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Spiking neural networks (SNNs) have recently demonstrated outstanding

performance in a variety of high-level tasks, such as image classification.

However, advancements in the field of low-level assignments, such as image

reconstruction, are rare. This may be due to the lack of promising image encoding

techniques and corresponding neuromorphic devices designed specifically for

SNN-based low-level vision problems. This paper begins by proposing a simple yet

e�ective undistorted weighted-encoding-decoding technique, which primarily

consists of an Undistorted Weighted-Encoding (UWE) and an Undistorted

Weighted-Decoding (UWD). The former aims to convert a gray image into

spike sequences for e�ective SNN learning, while the latter converts spike

sequences back into images. Then, we design a new SNN training strategy,

known as Independent-Temporal Backpropagation (ITBP) to avoid complex loss

propagation in spatial and temporal dimensions, and experiments show that ITBP

is superior to Spatio-Temporal Backpropagation (STBP). Finally, a so-called Virtual

Temporal SNN (VTSNN) is formulated by incorporating the above-mentioned

approaches into U-net network architecture, fully utilizing the potent multiscale

representation capability. Experimental results on several commonly used datasets

such as MNIST, F-MNIST, and CIFAR10 demonstrate that the proposed method

produces competitive noise-removal performance extremely which is superior to

the existing work. Compared to ANN with the same architecture, VTSNN has a

greater chance of achieving superiority while consuming ∼1/274 of the energy.

Specifically, using the given encoding-decoding strategy, a simple neuromorphic

circuit could be easily constructed to maximize this low-carbon strategy.

KEYWORDS

spiking neural networks, undistorted weighted-encoding/decoding, neuromorphic

circuits, Independent-Temporal Backpropagation, biologically-inspired artificial

intelligence

1. Introduction

Spiking Neural Networks (SNNs) are artificial neural networks of the “third generation”

that closely resemble natural neural networks (Maass, 1997). Since biological motion

processing depends on temporal information and gains superb performances (Saygin, 2007).

Researchers attempt to use SNN to convert spatial complication to temporal complication.

Since the information is transmitted in the form of spikes. It also has a lower carbon footprint

(Roy et al., 2019) and superior robustness (Sironi et al., 2018). SpikeProp (Bohte et al., 2002)

initially updated weights using SNN with backpropagation and supervised learning. Few

studies are devoted to low-level image tasks with supporting neuromorphic chips, and the
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majority of SNNs are currently focused on classification (Xing et al.,

2020; Fang et al., 2021; Zheng et al., 2021).

In addition, the vast majority of SNNs designed for low-level

tasks require specialized hardware such as event-based cameras

(Zhang et al., 2021; Zhu et al., 2022). This requirement substantially

raises the bar for usage. Pioneers in this area introduced a novel

SNN, requiring no specialized hardware (Comşa et al., 2021). Their

performance, however, is not ideal, and our work will improve it.

Since 2002 (Bohte et al., 2002), the surrogate gradient has been

commonly employed for backpropagation in SNN, then Neftci

et al. (2019) introduced Backpropagation Through Time (BPTT)

to this area. Besides, Deng et al. (2022) assert standard direct

training by utilizing a formula to distinguish it from ANN-SNN

conversion. Also, hybrid ANN-SNN conversion requires additional

time steps and must be shadow trained exclusively (Eshraghian

et al., 2021). Inspired by related studies (Werbos, 1990), Spatio-

Temporal Backpropagation (STBP) is introduced.

Since 2002 (Bohte et al., 2002), the surrogate gradient has been

commonly employed for backpropagation in SNN, then Neftci

et al. (2019) introduced Backpropagation Through Time (BPTT)

to this area. Besides, Deng et al. (2022) assert standard direct

training by utilizing a formula to distinguish it from ANN-SNN

conversion. Also, hybrid ANN-SNN conversion requires additional

time steps and must be shadow trained exclusively (Eshraghian

et al., 2021). Inspired by related studies (Werbos, 1990), Spatio-

Temporal Backpropagation (STBP) is introduced.

Other related approaches include Temporal Spike Sequence

Learning via Backpropagation (TSSL-BP) (Zhang and Li, 2020)

but only appropriate for the classification task. For the low-level

denoising assignment in this work, STBP performs worse (Comşa

et al., 2021) than our Independent-Temporal Backpropagation

(ITBP).

Rate coding, temporal coding, delta modulation, and direct

coding are four common encodingmethods. Among them, delta

modulation and rate coding lose pixel location information (Kim

et al., 2022). Direct coding canmaintain location information, but it

cannot be analyzed quantitatively (Jin et al., 2022). Weighted phase

spiking coding (a type of temporal coding) employs the binary

encoding concept (Kim et al., 2018). But it is also distorted and

requires a normalization trick. Comşa et al. (2021) employed a

latency coding method called time-to-first-spike (TTFS), inspired

by biological vision (Hubel and Wiesel, 1962), to represent pixel

brightness. TTFS cannot guarantee undistorted results, needs more

time steps, and performs worse than ours. The classification task

does not generate images; consequently, there are few decoding

methods for low-level tasks such as reconstruction. Membrane

Potential Decoding (MPD) (Kamata et al., 2022) is, to the best of

our knowledge, the only appropriate decoding method. However,

MPD generates floating results, necessitating the inclusion of a

surrogate function. Prior to our work, there was no symmetric

and undistorted SNN encoding-decoding method. Rate coding,

temporal coding, delta modulation, and direct coding are four

common methods of encoding. Among them, delta modulation

and rate coding lose pixel location information (Kim et al., 2022).

