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Background: Predicting the consciousness recovery for comatose patients with

acute brain injury is an important issue. Although some efforts have been made in

the study of prognostic assessment methods, it is still unclear which factors can be

used to establish model to directly predict the probability of consciousness recovery.

Objectives: We aimed to establish a model using clinical and

neuroelectrophysiological indicators to predict consciousness recovery of comatose

patients after acute brain injury.

Methods: The clinical data of patients with acute brain injury admitted to the

neurosurgical intensive care unit of Xiangya Hospital of Central South University

from May 2019 to May 2022, who underwent electroencephalogram (EEG) and

auditory mismatch negativity (MMN) examinations within 28 days after coma onset,

were collected. The prognosis was assessed by Glasgow Outcome Scale (GOS) at

3 months after coma onset. The least absolute shrinkage and selection operator

(LASSO) regression analysis was applied to select the most relevant predictors. We

combined Glasgow coma scale (GCS), EEG, and absolute amplitude of MMN at Fz

to develop a predictive model using binary logistic regression and then presented by

a nomogram. The predictive efficiency of the model was evaluated with AUC and

verified by calibration curve. The decision curve analysis (DCA) was used to evaluate

the clinical utility of the prediction model.

Results: A total of 116 patients were enrolled for analysis, of which 60 had favorable

prognosis (GOS ≥ 3). Five predictors, including GCS (OR = 13.400, P < 0.001),

absolute amplitude of MMN at Fz site (FzMMNA, OR = 1.855, P = 0.038), EEG

background activity (OR = 4.309, P = 0.023), EEG reactivity (OR = 4.154, P = 0.030),

and sleep spindles (OR = 4.316, P = 0.031), were selected in the model by LASSO

and binary logistic regression analysis. This model showed favorable predictive

power, with an AUC of 0.939 (95% CI: 0.899–0.979), and calibration. The threshold

probability of net benefit was between 5% and 92% in the DCA.
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Conclusion: This predictive model for consciousness recovery in patients with

acute brain injury is based on a nomogram incorporating GCS, EEG background

activity, EEG reactivity, sleep spindles, and FzMMNA, which can be conveniently

obtained during hospitalization. It provides a basis for care givers to make subsequent

medical decisions.

KEYWORDS

acute brain injury, coma, electroencephalogram (EEG), mismatch negativity (MMN),
prognosis, prediction model

Introduction

Acute brain injury, such as, severe traumatic brain injury and
intracerebral hemorrhage, results in a heavy burden in low- and
middle- income countries for its high mortality and disability rates
(Injury, 2019; Krishnamurthi et al., 2020). With the advances of
medical care, an increasing number of comatose patients survive. The
issue of whether these comatose patients can regain consciousness
is significant for doctors and families, especially with regard to the
follow-up medical decisions. As we all know, the early intervention
is critical for the patients with promising prognosis to regain
consciousness. Up to now, there are many methods to assess the
prognosis of comatose patients after acute brain injury according to
the previous studies (Logi et al., 2011; Ballesteros et al., 2018; Claassen
et al., 2019; Monteiro et al., 2021; Romagnosi et al., 2022).

The Glasgow Coma Scale (GCS) score, a reflection of the
severity of patients’ condition is currently the most widely
used in clinic for its simplicity (Teasdale and Jennett, 1974).
Besides, neuroelectrophysiological examinations, including
Electroencephalogram (EEG) and event related potentials (ERPs) get
more and more attention in clinical practice (Monteiro et al., 2021;
Zhou et al., 2021). Among them, EEG plays an important role for
outcome prediction in comatose patients (Synek, 1988; Sandroni
et al., 2021). EEG background activity, to a large extent, reflects
the functional state of the cerebral cortex and subcortex (Estraneo
et al., 2020) and EEG reactivity and sleep spindles can provide the
additional information about the sensory conduction pathway and
thalamic-cortex circuit (Kang et al., 2015; Wang et al., 2022b).

Auditory mismatch negativity (MMN), one of the event-related
potentials (ERPs) components, which can be obtained by subtracting
the waveform evoked by standard stimuli from the waveform evoked
by deviant stimuli, has been increasingly used in comatose patients or
prolonged disorders of consciousness in recent years. The presence
of MMN indicates that the patient has the ability to voluntarily
distinguish and to induce attention orientation to two stimuli, which
called pre-attention processing (Alho, 1995). The appearance of
MMN suggests a favorable neurological outcome in patients with
low responsiveness (Daltrozzo et al., 2007). In addition, the increase
of absolute amplitude of MMN was correlated with recovery of
consciousness (Wijnen et al., 2007; Zhou et al., 2021).

