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Introduction: Tau PET imaging has emerged as an important tool to detect and

monitor tangle burden in vivo in the study of Alzheimer’s disease (AD). Previous

studies demonstrated the association of tau burden with cognitive decline in

probable AD cohorts. This study introduces a novel approach to analyze tau PET

data by constructing individualized tau network structure and deriving its graph

theory-based measures. We hypothesize that the network- based measures are a

measure of the total tau load and the stage through disease.

Methods: Using tau PET data from the AD Neuroimaging Initiative from 369

participants, we determine the network measures, global efficiency, global

strength, and limbic strength, and compare with two regional measures

entorhinal and tau composite SUVR, in the ability to differentiate, cognitively

unimpaired (CU), MCI and AD. We also investigate the correlation of these

network and regional measures and a measure of memory performance,

auditory verbal learning test for long-term recall memory (AVLT-LTM). Finally,

we determine the stages based on global efficiency and limbic strength using

conditional inference trees and compare with Braak staging.

Results: We demonstrate that the derived network measures are able to

differentiate three clinical stages of AD, CU, MCI, and AD. We also demonstrate

that these network measures are strongly correlated with memory performance

overall. Unlike regional tau measurements, the tau network measures were

significantly associated with AVLT-LTM even in cognitively unimpaired individuals.

Stages determined from global efficiency and limbic strength, visually resembled

Braak staging.

Discussion: The strong correlations with memory particularly in CU suggest the

proposed technique may be used to characterize subtle early tau accumulation.

Further investigation is ongoing to examine this technique in a longitudinal

setting.
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1. Introduction

Both Amyloid and tau begin building up long before clinical
symptoms of Alzheimer’s disease (Jack et al., 2010, 2017b).
Characterizing the level of tau pathology and its progression is of
vital importance. Braak staging describes the spatial pattern of tau
pathology and its spread from entorhinal and limbic to isocortical
regions based on neuropathological studies (Braak and Braak, 1991,
1995). With the advent of tau PET tracers it is possible to measure
the distribution of tangle burden in vivo and characterize its
progression over time (Chien et al., 2013; Dani et al., 2016; Schwarz
et al., 2018). Braak regions have been defined by FreeSurfer regions
and conditional inference tree regression model (Scholl et al., 2016;
Maass et al., 2017). Other in vivo Braak strategies have been adopted
as well Schwarz et al. (2016, 2018). A meta-temporal region of
interest which is defined as a collection of Braak III-IV regions
has been proposed as a global index of overall tau burden (Jack
et al., 2017a,b). While the spatial distribution of tau pathology
generally follows the Braak stages, individual variability exists in
where tau starts in the cortex and how it progresses (Braak et al.,
2011; Franzmeier et al., 2020; Sanchez et al., 2021; Vogel et al.,
2021). An alternative strategy to analyze tau PET data would still
investigate tau spread throughout the brain in disease but allows
for variability in the spatial pattern of tangle burden and does not
necessarily follow Braak staging.

Graph-based or network approach can provide such an
alternative and has been shown to allow detection of subtle changes
of the brain antecede well known Alzheimer’s disease (AD) deficits
(Morris et al., 2001; Albert, 2011; Arlt et al., 2013) without defined
staging. This approach has been widely adopted to characterize
the blood oxygen level dependent (BOLD) signal in resting state
fMRI images for the investigation of brain function in health and
disease (Wang et al., 2010, 2011; Braun et al., 2012; Hojjati et al.,
2019). With this approach, a complex network can be constructed
with nodes representing regional measures and edges describing
relationship between nodes. Network-based measurements can
then be used to identify modular structure in these networks
(Wang et al., 2010, 2011; Farahani et al., 2019). In addition to its
numerous applications in analyzing fMRI data, this approach has
been reported for its use in analyzing T1w-MRI and PET data (He
et al., 2007, 2008; Huang et al., 2010; Sepulcre et al., 2013, 2018;
Tijms et al., 2013, 2018; Wang et al., 2016, 2020; Arnemann et al.,
2018; Pereira et al., 2018; Veronese et al., 2019; Kim et al., 2021).
Individualized network analyses are already available and very well
established particularly in resting state fMRI and Diffusion Tensor
Imaging(DTI) (Fornito et al., 2010; Braun et al., 2012; Hojjati
et al., 2019). There are a few studies with T1-wMRI and FDG
PET where individualized networks have been introduced (Tijms
et al., 2012, 2013; Wang et al., 2016, 2020). The weights of both of
these past individualized networks and group-based networks are
defined by correlation, covariance, or other measures of similarity
and association. The weights in new individualized tau networks
introduced in this paper are instead characterized by difference in
regional tau burden.