Direct coding can maintain location information, but it cannot

be analyzed quantitatively (Jin et al., 2022). Weighted phase

spiking coding (a type of temporal coding) employs the binary

encoding concept (Kim et al., 2018). But it is also distorted and

requires a normalization trick. Comşa et al. (2021) employed a

latency coding method called time-to-first-spike (TTFS), inspired

by biological vision (Hubel and Wiesel, 1962), to represent pixel

brightness. TTFS cannot guarantee undistorted results, needs more

time steps, and performs worse than ours. The classification task

does not generate images; consequently, there are few decoding

methods for low-level tasks such as reconstruction. Membrane

Potential Decoding (MPD) (Kamata et al., 2022) is, to the best of

our knowledge, the only appropriate decoding method. However,

MPD generates floating results, necessitating the inclusion of a

surrogate function. Prior to our work, there was no symmetric and

undistorted SNN encoding-decoding method.

This paper here presents a Virtual Temporal Spiking Neural

Network (VTSNN) for image reconstruction. VTSNN is based on

a modified U-net (Ronneberger et al., 2015) which is a classical

architecture. There aremany works that apply U-shape architecture

to do image reconstruction tasks such as image denoising and

achieving promising results (Yue et al., 2020; Cheng et al., 2021;

Zamir et al., 2021; Wang et al., 2022). Alternatively, we propose an

UndistortedWeighted-Encoding-Decoding method for converting

an arbitrary image into binary data (0/1) in order to efficiently

encode image data. We also demonstrate that this encoding-

decoding procedure can be performed by simple neuromorphic

circuits, thereby increasing its effectiveness. The schematic diagram

of the circuits consists of ADC and DAC. Additionally, we

propose a novel backpropagation technique called Independent-

Temporal Backpropagation (ITBP) to avoid the inefficiency of

Spatio-Temporal Backpropagation (STBP) (Wu et al., 2018). The

main contributions of this paper can be summarized as follows:

• We propose, to the best of our knowledge, the first symmetric

and undistorted encoding-decoding approach with high

efficiency for fully spiking SNN-based image reconstruction

tasks that can be implemented using simple neuromorphic

circuits. This raises the prospect of low-level tasks being

applied to neuromorphic devices.

• First, we introduce a virtual temporal SNN. This suggests

that even without temporal information, SNN can be used to

achieve competitive performance. A novel backpropagation

for direct training, called ITBP, is also proposed for

the designed encoding-decoding technique to improve

effectiveness.

• Experimental results on a variety of datasets are often superior

to the current SNN-based approach (Comşa et al., 2021) while

superior to same-architecture ANN in some cases. In addition,

VTSNN uses roughly 1/274 of the energy of ANN-based

methods.

2. Method

Based on our analysis, the application of SNN and its

neuromorphic devices is almost limited to the classification task.

Consequently, we intend to investigate SNN’s capabilities for low-

level image tasks, such as reconstruction. In the meantime, popular

input encoding methods have numerous shortcomings, including
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redundant time steps and information distortion.Moreover, studies

on output decoding are quite rare. Therefore, we propose a novel

symmetric and undistorted encoding-decoding method to fill the

above gaps. Currently, researchers generally use STBP for the low-

level SNN task (Comşa et al., 2021), which allows information

to propagate in both temporal and spatial domains. Therefore,

we present a new backpropagation that only permits information

to propagate via the spatial domain. This backpropagation can

improve the effectiveness and gain better performance. In addition,

we want to use simple neuromorphic circuits to demonstrate the

feasibility of our encoding-decoding method. With undistorted

and symmetric encoding/decoding, simpler and more effective

backpropagation, and fewer time steps, we aim to achieve

competitive performance in low-level image reconstructing.

2.1. Preliminary

2.1.1. Spiking neurons
Since 1907 (Lapique, 1907), qualitative scientific study has

been conducted on the membrane voltage of neurons. Compared

to the many-variable and intricate H-H model (Hodgkin and

Huxley, 1952), the integrate-and-fire (IF) neuron model and leaky-

integrate-and-fire (LIF) neuron model have a significantly reduced

computational demand and are commonly recognized as the

simplest models among all popular neuron models while retaining

biological interpretability (Burkitt, 2006). The spiking neuron

model is characterized by the following differential equation

(Gerstner et al., 2014):

τ
du(t)

dt
= −u(t)+ x(t) (1)

Where u(t) represents the membrane potential of the neuron at

time step t, x(t) represents the input from the presynaptic neurons,

and τ is a time constant. What’s more, spikes will fire if u(t) exceeds

the threshold Vth. The spiking neuron models can be described

explicitly iteratively to improve computational traceability.

xit+1,n = 6jw
j
no

j
t+1,n−1 (2)

uit+1,n = uit,n g(o
i
t,n)+ xit+1,n (3)

oit+1,n = h(uit+1,n − Vth) (4)

Here, t and n, respectively, represent the indices of the time

step and n-th layer, and oj is its binary output of j-th neuron.

