adjacent to the paracentral lobule.
Therefore, we cannot fully exclude that the lack of correlation in
the PD group was partially due to the location of clusters showing
increased FDG-uptake.

Conclusion

In conclusion, the current study is, to the best of our knowledge,
the first to utilize simultaneous PET/fMRI data acquisition protocol
to investigate the disruption of functional connectome and the
association with glucose metabolism in the primary sensorimotor
area of PD patients. We identified an uncoupling effect between
glucose metabolism and functional connectome feature in PD
patients. The current study not only provided metabolic basis for
explaining the impairment of functional connectome in the primary
sensorimotor area in PD patients, but also highlighted the critical
role of hybrid PET/MRI scanner in revealing functional-metabolic
mechanism of this neurodegeneration disease.
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