In this work, we propose a different approach to construct
individual level tau PET networks drawing inspiration from and
analogy to the application of graph-theoretical approach in the
context of population genetics (Dyer and Nason, 2004; Dyer

et al., 2010; Rodger et al., 2018; Savary et al., 2021a,b). The
goal of analyzing tau PET data is to quantify tangle burden
across different brain regions and make inference about how
tangle burden would progress in a patient. Similarly in population
genetics, researchers seek to characterize and quantify genetic
variabilities in the overall population and describe genetic flow
among different subpopulations using network -based approach
for over 15 years (Dyer and Nason, 2004; Rodger et al., 2018;
Savary et al., 2021a,b). In these research, a population graph or
network, Figure 1A for an example, is constructed with each
node representing a subpopulation and each edge connecting two
nodes characterized by a distance measure representing the genetic
difference between the two nodes (Excoffier et al., 1992; Dyer and
Nason, 2004; Garroway et al., 2008; Dyer, 2009; Dyer et al., 2010;
Manel and Holderegger, 2013; Shirk et al., 2018; Savary et al.,
2021b). Therefore, similar to the application of graph-theoretical
approach in population genetics research, we propose to construct
individual level tau PET networks with each node representing
different anatomical regions and the edge between the two nodes
characterizing the difference in tau burden and then we derive
graph-based metrics from the tau PET networks (Figure 1B). We
examined the graph-based metrics and their ability to distinguish
between cognitively unimpaired (CU), mild cognitive impairment
(MCI) and AD participants in comparison to conventional regional
analysis. In addition, we also examined the association of each
individualized tau network measure with memory performance.
We visually compare staging developed from the graph theory
measures to Braak staging.

2. Materials and methods

2.1. Study participants

Data used in this study were obtained from participants in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Flortaucipir (FTP) PET scans were downloaded as of 11/29/2018
for 32 AD, 115 MCI and 223 CU older adults (Table 1). We
included all participants with FTP scans from ADNI that also
have a matching T1w MRI near the time of the FTP acquisitions
(0.3 ± 0.6 years) regardless of the diagnostic status to allow us
to examine tau pathology throughout the full AD continuum
from biomarker negative cognitively normal participants to clinical
AD. Matching T1w MRI and florbetapir (FBP) PET were also
downloaded where available. This included participants with
preclinical AD defined as those who were cognitively normal but
had a positive AD biomarker, e.g., amyloid positive. Participants
who did not fit into the typical AD/preclinical AD profile under the
ATN framework (Jack et al., 2018) were also included. ADNI study
was approved by the institutional review boards of the participating
institutions. Signed informed written consent was obtained from
each participant. For this project the most fully preprocessed
PET images were downloaded from ADNI. The PET images
underwent a procedure of between frame motion correction,
averaging of the frames, reoriented to standard grid, and finally
scanner harmonization filtering to 8 mm at University of Michigan.
Details about the scan acquisition for MRI and PET are provided
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FIGURE 1

(A) An example of a population network with four nodes. (B) An example of the network for a tau image.

TABLE 1 Subject characteristics age, gender, APOE, education, cognitive measures as well as Aβ and tau positivity are included for the three groups
(CU, MCI, and AD).