Furthermore, wj is the synaptic weight from j-th neuron to i-th

neuron, and by altering the way thatwj is linked, we can implement

convolutional layers, fully connected layers, etc. To bemore precise,

the spiking neurons become the IF neuron if g(x) = τ and the LIF

neuron if g(x) = τe−
x
τ . Since h(·) represents the Heaviside function

and Equation (4) is non-differentiable. The following derivatives of

the surrogate function can be used for approximation.

∂oit+1,n

∂uit+1,n

=
1

1+ (πxit+1,n)
2

(5)

The working schematic of spiking neurons is shown in Figure 1

(Eshraghian et al., 2021).

2.1.2. Tensor multiplication
In Section 2.4, a transform pair for tensors are used to describe

the decoding process. To better understand that process, here we

first give some preliminary tensor definitions. A tensor with N

dimensions is defined as P ∈ R
I1×I2×···×IN . Elements of P are

denoted as pi1 ,i2 ,··· ,iN , where 1 ≤ in ≤ IN . The n-mode unfolding

vectors of tensor P are the In-dimensional vectors obtained from

P by changing index in while keeping the other indices fixed. The

n-mode unfolding matrix P(n) ∈ R
In×I2I3···In−1In+1···IN is defined

by arranging all the n-mode vectors as the columns of the matrix

(Kolda, 2006). The n-mode product of the tensorP ∈ R
I1×I2×···×IN

with thematrix B ∈ R
Jn×In , denoted byP×nB, is anN-dimensional

tensor Q ∈ R
I1×I2×···×Jn···×IN . Hence, we have the following

transform pair that will be used later in the image decoding

process.

Q = P × nB ⇔ Q(n) = BP(n) (6)

2.2. Virtual temporal SNN

In this section, we propose and describe the concept of Virtual

Temporal SNN (VTSNN):

VTSNN is an abstract SNN definition that uses raw static

data to generate spiking sequences (0/1) as network input, and

the sequences are virtually ordered in the temporal domain.

Specifically, VTSNN holds the following fundamental:

The raw static data consists of non-temporal information

and will be transformed into ordered sequences (a static encoding

process), such as the operation of event-based hardware, rate

coding, direct coding, etc.

To realize the VTSNN, the crucial factors are to carefully design

the corresponding encoding and decoding strategies which will be

illustrated in detail.

2.3. Encoding

2.3.1. Rethinking time-to-first-spike encoding
(TTFS)

Previous study (Comşa et al., 2021) has applied a TTFS encoder

to encode more salient information as earlier spikes and gained

good results in reconstruction tasks. This encoding method is

inspired by the idea of a rapid information process with spiking

data (Thorpe et al., 2001). Here r
i,j
t is the response of a pixel of an

image at time step t. Equation (7) shows the calculation of r
i,j
t for

TTFS.

r
i,j
t =

{
1 t = (max(x)−xi,j

max(x)
)T

0 otherwise
(7)
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FIGURE 1

Spiking neuron model (Eshraghian et al., 2021). (A) Intracellular and extracellular mediums are divided by an isolating bilipid membrane. Gated ion

channels allow ions such as Na+ to di�use through the membrane. (B) Capacitive membrane and resistive ion channels constitute a

resistor-capacitance circuit. A spike is generated when the membrane potential exceeds a threshold Vth. (C) Via the dendritic tree, input spikes

generated by I are transmitted to the neuron body. Su�cient excitation will cause output spike emission. (D) Simulation depicting the membrane

potential V(t) reaching Vth, resulting in output spikes.

FIGURE 2

A toy example of our encoding. Here we demo the UWE with nine pixels as examples. For each pixel, the grayscale image was transferred into the

eight-bit spike sequences and each bit was represented by a time step.

In terms of r
i,j
t , after obtaining it, spike sequences

are generated using the same methods as Algorithm 1

in this paper. There are two obvious disadvantages

of TTFS.

• TTFS is distorted, which means not being capable of

restoring information after coding, if solely uses a function to

approach it.