However, it is an important but still unclear clinical issue
which assessment indicators to choose to achieve the best predictive
performance. In this study, we used least absolute shrinkage and
selection operator (LASSO) and binary logistic regression analysis
methods to establish a prediction model, which made the probability
of the consciousness recovery for comatose patients visualized

by nomogram. In this way, it can provide a better basis for
clinical practice.

Materials and methods

Patients

We retrospectively reviewed the records of patients with severe
brain injury who were admitted to the Neurosurgical Intensive
Care Unit of Central South University Xiangya Hospital from
May 2019 to May 2022. The inclusion criteria were as follows:
(1) craniocerebral injury caused by traumatic brain injury and
intracerebral hemorrhage and confirmed by computed tomography
or magnetic resonance imaging; (2) GCS ≤ 8 at the time of
electrophysiological assessment; (3) age ≥ 18 years old; and (4) EEG
and auditory MMN examinations performed within 28 days from
coma onset. The exclusion criteria were: (1) pre-existing neurological
diseases; (2) known hearing impairment; (3) received sedatives
and/or muscle relaxants, except for dexmedetomidine or low dose of
midazolam (≤ 0.02 mg/kg/h) (Riker et al., 2009), during the course of
EEG and MMN examinations; and (4) incomplete clinical data. The
charts of patients enrollment process of this study was in Figure 1.

MMN paradigm

We used a classical oddball auditory paradigm to elicit auditory
MMN. It comprised two types of pure sound with different
frequencies: 800 Hz and 1,500 Hz for the standard and deviant
stimuli, respectively. In this paradigm, 700 pure sound stimuli
(comprising 90% standard stimuli and 10% deviant stimuli, 80 dB
sound pressure level, lasting for 75 ms) with a stimulus onset
asynchrony of 800 ms were presented to every patient to elicit
the MMN response. The sound stimuli were continuously and
pseudorandomly presented, although there were at least three
standard stimuli between two consecutive deviants. The sound was
delivered through headphones. The whole examination lasted about
11 min. Schematic diagram of MMN paradigm was presented in
Figure 2.

MMN data acquisition and analysis

Scalp MMN examinations were performed at the patients’
besides, while they were free from visible body shaking. Data were
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FIGURE 1

Flow chart of this study.

FIGURE 2

Schematic representation of the stimulus paradigm of mismatch negativity. Green: standard stimuli, 800 Hz, 630 trials. Red: deviant stimuli, 1500 Hz,
70 trials. Duration of each sound stimuli is 75 ms. SOA: 800 ms. The sound stimuli were continuously and pseudorandomly presented, although there
were at least three standard stimuli between two consecutive deviants.

recorded at four electrodes (F3, F4, Fz, and Cz) according to the
10–20 international system using a Rinjie medical event-related
potentiometer (WJ-IA, Guangzhou, China). The impedance of all
electrodes was kept below 5 K�, and the sampling rate was 1,024 Hz

with an online 1–100 Hz bandpass filter. Data were referenced with
the mean potential at electrodes A1 and A2.

Raw ERP data with amplitudes exceeding 100 µV were
automatically rejected, thus eliminating eye movements and other
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artifacts. Subsequently, the standard and deviant responses were
averaged by extracting the data of 100 ms before each stimulus onset
and 500 ms after the stimulus; the former was primarily used for
baseline correction. After that, a 3–30 Hz bandpass filter is applied
and the MMN can be obtained by subtracting the waveform evoked
by standard stimuli from the waveform evoked by deviant stimuli.
Finally, ERP components such as N1 and MMN were presented and
calculated by an automatic algorithm.

The criteria for identifying MMN components were: (1)
Considering that N1 is one of the representative indicators of the
auditory gating system and the information stream among the
auditory cortex areas is directed from the core area to the band area
and then to the sub-band area. Meanwhile, the core area and band
area are the main generators of the standard N1 and deviation N1
components, respectively (Jones, 2002). We considered that MMN
was not present only if the standard and deviation N1 were both
evoked (Rosburg, 2019); (2) The largest negative waves of averaged
difference waveforms in the latency interval between 100 and 300 ms
were considered to represent the presence of MMN components
(Grimm et al., 2011; Wang et al., 2018); (3) Considering that
some of the patients underwent unilateral or bilateral decompressive
craniectomy and MMN had maximal amplitude at Fz (Wang et al.,
2018), we mainly investigated the absolute amplitude of MMN at the
Fz site in this study.