CU (n = 222) MCI (n = 115) AD (n = 32) p-value

Age 74.5± 7.4 76.9± 7.2 77.6± 9.4 0.003

Gender(M/F) 92/130 73/42 17/15 5e-4

APOE(NC/Car) 137/75 77/37 16/13 0.46

Education 16.7± 2.4 16.3± 2.7 15.4± 2.4 0.01

MMSE*** 29.0± 1.3 27.8± 2.1 21.2± 4.8 4e-58

AVLT-LTM 10.0± 2.9 4.0± 4.0 0.9± 2.1 8e-51

AVLT-TL 46.6± 10.5 35.3± 10.4 22.2± 7.8 4e-35

CDR-SB 0.1± 0.3 1.2± 1.1 6.3± 3.1 9e-90

Aβ positivity(pos/neg) * (threshold: 1.17) 50/165 49/63 24/5 1e-10

Tau positivity(pos/neg)** (threshold:1.23) 104/118 80/35 27/5 2e-6

*Aβ positivity is defined by mean cortical region to/cerebellar region with a threshold for positivity of 1.17. **Tau positivity was defined based on the tau composite-SUVR greater than 1.23.
***CDR SB, clinical dementia rating sum of boxes; AVLT-TL, auditory verbal learning test total score, AVLT-LTM, auditory verbal learning test long term memory recall; MMSE, mini mental
state examination.

at the ADNI website.1 In addition to imaging data, demographic,
clinical, and cognitive scores including auditory verbal learning test
long term memory (AVLT-LTM) scores, Clinical Dementia Rating
Scale-Sum of Boxes (CDR-SB), Mini Mental State examination
(MMSE) score matching the imaging data were also downloaded
from ADNI.

2.2. Image analysis

The FTP image was co-registered to the nearest T1w MRI using
SPM12 (Wellcome Trust Centre for Neuroimaging)2 and then
SPM12 was used to warp MRI and the co-registered FTP image

1 www.adni-info.org

2 http://www.fil.ion.ucl.ac.uk/spm/

into Montreal Neurological Institute (MNI) template space. An in-
house developed procedure was used to calculate the FTP standard
uptake ratio (SUVR) values in template space for an entorhinal
region (Braak et al., 2006; Johnson et al., 2016) and a tau composite-
SUVR (Jack et al., 2017a,b). The entorhinal region is defined by the
Mayo Clinic Adult Lifespan Template (MCALT) with a cerebral
crus 1 reference region from Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002). The tau composite
was computed as the median-uptake of voxels in entorhinal,
amygdala, parahippocampal, fusiform, inferior temporal, and
middle temporal regions normalized to cerebellar-crus following
the previously described procedure (Jack et al., 2017a,b). This
allowed us to determine Tau positivity, defined based on the
tau composite-SUVR greater than 1.23 (Jack et al., 2017b). For
those participants with a matching FBP scans, the FBP images
were warped to the MNI template, amyloid burden was also
determined using established methods and positivity is defined by
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having a mean cortical to cerebellum SUVR > 1.17 (Fleisher et al.,
2011).

2.3. Individual-network based method

A schematic of the method can be seen in Figure 2. The
input to the pipeline is the warped tau SUVR image seen in 2A.
A probabilistic gray matter mask (binarized with a threshold of
0.3) was used to define valid nodes of the network. For each of
the 90 AAL regions (Tzourio-Mazoyer et al., 2002), a six-mm cube
at its center (Xia et al., 2013; Yu et al., 2013) was subdivided into
a 3 × 3 × 3 matrix with 2-mm isotropic elements as seen in
Figure 2B. To be included in the network analysis, such cube must
be a) independent of each other (no overlaps) and b) each of the 27
elements has a nonzero gray matter mask value. This left 64 regions
(nodes) out of the 90 AAL regions (Supplementary Table 1).

