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Purpose: A common ocular manifestation, macular edema (ME) is the primary cause

of visual deterioration. In this study, an artificial intelligence method based on multi-

feature fusion was introduced to enable automatic ME classification on spectral-

domain optical coherence tomography (SD-OCT) images, to provide a convenient

method of clinical diagnosis.

Methods: First, 1,213 two-dimensional (2D) cross-sectional OCT images of ME

were collected from the Jiangxi Provincial People’s Hospital between 2016 and

2021. According to OCT reports of senior ophthalmologists, there were 300

images with diabetic (DME), 303 images with age-related macular degeneration

(AMD), 304 images with retinal-vein occlusion (RVO), and 306 images with central

serous chorioretinopathy (CSC). Then, traditional omics features of the images

were extracted based on the first-order statistics, shape, size, and texture. After

extraction by the alexnet, inception_v3, resnet34, and vgg13 models and selected

by dimensionality reduction using principal components analysis (PCA), the deep-

learning features were fused. Next, the gradient-weighted class-activation map

(Grad-CAM) was used to visualize the-deep-learning process. Finally, the fusion

features set, which was fused from the traditional omics features and the deep-fusion

features, was used to establish the final classification models. The performance of the

final models was evaluated by accuracy, confusion matrix, and the receiver operating

characteristic (ROC) curve.

Results: Compared with other classification models, the performance of the support

vector machine (SVM) model was best, with an accuracy of 93.8%. The area under

curves AUC of micro- and macro-averages were 99%, and the AUC of the AMD, DME,

RVO, and CSC groups were 100, 99, 98, and 100%, respectively.

Conclusion: The artificial intelligence model in this study could be used to classify

DME, AME, RVO, and CSC accurately from SD-OCT images.
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Introduction

Macular edema (ME) is a common ocular manifestation of
fluid infiltration or inflammation in the sensitive macular area of
the retina, and is an important cause of visual deterioration (Song
et al., 2022). There are several ME-related eye diseases, including
diabetic ME (DME), retinal-vein occlusion (RVO), age-related
macular degeneration (AMD), and central serous chorioretinopathy
(CSC). Chronic hyperglycemia in diabetes mellitus (DM) causes
damage to capillaries, resulting in retinal ischemia and increased
vascular permeability, which leads to DME (Kim et al., 2020).
Wet AMD is a result of subretinal choroidal neovascularization,
resulting in fragile and leaky blood vessels that penetrate through
Bruch’s membrane and cause edema (McGill et al., 2017). Excessive
angiogenic growth factors, caused by hypoxia secondary to RVO,
leads to vascular leakage and ME (Narayanan et al., 2021). In
CSC, choroidal congestion, thickening, and hyperpermeability are
considered to cause leakage through the retinal pigment epithelium
(RPE) (Schellevis et al., 2019).

Optical coherence tomography (OCT) is a high-resolution, non-
contact, and non-invasive biomedical imaging technique and is
often used in eye clinics for macular disease. The basic principle
of OCT imaging is that a beam of light is emitted into the tissues
to be examined and detects the reflected or back-scattered light
from the tissues; this reflected light will interfere with light that
originated from the same source and the reflectivity profile along
the light beam can be derived from the interference signal and
used to generate an A-scan (Liu et al., 2019). The combination of
multiple A-scans along the horizontal axis produces a brightness
scan (B-scan) (Khalid et al., 2017). Compared with Fundus cameras,
OCT systems has the high contrast and depth sectioning capability
(LaRocca et al., 2014). And high-quality cross-sectional images of
the neurosensory retina can be acquired without pupil dilatation in
a matter of seconds (Ouyang et al., 2013). Therefore the sensitivity
of OCT for detection of a variety of retinal irregularities was
higher.

Macular edema diagnosis by OCT is based on the visualization
of the retinal structure. However, spectral-domain optical coherence
tomography (SD-OCT) can better delineate the different retinal
layers so that the histological changes of ME can be shown in
more detail. In DME patients, SD-OCT shows mild retinal edema
with cystic spaces located only in the outer plexiform layer (OPL),
whereas, when edema worsens, they involved both the OPL and
the outer nuclear layer (ONL) (Leung et al., 2008). SD-OCT
image analysis was also more sensitive than FAF for identifying
geographic atrophy GA in patients treated for exudative AMD
(Massamba et al., 2019). For CSC patients, SD-OCT can show shallow
serous detachments and provided precise information about the
amount and localization of subretinal fluid and RPE abnormalities
(Murthy et al., 2016). SD-OCT also can quantify retinal thickness
changes in eyes with cystoid macular edema (CME) from central
retinal vein occlusion (CRVO) and is superior to contact lens–
assisted biomicroscopy to identify foveal edema (Decroos et al.,
2013).