EEG data acquisition and analysis

Continuous digital EEG monitoring (SOLAR
electroencephalogram acquisition system, Beijing, China) was
routinely performed and lasted for over 24 h in the study, with 16
electrodes (FP1, FP2, F3, F4, C3, C4, P3, P4, 01, 02, F7, F8, T3, T4, T5,
and T6) placed according to the 10–20 international system. Video
was simultaneously recorded to identify clinical events and artifacts.
All EEG data were analyzed by two certified neurophysiologists.

Electroencephalogram background activity was classified into
spindle coma, alpha coma, and five other categories as follows
(Synek, 1988; Estraneo et al., 2020): (1) normal EEG activity,
with a predominant posterior alpha rhythm and anterior-posterior
gradient (APG), without focal or hemispheric slowing or epileptiform
abnormalities; (2) mildly abnormal (MiA) EEG, characterized by
predominant posterior theta activity (> 20 µV), symmetric or not,
with frequent (10–49% of recording) posterior alpha rhythms; (3)
moderately abnormal (MoA) EEG, characterized by predominant
posterior theta activity (> 20 µV), symmetric or not, poorly
organized APG, with rare (< 1% of recording) or occasional (1–
9% of recording) posterior alpha rhythms; (4) diffuse slowing (DS),
defined as EEG background activity with predominant diffuse theta
or theta/delta rhythms with an amplitude > 20 µV, without APG; (5)
low voltage (LV) EEG, defined as predominant EEG activity (theta or
delta) < 20 µV over most brain regions.

Sleep spindles were defined as 10–15 Hz bursts, lasting 0.5–2 s,
that were best seen in the central channel (Rasch and Born, 2013).
Sleep spindles that were not clearly detectable were considered as
absent.

EEG-R was performed as follows (Admiraal et al., 2018): (1) pain
stimulus: the patient’s nail bed was pressed using a pen for at least 5 s.
There were three repeats at each side with each pressing separated
by a 5-min interval. (2) Sound stimulus: loud claps were performed
for at least 5 s near the patient’s ear on one side. There were three

repeats at each side with each clapping separated by a 5-min interval.
The presence of EEG-R was defined as stable and repeatable (at least
twice) changes in amplitude or frequency in the EEG, which were
visible with the naked eye, except for muscle and eye blink artifacts
within at least one stimulus type.

The percent of alpha variability (PAV) was determined by visual
inspection of three points on the PA histogram: the PA baseline, the
PA peak value, and the PA trough value that most directly follows
the peak. The PA baseline was deemed to the mean PA occurring
during the 4 h prior to a peak in PA. The PAV was calculated using
the following formula: (Peak PA–Trough PA)/(Peak PA + Trough
PA). Then, the PAV were divided into four levels, which were poor
(level 1, < 2%), fair (level 2, 2–10%), good (level 3, 10–15%), and
excellent (level 4, > 15%), respectively (Vespa et al., 1997). PAV of
two bipolar channels of each patients were calculated using bilateral
frontoparietal, which were (F3–P3) and (F4–P4) (Friberg et al., 2013).
Besides, the global PAV scores were evaluated as the mean of the two
hemispheric PAV values (Hebb et al., 2007).

Prognosis assessment

The prognosis of patients was determined by telephone follow-
up 3 months after coma onset. The Glasgow Outcome Scale (GOS)
ranging from 1 to 5 (1, dead; 2, vegetative state or minimally
conscious state; 3, able to follow commands but unable to live
independently; 4, able to live independently but unable to return
to work or school; or 5, able to return to work or school) (Jennett
et al., 1981), was used to evaluate prognosis. GOS scores 1–2 were
defined as unfavorable prognosis (no recovery of consciousness), and
GOS scores 3–5 were defined as favorable prognosis (recovery of
consciousness).

Predictive variables

The variables including sex, age, etiology, pupillary light reflex,
GCS, absolute amplitude of N1 at electrode Fz (FzN1A), absolute
amplitude of MMN at electrode Fz (FzMMNA), EEG background
activity, sleep spindles, EEG-R, and PAV, which were generally
considered to be associated with the prognosis of comatose patients.
These 11 factors were preliminary screened, using the least absolute
shrinkage and selection operator (LASSO) analysis. LASSO analysis
was conducted with R software (version 4.2.1).