To represent the tau network structure for each individual, an
undirected network was constructed by calculating the weight (w)
between each pair of nodes using a predefined weighting function.
The weighting function is defined as the difference of the means of
the two nodes:

wij =
∣∣xi − xj

∣∣ (1)

Higher weight indicates a greater difference in tau deposition
between the two nodes and vice versa. The inverse of the
weight between two nodes defines the network distance. A larger
tau interregional distance or weight corresponds with a shorter
network distance. The shortest path length (dij) is defined as
minimum network distance between node i and j by either a direct
or indirect route. For example, if dij > dik + dkj then dij is set to dik
+ dkj. In this case, the indirect path is the shorter path and replaces
the direct path. The brain connectivity toolbox (BCT)3 (Rubinov
and Sporns, 2010) was used to calculate efficiency, strength, and
other measures of the network. Our method uses the weighted
undirected network instead of binarized network to capitalize on
the information carried by the weights.

Two types of network measures that are commonly used
in network analysis are examined in this study and briefly
summarized here.

2.3.1. Network strength
The network strength of a node (nodal network strength) is

defined as the sum of all the weights connected to a node:

si =
∑

j∈N
wij (2)

si Represents the strength of node i. Average nodal network
strength of predefined sets of nodes can be calculated as a local
or global measure. A local limbic strength is defined as the mean
strength over four nodes (bilateral amygdala and parahippocampal
gyrus) within the limbic network well-known to subject to tau
pathology in AD (shown in Figure 2D). We use limbic strength
as a representative network strength measure in the rest of the
analysis to compare with conventional and other network-based
tau measurements. A global strength defined as the mean nodal

3 http://www.brain-connectivity-toolbox.net/

strength over all nodes is also examined as an overall strength
measure of the network.

2.3.2. Network efficiency
In a weighted network, global efficiency (Ew) is a measure of the

overall efficiency of information flow through nodes in the network
(Eq. 3). It is the average of the inverse of the shortest path lengths.
This is the new interregional distance matrix (w̃ij) that includes
both direct and indirect paths. w̃ij is inversely related to the shortest
path length dij in the network, thus, a shorter path means higher
efficiency. This measurement is very similar to network strength.

Ew =
1
n

∑
i∈N

∑
j∈N,j 6=i

(
dwij
)−1

n− 1
=

1
n

∑
i∈N

∑
j∈N,j6=i w̃ij

n− 1
(3)

From these two types of network measures (strength and
efficiency), in this study we focus on three measurements including
global strength, limbic strength, and global efficiency.

2.4. Statistical analysis

To assess the utility and relevance of the three tau network
measurements (global strength, limbic strength, and global
efficiency), statistical analysis was performed to evaluate (1) the
ability of these measurements in differentiating CU, MCI and AD
groups and (2) the relationship between tau network measurements
with cognitive measures. To evaluate the ability to differentiate CU,
MCI and AD, Cohen’s f effect sizes, and confidence intervals were
calculated for ANCOVA analysis for the three groups (CU, MCI,
AD) with age and gender as a covariate using “effectsize” library
in R. To characterize relationship of tau measures with AVLT-LTM
scores (auditory verbal learning test for long-term recall memory),
Spearman rank correlation were determined using R version 3.6.1
in CU and combined full groups. For the association analysis of
Tau PET measures with memory in the CU group, we excluded
participants who had a AVLT-LTM score of less than 5 (Ivnik et al.,
1992). A Steiger test was used to compare the correlations for tau
measures versus memory within groups using “cocor” library in R.
Additional analysis was also performed to investigate the ability of
using tau network measures for definition of pathological stages.
The ctree function from the “partykit” library in R 3.6.1 was used to
classify subjects using conditional inference tree based on the three
tau network measures. After determining the stage, we averaged all
tau PET images to create an average tau PET for each stage as well as
averaging the tau strength for each node. We then created a surface
display BrainNet with the nodes with average nodal strength as the
size of the node.