Currently, ME diagnosis depends on the subjective evaluation
of OCT and the clinical experience of ophthalmologists. Not only
does this process take a lot of time, energy, and requires training,
but the ability of ophthalmologists at different levels to diagnose
diseases ranges widely. With the application of artificial intelligence

in ophthalmology, a large number of machine learning-based
computer-aided diagnosis (CAD) models have been developed for
the quantitative analysis of OCT images to achieve the automatic
diagnosis of macular diseases. Alsaih et al. (2017) applied machine-
learning techniques for DME classification on SD-OCT images,
both the sensitivity (SE) and specificity (SP) of the best result
were 87.5%. Chen Y. et al. (2021) applied convolutional-neural-
network-based transfer learning to classify AMD, the CNN models
with appropriate algorithm hyperparameters had excellent capability
and performance in classifying OCT images of AMD and DME.
However, their studies made only binary classification, which limits
the application of machine-learning algorithms in the diagnosis
of many diseases. Wang et al. (2016) proposed a CAD model to
discriminate AMD, DME, and healthy macula on OCT images,
the best model based on the sequential minimal optimization
(SMO) algorithm achieved 99.3% in the overall accuracy for the
three classes of samples. However, the coverage of disease types
was still inadequate and their studies were all based on single
features.

Currently, the signal fusion methods have attracted the attention
of many researchers for solving pattern recognition problems,
and that were divided into three categories which are early
fusion, intermediate fusion, and late fusion (Verma and Tiwary,
2014). Early fusion is also named as feature level fusion which
emphasizes the data combination before the classification (Zhang
et al., 2017). It was defined as performing merge and splitting
operations on existing feature sets to generate new feature sets.
Using the feature fusion approach of deep learning and machine
learning, the complementary information of abstract features of
deep learning and detailed features of machine learning can be
realized (Wang et al., 2022). The accuracy of models could be
improved (Khan and Hasan, 2020). Therefore, we introduced an
artificial intelligence method of fusion of traditional features and
deep features, aiming to automate the classification of DME,
AME, RVO, and CSC from DM based on SD-OCT images
(Figure 1).

Materials and methods

Image collection and pre-processing

A total of 1,213 two-dimensional (2D) cross-sectional OCT
images of ME were collected from the Jiangxi Provincial People’s
Hospital (China) between 2016 and 2021. According to OCT reports
of a senior ophthalmologist, 300 images with DME, 303 images
with AMD, 304 images with RVO, and 306 images with CSC
were included. And the set was randomly divided into a training
set and a test set, at a ratio of 8:2. To protect patient privacy,
patient images were all anonymized prior to analysis. All the OCT
images were acquired by the same experienced ophthalmologist
on the same machine, i.e., Heidelberg Spectralis OCT (Heidelberg
Engineering, Dossenheim, Germany). Then, the macular area was
outlined manually with ITK-SNAP software, which was the mask
region of interest (ROI) images. The obtained mask files were used
for traditional omics features extraction. Next, the image was cropped
to the ROI specifications and the segments of ROI were used for DL
features extraction.
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FIGURE 1

The flowchart of this study.

Traditional omics features extraction and
selection

Based on the mask files of the original image files, traditional
omics features of images were extracted based on the first-order
statistics, shape, size, and texture. The Z-score standardization
method was then used to normalize the extracted features and the
Spearman correlation coefficients were used to select the normalized
feature.

DL features extraction and model
visualization

The segments of ROI were input into alexnet, inception_v3,
resnet34, and vgg13 models, respectively, which were initialized
using the pre-trained weights from ImageNet, and the DL
features were obtained. And then the DL features were selected
by dimensionality reduction using principal components
analysis (PCA). Finally, the selected features of the four DL
models were fused.

In order to evaluate the deep learning-focused regions, the
gradient-weighted class activation map (Grad-CAM) method was
used. In this method, gradient information flowing from input layers
to the last convolution layer of a convolutional neural network (CNN)
is used, and coarse heat maps of important regions in the input
images are generated (Chen T. et al., 2021). Based on the coarse heat
maps, we can understand which areas of the segments are most likely
to be focused by the DL models.

Early fusion and lasso model established

Feature fusion was performed after the pooling layer in the
model. The traditional omics features and the deep-fusion features
were fused into a composite feature vector. Then in the training set,
the composite feature vector was input into further fused as fusion
features set. A t-distributed stochastic neighbor embedding (t-SNE)
algorithm was used to visualize the features vectors from feature space
of high dimensions into 2D space. Then, the fusion features set was
divided into a training set and a test set, at a ratio of 7:3. The lasso
model which was established to further select features. We chosed
the optimal λ based on the minimum criteria according to fivefold
cross validation.