2.3.2. Undistorted weighted-encoding (UWE)
In this section, we propose the so-called UndistortedWeighted-

Encoding (UWE) to encode the input images into spike sequences,

as opposed to distorted encoders such as the time-to-first-spike

(TTFS) encoder. Specifically, UWE can encode n-bit image [0, 2n−

1] theoretically and a toy example of our coding is shown in

Figure 2. In what follows, Algorithm 1 illustrates the process of

encoding an image.
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Input: Undistorted Weighted-Encoding; n-bit image:

x; Image shape: H,W; Simulation length: T

Output: Spiking sequences: Ert

Initialization;

for t = T − 1,T − 2, · · · , 0 do

for i = 0, 1, · · · ,H − 1; j = 0, 1, · · · ,W − 1 do

a
i,j
t = xi,j.

r
i,j
t = ⌊

a
i,j
t
2t
⌋.

if t 6= 0 then

a
i,j
t−1 = a

i,j
t mod 2t.

else
Break.

end

Append r
i,j
t to rt ∈ R

1×HW = {rH−1,W−1
t , · · · , r0,1t , r0,0t } .

Reshape it to rt ∈ R
H×W.

end

Append rt to the spiking sequences:

Ert = {rT−1, · · · , r1, r0}.

end

Algorithm 1. UWE algorithm for n-bit image.

For simplicity, we set n = 81 in our work, since the inputs

are 8-bit image [0, 255]. Thus, we use 8-bit UWE in this work.

Especially, in Algorithm 1, xi,j is a pixel in the image x. After input

encoding process, x is transferred into the spiking sequences Ert ∈

R
T×H×Wand rt ∈ R

H×W accumulates information for each time

step. Additionally, UWE is capable to be easily integrated with a

neuromorphic chip which is introduced in the discussion part. This

means n-bit image can be transferred into spiking sequences by the

neuromorphic SARADC circuits (discussed in Section 4.4) without

any floating arithmetic.

2.4. Decoding

2.4.1. Rethinking membrane potential decoding
(MPD)

The decoding method that (Kamata et al., 2022) uses for

reconstruction tasks is categorized as MPD. Actually, MPD is

similar to our Undistorted Weighted-Decoding (UWD) to some

extent. This method, like UWD, applies a weight series to encode.

However, the weight values of MPD are from 2 to 0.8 and it calls

a float artificial neuron (tanh function) before returning outputs.

This means the n-bit decoding matrix A in UWD is adjusted to 2

= {θT−1, θT−2, · · · , θ0} and θ = 0.8, then a tanh function is used

to get the real-valued reconstructed image Ŷ . The mechanism of

UWD will be introduced in the next section. Furthermore, there

is a noticeable disadvantage: MPD will induct floating arithmetic,

which is unfriendly to neuromorphic chips.

1 In our work, SNN simulation length T = n, which means each bit is

represented by a time step.

2.4.2. Undistorted weighted-decoding
To overcome the disadvantages of existing decoders, we also

present an Undistorted Weighted-Decoding (UWD) to decode the

output spiking sequences ôt ∈R
H×W (t = T−1,T−2, · · · , 0) into

the final image Ŷ . This decoding process is actually a symmetric

process of UWE, which means UWD will transform the spiking

sequences into a n-bit image. According to the preliminary, we use

the output spiking sequences ôt (t = T − 1,T − 2, · · · , 0) to build

a tensor Ô ∈ R
T×H×W . Then, we define a n-bit decoding matrix

A ∈ R
1×T = {2T−1, 2T−2, · · · , 20}. Similar to UWE, we also set

T = 8 in the decoding process. In Section 2.1.2, we have already

introduced tensor multiplication. The final decoding process can

be described by the following formula:

Ŷ = Ô × nA ⇔ Ŷ(3) = AÔ(3) (8)

Where Ô(3) ∈ R
T×HW is the 3-mode unfolding matrix of Ô

while Ŷ(3) ∈ R
1×HW is the 3-mode unfolding matrix of Ŷ ∈

R
H×W×1. Hence, from the knowledge of tensor and transform

pair effectively introduced in the preliminary part (Equation 6),

we can get the final output image Ŷ . As the parallel inverse

process of UWE, the decoding method can be realized by the

neuromorphic chip we discussed later as well. The neuromorphic

DAC circuits (discussed in Section 4.4) can convert spiking

sequences to a real-valued reconstructed image without the use of

floating-point arithmetic.

2.5. Spiking neural network architecture

As an abstract and flexible concept, VTSNN can be applied

to various types of network architectures. In this work, our

VTSNN is embedded in a shallow U-net architecture, named

U-VTSNN. Because light U-net can extract features from images

relatively efficiently. Additionally, unlike current SNNs for

low-level image tasks whose data flow may contain floating

numbers (Zhu et al., 2022), the U-VTSNN is a fully spiking

neural network where all modules are built with SNN and all

synapse operations are completed by spiking neurons (Kamata

et al., 2022). In addition, U-VTSNN is a fully convolutional

network while the biases of all convolutional layers are

set to 0.

At the beginning of our image noise removal task, the

image is transformed into spike sequences, which means a 1 ×

H × W tensor is fed into VTSNN and transformed as the

size of T × H × W via UWE, followed by U-VTSNN. The

details of the internal blocks are clearly shown in Figure 3.