3. Results

3.1. Participant characteristics

Demographic characteristics, MMSE, and AVLT-LTM scores
are shown in Table 1. Age, education, and gender as well as
cognitive and memory scores are significantly different between
AD, MCI and CU groups (p < 0.05). The proportions of APOE
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FIGURE 2

After preprocessing the PET images (A) into template space, we took 6 mm × 6 mm × 6 mm cubes centered at each of the AAL regions (B). From
that we calculated the difference between the mean tau SUVR of each cube. This resultant matrix is shown as a heatmap (C). This is a weighted
undirected network. The image in panel (D) is another representation of the weighted undirected matrix with the graph on the brain and the color
representing the difference of regional tau SUVR. The size of the node is the strength. Each subject in this cross-sectional study had a graph for FTP
and from that graph the global strength, global efficiency, and limbic strength can be calculated. Limbic strength is the strength over the bilateral
parahippocampal and amygdala nodes.

FIGURE 3

A representation of the tau networks for two subjects from each of the three clinical groups (AD,MCI, CU). The difference of the means of the
weights are in color. The nodal strength can be seen as the size of the nodes. Tau positivity was defined based on the tau composite-SUVR greater
than 1.23, (A) are tau positive and (B) are tau negative. Aβ positivity is defined by mean cortical region to/cerebellar region with a threshold for
positivity of 1.17.

carriers were not significantly different between the three groups
(p = 0.46).

3.2. Tau network characteristics

An example of the distance matrices of undirected networks
derived from FTP images can be seen in Figure 2C. The tau
networks are also displayed using BrainNet viewer (Xia et al., 2013)

with the color representing the weights of the network and size of
the nodes representing strength (Figures 2D, 3). Tau networks for a
tau positive (left) and a tau negative (right) subject were randomly
chosen from each of the clinical groups (i.e., CU, MCI, and AD)
for illustration (Figure 3). Measurements for global efficiency,
global strength, and limbic strength as well as the tau composite
SUVR, entorhinal tau SUVR were also listed in Figure 3 for each
selected subject. There is a general trend for AD patients than
MCI and CU to have higher between-node distances. But it is not
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FIGURE 4

Group differences with network measures for the original FTP networks, (i) global efficiency, (ii) global strength,and (iii) limbic strength, and
common regional measures, (iv) entorhinal SUVR and (v) tau composite SUVR between AD, MCI, and CU subjects. *p < 0.05, **p < 0.1, ***p < 0.002,
****p < e-5.

recommended to perform classification of patient clinical status
based on this. And the network and regional tau measures are
higher in tau positive than in tau negative participants. Subjects
with higher tau regional measures tend to have higher tau network
measures.

3.3. Individual network
measurements—In AD, MCI, and CU
groups

Group comparison for each tau network measurements
including global efficiency, global strength, and limbic strength
was performed controlling for age and gender (Figure 4). Tau
composite SUVRs and entorhinal SUVRs were also compared
among the three groups (Figure 4). All tau network measures
showed significant difference among the 3 groups (p < 2.0e-19,
ANCOVA), as well as the pairwise separation (p < 0.001). Of
note, all network measures (i.e., global efficiency, global strength)
increase from CU to AD. The tau SUVR measures also showed
similar group separation (p < 8.0e-20, ANCOVA) and pairwise
separation (p < 0.001). In Table 2, we see the Cohen’s f based
on ANCOVA analysis for the 3 group with age and gender as the
covariate. All network and regional measures show a large effect

(Cohen’s f > 0.4) for separation among AD, MCI and CU. Tau
global strength demonstrated largest Cohen’s f (0.69, Table 2),
followed by tau composite SUVR (0.62). Table 3 shows the effect
size for the pairwise analyses CU versus MCI and AD versus MCI.
The tau measures with largest effect size in analysis between MCI
and CU is tau global strength and entorhinal SUVR (Cohen’s
f = 0.34) followed by tau limbic strength (Cohen’s f = 0.33).
The tau measures with largest effect size in analysis between MCI
and AD is tau global strength (Cohen’s f = 0.57) followed by)
and tau composite SUVR (Cohen’s f = 0.51). Network (global
strength and limbic strength) and regional measures have clinically
relevant effect sizes for both pairwise group comparisons (AD vs.
MCI groups and MCI vs. CU groups). Global efficiency has lower
effect sizes in CU/MCI pairwise assessment. As expected, the best
regional measurement for effect size analyses of CU and MCI is
entorhinal and the best regional SUVR measurement for effect size
analyses of MCI vs. AD is tau composite SUVR.