Statistical analysis

In this study, continuous and categorical variables were expressed
by the mean value ± standard deviation or median (interquartile
range, IQR) and the frequency (percentage), respectively.

The binary logistic regression model was used for multivariate
analysis of wakefulness in comatose patients. A nomogram for the
predictive model was developed based on the results of the binary
logistic analysis. The calibration of the nomogram was used for
internal validation by the 100 bootstrap resampling procedure. In
addition, the predictive efficiency of the nomogram was quantified
with area under the curve (AUC) of receiver operating characteristic
curve (ROC). Furthermore, the clinical utility of the nomogram was
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assessed by the decision curve analysis (DCA). Statistical analysis was
conducted with R software (version 4.2.1). For all tests, statistically
significance was set at P < 0.05.

Results

Patients

A total of 116 patients, including 29 females and 87 males,
were enrolled in our study. There were 73 cases of traumatic brain
injury and 43 cases of intracerebral hemorrhage. The mean age was
51.8 ± 16.4 years old, and the EEG and MMN recordings took
place on average 14 (10.0, 21.3) days after coma onset. The most
frequent pattern of predominant EEG activity was diffuse slowing
(DS), followed by moderately abnormal (MoA); 4 patients showed
a spindle coma pattern and 2 showed an alpha coma pattern. Of
116 patients, 60 had favorable outcomes and 56 had unfavorable
outcomes. Additionally, components N1 and MMN were absent
in 19 patients. And in our study, there were no patients with
normal or alpha coma EEG background activity. Compared with
the unfavorable prognosis group, the percentage of the GCS 6–
8 scores, presence of EEG-R and sleep spindles, and better EEG
background activity in favorable prognosis group were significantly
higher. Furthermore, the mean amplitude of FzMMNA in favorable
prognosis group was higher than the other group. These baseline
characteristics were shown in Table 1.

Predictors selection

Eleven factors, sex, age, etiology, pupillary light reflex, GCS,
FzN1A, FzMMNA, EEG background activity, EEG-R, sleep spindles,
and PAV, were extracted from demographic characteristics, clinical
features, and EEG and MMN examination related indictors. Of
these, 5 factors, GCS, FzMMNA, EEG background activity, EEG-
R, and sleep spindles, were selected as potential predictors by
LASSO analysis (Figure 3). It should be mentioned that Lasso
analysis did not provide p-value in R language. Furthermore, these
5 predictors have been shown to be significantly associated with
wakefulness of comatose patients after acute brain injury by binary
logistic regression analysis (P < 0.05). Additionally, the results
were expressed as odd ratio (95% confidence interval) for GCS
[13.400 (3.976, 54.478)], FzMMNA (µV) [1.855 (1.085, 3.510)], EEG
background activity [4.309 (1.262, 16.251)], EEG-R [4.154 (1.177,
15.965)], and sleep spindles [4.316 (1.169, 17.253)]. The Positive
Predictive Value (PPV) and Negative Predictive Value (NPV) of EEG-
R were 78.0 and 62.7%, respectively. The results of binary logistic
regression was shown in Table 2.

Development of a prediction nomogram

After the binary logistic regression analysis, the independent
predictors including GCS, FzMMNA, EEG background activity,
EEG-R, and sleep spindles were used for developing a prediction
nomogram. Nomogram, like a scoring system, was established based
on the odd ratio values. The score of each predictor can be clearly
seen in this system. In addition, the sum of scores and corresponding

TABLE 1 Demographic and clinical characteristics of the patients in
favorable and unfavorable prognosis groups.

Factors Favorable
prognosis
(n = 60)

Unfavorable
prognosis
(n = 56)

Sex [n (%)]

Male 49 (56.3) 38 (43.7)

Female 11 (37.9) 18 (62.1)

Etiology [n (%)]

Traumatic brain injury 37 (50.7) 36 (49.3)

Intracerebral hemorrhage 23 (53.5) 20 (46.5)

Pupillary light reflex* [n (%)]

Presence 58 (56.3) 45 (43.7)

Absence 2 (15.4) 11 (84.6)

GCS [n (%)]

3–5 15 (23.8) 48 (76.2)

6–8 45 (84.9) 8 (15.1)

EEG background activity [n (%)]

Normal/MiA/MoA/Spindle coma 48 (71.6) 19 (28.4)

DS/LV/Alpha coma 12 (24.5) 37 (75.5)