After all intermediate operations, the last block of U-VTSNN

will output spiking sequences. Thus, for decoding, UWD will

use the output spike sequences to generate the noise-removed

image. Based on our experiments, U-VTSNN is suitable for

diverse popular datasets, and its computational efficiency is

vastly superior to that of the same ANN architecture (over

274 times).
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FIGURE 3

Architecture of the proposed fully spiking neural network with eight-bit as an example. UWE generates sequences from an input image. The

sequences are fed into U-VTSNN. UWD generates images from operated sequences and finishes a complete noise-removal process. Additionally, the

type and size of di�erent layers are clearly shown above.

FIGURE 4

The procedure of STBP and ITBP. For STBP, the operated sequence {ô7, ô6, · · · , ô0} (we denote the sequence as ôSeq) is transformed into ŷ via UWD.

Then MSE between y and ŷ is calculated. For ITBP, y is transformed into input sequence {o7,o6, · · · ,o0} (we denote the sequence as oSeq) by UWE.

Then, calculate weighted MSE between ôSeq and oSeq by Equation (11), where ôSeq is the operated sequence ready to be decoded.

2.6. Loss function and backpropagation

2.6.1. Rethinking spatio-temporal
backpropagation (STBP)

A previous study has applied for training high-performance

SNN (Wu et al., 2018; Jin et al., 2022). Noticeably, while examining

the stability of a classification task, some researchers applied

STBP for image generation (Comşa et al., 2021). The standard

backpropagation only considers the spatial information, which can

easily be underfitted and STBP overcomes that shortage. In order to

compare STBP with our Independent-Temporal Backpropagation

(ITBP) in the noise-removal task, the loss function corresponding

to STBP is shown below.

LSTBP =
1

N

∥∥∥y− ŷ
∥∥∥
2

F
(9)

According to this loss function expression, the process of

updating parameters is presented. To fairly compare, we show
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how LSTBP updates w
j
n in spatio-temporal domain. Other cases of

updating parameters of STBP can be seen inWu et al. (2018)’s work.

∂LSTBP

∂w
j
n

=

T∑

t=1

∂LST BP

∂uit,n
o
j
t,n−1 (10)

As Equation (12) shown, while STBP updates w
j
n+1, o

i
t,n+1,

oit−1,n+1, and o
j
t,n are all connected with w

j
n+1. In Figure 4, unlike

STBP, error backpropagation of ITBP will not go through the

decoder. Hence, ITBP is more efficient than STBP. Because error

backpropagation of ITBP is in latent space but representational

space for STBP. In other words, there is a risk of overfitting.

Since there is a clear difference between ITBP and standard

backpropagation: during the training process, ITBP only encodes

the labels and does not decode network outputs; while ITBP does

not encode the labels and does decode network outputs during the

testing process. STBP has overcome standard backpropagation in

noise removal task (Comşa et al., 2021). Later in the experiment,

ITBP performed even better than STBP in a similar task.

2.6.2. Independent-Temporal Backpropagation
(ITBP)

To show the Independent-Temporal Backpropagation (ITBP)

training framework, we create the loss function LITBP where the

weighted mean square error is used as the error index. The

expression of it is described below:

LITBP =
1

N

T−1∑

t=0

2t
∥∥∥ot − ôt

∥∥∥
2

F
(11)

Where N is the number of training examples and ‖ · ‖F
represents the Frobenius norm, T is the total time step and we set

T = 8 for our UWE andUWD. From the equation above, we regard

LITBP as a function of w (weight). To obtain the derivative of LITBP

tow is necessary for the gradient descent. To obtain the final ∂LITBP

∂w
j
n

,

the critical step is to obtain the ∂LITBP

∂oit,n
and ∂LITBP

∂uit,n
at time t. Now,

we show the insight of getting the complete gradient descent. First,

from Equations (2) to (4), the output of spiking neurons oit,n+1 can

be represented below:

oit,n+1 = h[uit−1,n+1g(o
i
t−1,n+1)+ 6jw

j
n+1o

j
t,n − Vth] (12)

Where w
j
n+1 is the synaptic weight which links the output of

n + 1 layer spiking neuron oit,n+1 with the one of n layer o
j
t,n.

According to Equations (2) to (4), we can calculate ∂LITBP

∂oit,n
and

∂LITBP

∂uit,n
as follows.

∂LITBP

∂uit,n
=

∂LITBP

∂oit,n

∂oit,n

∂uit,n
(13)

∂LITBP

∂oit,n
=

∂LITBP

∂o
j
t,n+1

∂o
j
t,n+1

∂oit,n
(14)

∂oit,n+1

∂o
j
t,n

=
∂oit,n+1

∂uit,n+1

∂uit,n+1

∂o
j
t,n

=
∑

j

∂oit,n+1

∂uit,n+1

w
j
n+1

(15)

By Equation (5), the following derivatives of surrogate function

Equation (16) can be used for approximation.