3.4. Relationship of tau PET (network and
regional) to memory

The association of tau measures with AVLT-LTM in full
group as well as within CU subjects separately was shown in
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TABLE 2 Effect sizes, Cohen’s f, from either FTP PET network measures
or regional measure volumes for the for ancova of the three groups (AD,
MCI, CU).

AD/MCI/CU

Tau global efficiency 0.52 (0.40, 0.624)*

Tau global strength 0.69 (0.575, 0.80)

Tau limbic strength 0.60 (0.49, 0.71)

Tau composite SUVR 0.62 (0.50, 0.73)

Tau entorhinal SUVR 0.52 (0.41, 0.63)

Cohen’s f, 95% confidence intervals are shown and covariates included in the analysis
were age and gender. *Cohen’s f (95% confidence intervals).

TABLE 3 Effect sizes, Cohen’s f, from either FTP PET network measures
or regional measure volumes for the for pair wise analysis of the three
groups (AD, MCI, CU).

AD/CU AD/MCI MCI/CU

Tau global efficiency 0.62 (0.49, 0.76)* 0.47(0.29, 0.64) 0.22 (0.11, 0.33)

Tau global strength 0.82 (0.67, 0.96) 0.57 (0.39, 0.75) 0.34(0.23, 0.45)

Tau limbic strength 0.74 (0.60, 0.88) 0.46 (0.29, 0.64) 0.33 (0.22, 0.44)

Tau composite SUVR 0.70 (0.56, 0.84) 0.51 (0.33, 0.68) 0.31 (0.20, 0.42)

Tau entorhinal SUVR 0.64 (0.50, 0.77) 0.34 (0.17, 0.51) 0.34 (0.23, 0.45)

Cohen’s f, 95% confidence intervals are shown and covariates included in the analysis
were age and gender. *Cohen’s f (95% confidence intervals).

Figure 5. In the full group where AVLT-LTM has values covering
the full range, all tau measures were significantly associated with
AVLT-LTM (Figure 5A). The correlation between global efficiency
and AVLT-LTM is significantly stronger than the correlation
between AVLT-LTM and tau composite (p< 0.04). The correlations
between both global strength and limbic strength and AVLT-
LTM are also significantly stronger than the correlation between
AVLT-LTM and regional measurements (p < 0.04). In CU, only
two tau network measures were significantly associated with
AVLT-LTM, (tau global efficiency: rs = −0.24, p = 0.002, tau
global strength: rs = −0.16, p = 0.04, Figure 5B), other tau
measures did not show a significant association. The results
were similar when restricted to amyloid positive participants
only. All tau measures were significantly associated with AVLT-
LTM (p < 0.05) in amyloid positive participants across the
clinical spectrum. In amyloid positive CU participants, only
limbic strength is correlated with AVLT-LTM (rs = −0.37,
p = 0.03), global efficiency and strength as well as tau
SUVR measures was not significantly associated with AVLT-
LTM.

3.5. Staging with tau PET measures

We show the staging based on using global efficiency, and
limbic strength as seen in Figure 6A. There are two thresholds for
limbic strength, first a threshold = 14.46 to divide participants into
stage 1–2 and 3–4 and then a threshold = 9.867 to divide stage 1-2
into stage 1 and stage 2. A threshold of global efficiency = 0.901
was found to divide participants into stage 3 and stage 4. The
average tau PET image for each of the 4 stages defined based on
tau network measures was illustrated in Figure 6B. The spatial

pattern of tau burden across the 4 stages resembles the pattern
described by Braak staging with tau accumulation starting from
the medial temporal lobe and spreading to the isocortical regions.
It appears that on average in the early stages there might be
some tau starting not only in medial temporal lobe but also
precuneus.