Classification models established

The support vector machine (SVM), K-nearest neighbor (KNN),
ExtraTrees, logistic regression (LR), and multilayer perceptron
(MLP) were used to establish the classification models in the training
set and the performance of the final classification models was
evaluated in the test set. Finally, the classification performance of the
different models was assessed and compared.

Statistical analysis

The accuracy, confusion matrix and the receiver operating
characteristic (ROC) curve of the classification models were used
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FIGURE 2

The pie chart for traditional omics features distribution.

FIGURE 3

Gradient-weighted class-activation map (Grad-CAM) visualization of deep learning feature extraction: CSC (A); AMD (B); DME (C); RVO (D). The blue part
that gathers inward from the red part is active, indicating that the model pays particular attention to this area (Huang et al., 2022).

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1097291
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1097291 January 24, 2023 Time: 15:31 # 5

Gan et al. 10.3389/fnins.2023.1097291

FIGURE 4

Feature visualization by t-distributed stochastic neighbor embedding (t-SNE): AMD (red); DME (green); RVO (blue); CSC (purple).

to evaluate the performance of models. All statistical analyses were
performed and visualized in Python (version 3.9.7).

Results

Characteristics of OCT images

The total of 1,213 original images of ME were collected, included
DME (n = 300), AMD (n = 303), RVO (n = 304), and CSC
(n = 306). The training set was consisted of 849 images, included
DME (n = 240), AMD (n = 243), RVO (n = 243), and CSC (n = 245).
The test set was consisted of 364 images, included DME (n = 60),
AMD (n = 60), RVO (n = 61), and CSC (n = 61). And then, the
original image files and corresponding mask files were obtained to
use for traditional omics features extraction. The segments based on
maximum ROI mask were used for deep learning features extraction.

Characteristics of traditional omics
features

For each ROI, a total of 107 features of each image were extracted,
and after the Spearman correlation coefficients, the final 38 features
of each image were selected. Including 6 first-order features, 4
shape-based features, and 28 textural features. The textural features
were composed of 5 Gray Level Co-occurrence Matrix (GLCM), 4
Gray Level Run Length Matrix (GLRLM), 9 Gray Level Size Zone
Matrix (GLSZM), 6 Gray Level Dependence Matrix (GLDM), and 4

Neighboring Gray Tone Difference Matrix (NGTDM) as shown in
Figure 2.

Characteristics of deep learning features
and model visualization

There were 9,216, 2,048, 512, and 16,383 deep learning features
of each image were obtained from the alxnet, inception_v3, resnet34,
and vgg13, respectively, which were on “avgpool” layer before last
FC layers. Dimension reduction with PCA compressed features into
31. Finally, a deep fusion feature subset containing 124 compression
features were obtained. And the heatmaps of Grad-CAM highlighted
areas which the deep learning models likely focused on as shown in
Figure 3.

Characteristics of fusion features

After the early fusion, a subset of each image that contains 162
features was got. Feature was visualized by t-SNE for an intuitive
perception of how well these features can distinguish different types
of ME, was shown in Figure 4.

Lasso model evaluation

The LASSO was used for automated feature selection in this
study. 53 features were selected to build the final classification models
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FIGURE 5

Feature selection in the lasso model: (A) Lasso coefficient profiles of the 162 fusion features, where each curve corresponds to one feature, the vertical
black line indicates an optimal λ. (B) Curve of binomial deviation varied with parameter λ, where value of the optimal log (λ) is marked by vertical dashed
lines.

based on the optimal lambda value and the corresponding coefficients
in the training set as shown in Figure 5.

Classification models evaluation

The accuracy of SVM model was highest than other models, up to
93.8% in the test set. And the KNN, ExtraTrees, MLP, and LR models
in the test set were only 90.08, 82.23, 90.50, and 86.77%, respectivily,
as shown in Table 1.

Since our problem is a multiclass classification, AUC of binary
class classification cannot be considered. So, micro- and macro-
averages (Sokolova and Lapalme, 2009) were calculated from ROC
curves, the macro-average could give equal weight to the classification
of each label, whereas the micro-average incorporates the frequency
of the labels into the label weighting. In the test set, the area under
curves (AUCs) of micro- and macro-averages of the SVM and MLP
models both were 99%, which was highest than the other models.
The ROC curve of the test set for each group compared with that
of the other groups, each group were clearly distinguished from other
groups in the SVM model and the AUC of the AMD, DME, RVO,
and CSC groups were 100, 99, 98, and 100%, respectively. While, the
AUC of the AMD, DME, RVO, and CSC groups compared with that
of other groups in the MLP model only were 99, 97, 97, and 100%,
respectively. It could be seen that in terms of ROC curve results, the
SVM model has the best performance.