∂oit,n+1

∂uit,n+1

=
1

1+ (πxit+1,n)
2

(16)

Here, ∂LITBP

∂uit,n
is the intermediate variable on the step of updating

parameters w
j
n, from Equations (14) to (16), we can solve Equation

(13) as follows.

∂LITBP

∂uit,n
= [

1

1+ (πxit+1,n)
2
]2

∂LITBP

∂oit,n+1

∑

j

w
j
n+1 (17)

Hence, the way we update parameters will be shown below.

∂LITBP

∂w
j
t,n

=
∂LITBP

∂uit,n

∂uit,n

∂xit,n

∂xit,n

∂w
j
n

=
∂LITBP

∂uit,n
o
j
t,n−1

(18)

To state how we update weights within one epoch

clearly, Algorithm 2 is shown. For Independent-Temporal

Backpropagation (ITBP) in this paper, it is a non-cross-

path backpropagation. That means it only propagates

spatially not temporally. In other words, it is a single-

modal spatial representation which means single-modality

simplifies and enhances ITBP’s efficiency. Last but

not least, ITBP only propagates spike sequences of

coded labels.

3. Results

To demonstrate the superiority of our work and compare it

to existing studies fairly, we choose widely used standard datasets

for our experiments. Hence, we implemented VTSNN in PyTorch

(Paszke et al., 2019), and evaluated it using MNIST (LeCun et al.,

1998), F-MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky

et al., 2009). For MNIST and F-MNIST, we used 60,000 images

for training and 10,000 images for evaluation which is the same as

Comşa et al. (2021) in the noise-removal task. The input images

were resized to 28 × 28. To expand the applicability of VTSNN,

we also conducted experiments on CIFAR10. For CIFAR10, we

used 50,000 images for training and 10,000 images for evaluation.

The input images were resized to 32 × 32. Moreover, all noisy

images used for training and testing contain Gaussian noise at

each pixel, with η representing the noise variation in the image

scale from 0 to 1. Moreover, our training details are as follows. On

NVIDIA GeForce GTX 2080, the models are implemented using

PyTorch. In addition, each layer’s bias is set to False. The optimizer

is Adam Optimizer, which updates the weight parameters of the

network with the loss value for better gradient descent, and its
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Input: Undistorted Weighted Encoding (UWE);

Undistorted Weighted Decoding (UWD);

VTSNN model; Simulation length: T;

n-bit input image: x; n-bit label image: y;

Iteration of train numbers: Itrain;

Iteration of validation numbers: Ival;

Initialization;

for i = 0, 1, · · · , Itrain iteration do

for t = 0, 1, · · · ,T − 1 do
Apply UWE to encode input x, label y to rt,

ot.

Input rt to VTSNN model, get spiking

sequences ôt .

end

Calculate loss function: LITBP(ot , ôt) by Equation

(11)

Backpropagation and update model parameters by

Equation (18)

end

for i = 0, 1, · · · , Ival iteration do

for t = 0, 1, · · · ,T − 1 do
Apply UWE to only encode input x to rt, .

Input rt to VTSNN model, get spiking

sequences ôt .

Append ôt to Ô = {ô0, ô1, · · · , ôT−1}.

end

Use UWD to decode Ô to ŷ; Calculate PSNR

between y and ŷ.

end

Algorithm 2. ITBP for one epoch.

initial learning rate is set to 0.001. Moreover, our batch size is 50

for both training and testing.

3.1. Comparison with existing works

The performance of two VTSNN variants is compared with

some models in Table 1. And a digit from MNIST dataset is

reconstructed by our model is show in Figure 5. We train and

test two variants based on the PyTorch framework, resulting in

enhanced performance across all tasks. And, we compare the

performance between ours and the methods proposed by Comşa

et al. (2021) which is the only SNN-based image reconstruction

attempt yet. On neuromorphically-encoded MNIST, the boost

values of PSNR on four various noise levels are {4.26, 5.75, 7.03,

7.06} with only eight time steps. On neuromorphically-encoded F-

MNIST, the boost value of PSNR on four various noise levels are

{3.66, 4.09, 3.692, 3.93} with also eight time steps. Moreover, the

value of PSNR on four various noise levels are {18.27, 14.08, 14.76,

13.16} on neuromorphically-encoded CIFAR10 with also eight

time steps, which is quite competitive. Furthermore, our method

can achieve higher performance in image reconstruction tasks by

neuromorphic encoding/decoding circuits. Even compared with T
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FIGURE 5

A digit from MNIST set is reconstructed by the proposed VTSNN incorporated into the commonly used U-net architecture and IF neuron, at di�erent

noise levels.

TABLE 2 Comparison of PSNR on MNIST at various noise level η = 0.2 for

di�erent encoding and decoding (Bold: the best) (Wu et al., 2018; Comşa

et al., 2021; Kamata et al., 2022).