4. Discussion

In this paper we introduce individualized tau network
measurements using graph theory that allows the assessment of
tangle burden across the entire brain. Global strength, global
efficiency, and limbic strength in the tau networks are higher in
AD subjects (AD > MCI > CU). Global strength, global efficiency
and limbic strength had similar effect sizes compared to traditional
regional SUVR measures of tau burden. The network measures and
regional measures showed similar discrimination between AD and
CU. As an example of the discriminative ability between AD and
CU of the tau measures, limbic strength demonstrated an AUC
(95% confidence interval) = 0.90 [0.83, 0.97], specificity = 0.88,
sensitivity = 0.83. In general, both tau network measures and
the regional SUVR measures correlated with memory score, while
only the network measures (global efficiency, global strength were
significantly correlated with memory in the CU group). These
findings suggest our proposed tau network analysis approach
can be a useful technique in providing an overall assessment
of tau burden with strong statistical power in differentiating
clinical AD stages and predicting cognitive performance. Further
investigation with larger cohorts may be able to determine whether
network-based measurements had superior statistical power for
group separation. We also demonstrated our approach to be
more sensitive to detecting the relationship between tangle burden
and cognitive decline prior to clinical symptoms. Visually, the
stages determined based on global efficiency and limbic strength
also resemble the general pattern of tau progression as defined
based on Braak staging. Fifty three percent of the CU in stage
3 and 4 are Aβ positive, 47% of the CU in stage 3 and 4
are APOE4 carriers. 90% of the CU in stage 3 and stage 4
are tau positive. It should be noted that the gold standard for
Braak staging should be based on neuropathological assessment
while tau PET can partially replicate that although it should be
interpreted with caution (Lowe et al., 2020; Soleimani-Meigooni
et al., 2020). Numerous studies have shown deviations from typical
Braak staging based spatial patterns and individual variability
exists in where tau starts in the cortex and how it progresses
(Braak et al., 2011; Franzmeier et al., 2020; Sanchez et al.,
2021; Vogel et al., 2021). The goal of performing staging based
on network measure in this study is mainly to demonstrate
its similarity with the Braak based staging system. Further
study is warranted to examine the validity and performance of
this staging system using both cross-sectional and longitudinal
data.

In the association analysis between tau measures and AVLT-
LTM, excluding amyloid negative participants did not substantially
change the observed association. All tau measures were associated
with AVLT-LTM across the clinical spectrum and only certain
tau network measures can detect an association in the CU
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FIGURE 5

(A) Correlation of network measures (i) global efficiency, (ii) global strength, and (iii) limbic strength, and regional measures (iv) entorhinal SUVR, and
(v) tau composite SUVR with AVLT-LTM in all subjects (CU/MCI/AD). (B) Correlation of network measures (i) global efficiency, (ii) global strength, and
(iii) limbic strength and regional measures (iv) entorhinal SUVR, and (v) tau composite SUVR with AVLT-LTM in CU subjects.
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FIGURE 6

(A) Conditional inference trees model for staging using limbic
strength and global efficiency. A threshold of 14.463 for limbic
strength separates those participants who are in stage 1 and 2 from
those who are stage 3 and 4. Those lower than the 14.463 are
further divided into stage 1 and stage 2 by the threshold 9.867.
Those greater 14.463 are divided into stage 3 and stage 4 with
threshold of global efficiency = 0.901. (B) Average tau surface maps
for each stage. On top of the surface display, the average strength
from each node are displayed. Stage 4 is particularly like the Braak
V-VI.

group. While focusing on amyloid positive participants allows
us to investigate the spectrum of patients fitting the typical
pathological profile of AD it also results in reduced sample size
and preventing us from examine the very early phase of the
disease. The subtle difference of which network measure were
associated with AVLT-LTM in the CU group depending on the
amyloid status may be a results of sample size differences or
underlying differences in tau distribution pattern that require
further investigation.