The test set was distributed in a 4 × 4 matrix according to the
labeled labels and the classification results. It could be seen that the
recognition performance of SVM and MLP models was better than
others. For example, the recognition rates of RVO were relatively high
in the SVM and MLP model, while RVO was easily misrecognized in
the other three models. However, there were also some differences.
In the SVM model, the recognition rates of AMD, DME, and RVO
were relatively high. While, in the MLP model, the recognition rates
of CSC were relatively high. As shown in Figure 6.

Discussion

The current study used a multi-feature fusion method for
automatic ME classification on SD-OCT images. It fused the

features of traditional omics and four DL models, which were
the alxnet, inception_v3, resnet34, and vgg13. The Grad-CAM
was used to visualize the explanation of DL black-box model.
Finally, after the fusion features were screened by the lasso
model, the non-zero coefficients features were used to developed
six classification models. According the accuracy results, as well
as the ROC curve and confusion matrix, the performance of
the SVM model was the best, and could be used to classify
the DME, AMD, RVO, and CSC accurately from DM SD-OCT
images.

Early intelligent diagnosis mainly relies on artificially designed
feature templates or uses single traditional machine-learning
methods (Turchin et al., 2009), treating intelligent diagnosis as a
classification problem (Srinivasan et al., 2014; Alsaih et al., 2017).
Because a single feature is usually sensitive to the changes of part
of the image features and is not sensitive to the changes of other
features, when the difference between two kinds of images is not big
in the sensitive features of a certain feature, the classifier based on the
training of a single feature cannot output the correct classification. In
addition, the complex background noise in the image will also lead
to the deterioration of feature data quality, which not only increases
the difficulty of classifier training, but also reduces the accuracy of
classification. Our proposed fusion features method, by contrast,

TABLE 1 The accuracy of classification models in the training
set and test set.

Model Accuracy Task

SVM 97.22% train

93.80% test

KNN 90.32% train

90.08% test

ExtraTrees 100% train

82.23% test

MLP 98.35% train

90.50% test

LR 90.83% train

86.77% test
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FIGURE 6

Confusion matrix and ROC curve of the different models: (A1–E1): Confusion matrix of the SVM, LR, KNN, MLP, and ExtraTrees model, respectively. Each
row of the matrix represents the actual class and each column indicates the predicted class. (A2–E2): ROC curve of SVM, LR, KNN, MLP, and ExtraTrees
model, respectively. Label 0 for AMD, label 1 for DME, label 2 for RVO, label 3 for CSC.

realized feature complementarity and reduced the influence of single
feature inherent defects.

In previous studies, Lu et al. (2018) used ResNet to detect
normal images, cystoid ME, serous macular detachment, epiretinal
membrane, and macular hole based on the single deep learning
feature extraction method. The accuracy of their method for
detecting cystoid ME cases was 84.8% which was much lower than
our result. This also confirmed that the feature fusion method can
improve the accuracy of the model compared with the single feature
extraction method. Chen T. et al. (2021) used a convolutional-
neural-network to classify AMD. Chan et al. (2018) used information
from AlexNet, VggNet, and GoogleNet to design a decision model
for automatic classification of normal ME and DME. Although
these models have performed well, they lack the interpretation
capability. The Grad-CAM was introduced in our study to overcome
the common drawback of DL models. It uses the gradient of
the target class and propagates to the final convolutional layer to
generate a rough positioning map, which is used to visualize the
features (Yang et al., 2021). The Grad-CAM could address the
mechanism by which the CAM approach requires changes to the
model architecture. Compared with other interpretation methods,
the computational complexity is reduced and the interpretability
of the model is increased. It also combines the advantages of fine-
grained detection (unable to locate the image) and image positioning
(unable to improve the positioning resolution). The result of Grad-
CAM heatmaps in our study highlighted important areas that the
DL models probably focused on extracting features. This is the same

area in which our eyes recognize ME. This is a good example of
the Grad-CAM identifying the pathologic region of an OCT image
correctly.

Of course, there were also shortcomings to this study. First,
we just collected the OCT images from a single-center study
so the sample does not represent the entire patient population.
Second, single-omics methods were used in this study. For multi-
classification, using multi-omics data can obtain better accuracy
(Lin et al., 2020). Third, the accuracy of our study needs to be
improved. Therefore, in future studies, we will try to incorporate
multicenter data to reinforce the conclusion of our study and
combined multiomics techniques to automate classification of DM
based on SD-OCT images and the color fundus pictures.

Conclusion

In this study, an artificial intelligence method based on multi-
feature fusion was introduced for automatic ME classification on
SD-OCT images. The results showed that the model could be used
to classify the DME, AMD, RVO, and CSC accurately from SD-OCT
images. The result of Grad-CAM heatmaps in our study highlighted
important areas that the DL models probably focused on extracting
features. The results of Grad-CAM heatmap highlighted that the
important areas for the DL model to extract features was the same
as the areas in which our eyes recognize ME.
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