Encoding Decoding Backpropagation PSNR

UWE TTFS UWD MPD STBP ITBP

✓ ✓ ✓ 9.60

✓ ✓ ✓ 8.00

✓ ✓ ✓ 8.54

✓ ✓ ✓ 9.76

✓ ✓ ✓ 23.57

✓ ✓ ✓ 11.91

✓ ✓ ✓ 11.81

✓ ✓ ✓ 20.70

Same architecture ANN 23.05

ANN-based work, on MNIST, at η=0.2, our VTSNN-IF performs

superior to it. And the results are shown in Table 2.

3.2. Ablation study

3.2.1. Comparison between LIF neuron and IF
neuron

Currently, research uses leaky-integrate-and-fire (LIF) neurons

for SNN, believing its more complex differential equation (Gerstner

et al., 2014) can boost performance. Our experiment disproves this

bias. To conduct our experiment, we use commonly used datasets

(MNIST, FMNIST, and CIFAR10). In our method, the parameters

of the IF model are set as Vreset = None, Vth = 0.077 in 1 × 1

convolution layer (an experience parameter corresponds to best

performance), and Vth = 1.0 in all the other convolution layers. In

terms of LIF neurons, τ = 1.1, and all the other parameters are set

identically to IF neurons. In the majority of instances, as shown in

Table 1, IF neurons usually do better than LIF neurons at this task,

regardless of the noise level or dataset.

3.2.2. Comparison among di�erent coding
methods

TTFS and MPD are discussed relatively in depth in the

rethinking part (Sections 2.3.1 and 2.4.1) and introduction. Since

they have been used to generate images (Kamata et al., 2022). They

are the two most comparable methods for our UWE and UWD.

Table 2 displays all results. UWE is always superior to TTFS when

conducting a univariate experiment, and UWD is always superior

to MPD too. In addition, the UWE-UWD combination performs

exceptionally well for STBP.

3.2.3. Comparison between STBP and ITBP
Experiments demonstrate that ITBP is superior to STBP in

terms of the PSNR evaluation metrics. LSTBP and LITBP are applied

respectively with the same U-VTSNN architecture. Table 2 displays

the outcomes of these two backpropagation techniques on the

MNIST dataset with η = 0.2. All these results well proved the

superiority of our ITBP.

4. Discussion

4.1. Classification for UWE

In addition to image reconstruction, VTSNN is capable of

performing various tasks (Xu et al., 2021; Ran et al., 2022), such

as medical detection (Ghosh-Dastidar and Adeli, 2009) and speech

recognition (Mansouri-Benssassi and Ye, 2019). As mentioned in

the Introduction, classification is a common assignment for SNN.

To demonstrate the classification, we employ a VTSNN-based

LeNet (VTLeNet) (LeCun et al., 1998) in which all activation

functions are replaced by spiking neurons and UWE is used for

encoding. Then, we employVTLeNet to classify theMNIST dataset.

Furthermore, varying levels of noise (η = 0.2, 0.4, 0.6, 0.8) are

applied to the images in MNIST. Here, we are not attempting to

attain optimal outcomes, but rather to test the stability of our UWE

classification work. The results are presented as a line chart in

Figure 6.
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FIGURE 6

Results of classification task in MNIST dataset at di�erent noise factors. For any T, while the noise level goes up the accuracy will decrease. However,

even the worst case (T = 2, η = 0.8) will achieve a quite good result (85.2%). And the best case (T = 8, η = 0.0) can perform quite competitively

(99.2%).

4.2. Energy consumption

In this section, we use the same network structure (Rathi and

Roy, 2021; Zhu et al., 2022). Ideally, in the absence of spikes, no

computations and active energy are used (Davies et al., 2018; Zhu

et al., 2022). For the sake of fairness, we exclude convolutional

computations for both and hold the above ideal conjecture. We

traverse MNIST and count ANN activation function operations

and SNN spikes. In these experiments, all spiking neurons are

replaced with an ANN activation function (e.g., ReLU), and its total

operations are counted.2 ANN then needs 18.39 M Flops3, while

VTSNN needs 2.51 M FLOPS. In other words, #OPANN=18.39 M,

#OPSNN=2.51 M.

Following the practice (Zhu et al., 2022), in 45 nm CMOS, each

ANN operation consumes 4.6 and 0.9 pJ for each spike (Horowitz,

2014). Thus, 32-bit ANN costs 18.39 M × 4.6 pJ = 8.46 × 10−5

J, or 273.77 times as much as 32-bit VTSNN. Moreover, details of

how energy consumption is calculated can be found in Table 3. This

method of calculation is generally accepted in the SNN field and

we learned from Zhu et al. (2022). The ideal results are extremely

encouraging and demonstrate SNN’s immense potential. To realize

2 The total number of ANN operations are counted by the torchstat

package (Swall0w, 2018).

3 In torchstat, the count operations are calculated by the formula

(Molchanov et al., 2016) #OPANN= 2HWCinCoutK
2 whereH andW is the output

feature map size; Cin is input channel; K is kernel size; Cout is the output

channel.

TABLE 3 Comparison of energy based on the counting of operations

between ANN and SNN.