We primarily examined AVLT-LTM which is more sensitive to
earlier cognitive changes. AVLT-LTM is a sensitive measure
to detect memory decline including at early stages when
participants are still considered cognitively normal (Caselli
et al., 2009). We also examined correlation with Clinical
Dementia Rating Scale-Sum of Boxes (CDR-SB), Mini Mental
State examination (MMSE), AVLT-total, and AVLT-STM.
The results were consistent with our findings with AVLT-
LTM. All cognitive measures were significantly correlated
with conventional tau SUVR measures as well as network
based measures, while the relationship tend to be stronger for
network measures. Also, in CU participants, only network-based
measures were found to be significantly correlated with cognitive
measurements.

In our proposed technique to derive individualized tau
networks, the nodes were defined based on average gray matter
maps in MNI template space with each node centered within
each individual AAL region, and each node is represented by a
cube in the imaging space. We also investigated the influence
of tau PET analysis pipelines and choice of nodes for the
construction of the individualized tau networks. These results
were summarized in the Supplementary material. We found
our approach to be generally robust and not sensitive to the
detailed variation in the implementation of the network model
such as the size of the cube, the number of nodes, and template
space vs. individual space analysis. These findings support the
generalized application of our proposed approach to different
tau analysis pipelines without losing its power to detect tau
changes and its association with cognition. We did not compare
in this manuscript the individualized network with a group-
based network like tau covariance since the group based networks
and individual based networks serve different purposes and the
goal of this manuscript was to demonstrate the utility of our
individual based networks which allows the assessment of tau
burden and its spatial distribution at individual level. Group based
networks only examine the spatial pattern of tau distribution.
A comparison of the two approaches is beyond the scope of
our current study although would be interesting for future
study.

In network analysis pruning of edges or weights is a
commonly performed task. To examine the sensitivity of our
tau network analysis approach to such pruning, we included
two different implementation of individualized tau network with
one using 86 FreeSurfer defined nodes including both cortical
and subcortical regions and another one focusing on the cortical
regions only given the off-target binding in subcortical regions
(Baker et al., 2019). The results are largely similar in that
the network metrics’ ability to differentiate clinical groups and
correlating with memory scores are not affected by the two
implementations.

Although tau PET tracers are designed to target tau fibril
tangles, tau PET images nevertheless carry structural information
due to the difference in non-specific tracer retention among
different tissue types, e.g., gray vs. white matter. To better
understand whether the network measures derived from tau
PET images are primarily driven by specific tau binding
rather than non-specific signal which would resemble more
of structural MR data, we applied the same approach to
construct individual level gray matter and white matter networks
based on tissue density map derived from T1w-MRI, and
subsequently evaluated these T1w-MRI derived network measures
in their ability to differentiate AD diagnostic groups and their
association with cognition (Supplementary Tables 5–7). It was
determined that the T1w-MRI derived network measures had far
less power in differentiate the clinical groups (Supplementary
Table 5). We also found that the T1w-MRI derived network
measures had weaker or no association with cognition and
sometimes in the opposite direction (Supplementary Tables 6, 7).
These observations suggest that our proposed tau network
measures are driven more by the specific tau-binding related
signals which further strengthens their utility in assessing tau
pathologies.
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In summary, we proposed and evaluated a novel approach
to construct individualized tau network and compute graph-
theoretical measures of the network. We found these measures
to differentiate clinical stages and have stronger associations with
cognition compared to regional measures, particularly in CU. In
addition, this method can be applied to other tauopathies and
subtypes of AD that show differing patterns of tau deposition.
Additional investigation is needed to relate these tau network
measures with other AD related changes such as amyloid and
neurodegeneration as well as determine its power in track
longitudinal changes of tangle burden. This method can be
further extended to a longitudinal network to measure longitudinal
tau spread. For future work we will also examine the ability
of using network measures to determine tau positivity. Further
investigation is also warranted to determine whether these subtle
tau changes identified by network analysis can be detected in
other tauopathies.
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