ANN SNN

Total params 0.12 M 0.12 M

(a) Spike rate 0 0.1366

a(b) #OPANN 18.39 M 0

b(c) #OPSNN 0 2.51 M

cEnergy(10−7J) 845.94 3.09

dANN/SNN Energy 273.77

a#OPANN is the total number of ANN operations if all spiking neurons are replaced with an

ANN activation function (e.g., ReLU).
b#OPSNN = SpikeRate× #OPANN .
cEnergy = #OPANN ×4.6pJ + #OPSNN ×0.9pJ ×SpikeRate.
dEach operation in ANN (SNN) consumes 4.6 pJ (0.9 pJ). ANN/SNNEnergy can be calculated

by (b)×4.6
(a)×(c)×0.9

.

these awe-inspiring effects, however, future research into hardware

is required. The neuromorphic circuits in this paper may be a good

harbinger.

4.3. Regularity of threshold voltage

Experiments show Vth impacts outputs. To determine the

regularity of that relation, we find the optimal Vth by attempts.

Studies show a doubtful conjecture that increasing Vth increases
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spiking rate frequency, which improves performance (Niu et al.,

2022). At each epoch, we count output spiking rate frequencies

corresponding to different Vth. Thus, we contradict that simple

correlation. Figure 7 depicts the ebb and flow of performance

regarding various Vth. Recent studies about astrocytes harbor find

during daytime and nighttime the threshold for the cell is different

(Koronowski and Sassone-Corsi, 2021). This biological property

inspired us. Other scholars in the SNN field also state that the

dynamic membrane potential threshold, as one of the essential

properties of a biological neuron is a spontaneous regulation

mechanism that maintains neuronal homeostasis, i.e., the constant

overall spiking firing rate of a neuron (Ding et al., 2022). Our

discussion is motivated by the above biological research, and we

hope to pique the interest of more academics to investigate the

regularity of threshold voltage’s insight.

4.4. Neuromorphic circuits

To enhance the efficacy of UWE and UWD, a simple

neuromorphic circuit can be introduced. The UWE and UWD

systems rely fundamentally on a binary encoding-decoding

strategy. In particular, binary data is hardware-friendly, inspiring

us to investigate ADC and DAC. The non-floating nature

of the circuits embodies the spirit of neuromorphic chips

and the successful avoidance of calculation through direct

electronic responses.

As shown in Figure 8, UWD can be enabled by a simple DAC.

Here, {B0,B1, · · · ,Bn−1} refers to spiking sequences of a pixel from

networks. Whether a spike occurs depends on whether switches are

on or off. The output of this neuromorphic chip is the real value

of that pixel. Furthermore, the resistance network corresponds to

n-bit decoding matrix A in Section 2.4.

Similarly, Figure 9 shows how to realize UWE without sample-

hold circuits. A comparator is linked to SAR logic and the

DAC model here is the circuits in Figure 8. Finally, MSB is the

abbreviation of Most Significant Bit (n-bit) while LSB refers to

Least Significant Bit (1-bit). This means MSB to LSB constitutes a

binary sequence.

4.5. Limitation

The majority of direct training SNNs are currently trained

with rather basic data. In addition, all of the current SNN-based

image reconstruction research use very simple images (Comşa et al.,

FIGURE 7

Performance of neurons in the final layer under various Vth conditions, with MSE as the evaluation metric. The circled and enlarged region illustrates

the complexity of performance surrounding a specific Vth value (Vth = 0.1 here).
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FIGURE 8

Neuromorphic decoding circuits. We use this simple neuromorphic DAC to realize our UWD. If a switch is on, the corresponding branch outputs 1.

Otherwise, the branch outputs 0. This mechanism is designed to activate spikes. And with the resistors in series, the real pixel value is transferred.

FIGURE 9

Neuromorphic encoding circuits. we use this simple neuromorphic SAR ADC to realize our UWE. Each real pixel value will be transferred into pixel

spiking sequences.

2021; Kamata et al., 2022). Similarly, our work here is unable

to circumvent this difficulty. The reconstructed high-revolution

images created by VTSNN are not optimal and seem blurry to the

human eyes. In conclusion, SNN is still far behind ANN in image

reconstruction tasks involving high-resolution images. However,

SNN’s potential cannot be ignored.

5. Conclusions

We have developed a novel spiking neuron network called

VTSNN, where we adopt SNN with a virtual temporal dimension

and a new backpropagation method. Besides, we raise Undistorted

Weighted-Encoding to transfer the image into spiking information,

which can be easily realized by a neuromorphic circuit to improve

efficiency, as well as the symmetric process of Undistorted

Weighted-Decoding. The experiments proved that VTSNN

sometimes performs similarly to or better than ANN, for the

same architecture and VTSNN is superior to all other comparable

SNN models. Future research should focus on the development

of hardware and the applicability of high-resolution images.

There remain some constraints. The relationship between image

low-level task performance and Vth is unclear. The proposed

encoding-decoding circuits are not yet constructed physically.
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