EEG-R [n (%)]

Presence 32 (78.0) 9 (22.0)

Absence 28 (37.3) 47 (62.7)

Sleep spindles [n (%)]

Presence 39 (86.7) 6 (13.3)

Absence 21 (29.6) 50 (70.4)

PAV [n (%)]

Level 1 13 (40.6) 19 (59.4)

Level 2 25 (46.3) 29 (53.7)

Level 3 22 (73.3) 8 (26.7)

Age (years, x̄ ± s) 50.4± 17.1 53.4± 15.6

FzN1A (µV, x̄ ± s) 1.4± 1.1 0.9± 1.1

FzMMNA (µV, x̄ ± s) 2.1± 1.2 1.2± 0.8

*Only if pupillary light reflex disappeared bilaterally was considered as absent. FzN1L, the peak
latency of N1 at electrode Fz; FzN1A, the absolute amplitude of N1 at electrode Fz; FzMMNL,
the peak latency of MMN at electrode Fz; FzMMNA, the absolute amplitude of MMN at
electrode Fz; EEG-R, electroencephalogramactivity; MiA, mildly abnormal; MoA, moderately
abnormal; DS, diffuse slowing; LV, low voltage; PAV, percent alpha variability.

probabilities for the consciousness recovery of each comatose patient
after acute brain injury can be effectively estimated and visualized in
the nomogram (Figure 4).

Validation of the nomogram

The performance of nomogram was internally validated by
using the 100 bootstrap resampling method, in which the model
development cohort (original sample) served as the validation set,
and each resampled sample cohort served as the training set. The
calibration curve (Figure 5) showed a high consistency between the
observed and predicted values in the probability of the consciousness
recovery of comatose patients after acute brain injury. Besides, the
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FIGURE 3

Predictors selection by using the least absolute shrinkage and selection operator (LASSO) model. (A) LASSO coefficient profiles of 11 alternative factors.
Each curve represents a factor. Since PAV is a triadic variable, it was divided into three variables when analyzed in R language software. As a result, there
are thirteen curves shown in the figure. (B) Tuning parameter (λ) selection in the LASSO model using 10-fold cross-validation via minimum criteria. The
red dots in the figure indicate the binomial deviance corresponding to each lambda. The two dashed lines represent two special lambda values, min and
1 s, respectively. The 1 s corresponds to the optimal lambda value of a model with excellent performance and the smallest number of independent
variables. Finally, combined with figure (A), five factors (GCS, FzMMNA, EEG background activity, EEG-R, and sleep spindles) were selected into the
following binary logistic regression analysis.

TABLE 2 Binary logistic regression analysis of the predictors of
consciousness recovery in comatose patients.

Predictors OR (95% CI) P-values

GCS 13.400 (3.976, 54.478) <0.001

FzMMNA 1.855 (1.085, 3.510) 0.038

EEG background activity 4.309 (1.262, 16.251) 0.023

EEG-R 5.154 (1.177, 15.965) 0.030

Sleep spindles 4.316 (1.169, 17.253) 0.031

OR, odd ratio; CI, confidence interval; FzMMNA, the absolute amplitude of MMN at electrode
Fz; EEG-R, electroencephalogram activity.

AUC [0.939 (95% CI: 0.899–0.979)] was obtained for evaluating the
accuracy of this predictive model by ROC (Figure 6).

Clinical utility of the nomogram

In the DCA shown in Figure 7, the threshold probability of the
nomogram ranged from 5 to 92%, which indicated a wide range of
clinical utility. In other words, the nomogram will achieve the net
benefit in varying degrees when the threshold probability value of the
predictive model is between 0.05 and 0.92. Moreover, the reason for
the fluctuation at the end of the prediction model curve is mainly
considered as the sample size is not large enough.

Discussion

Multimodal monitoring can be applied in the assessment of
consciousness recovery of comatose patients after acute brain injury.

Although some efforts have been made in resolving this issue, it
is still unclear which factors can be used to establish model to
directly predict the probability of patients’ consciousness recovery. In
fact, the results of the comprehensive assessment will affect doctors’
medical decisions determining final outcome of patients to a great
extent. In this study, clinical characteristics and parameters derived
from electrophysiological examinations, including GCS, FzMMNA
and EEG background activity, EEG-R, and sleep spindles have been
selected in the predictive model by LASSO and binary logistic
regression analysis. By intuitively predicting the consciousness
recovery of comatose patients after acute brain injury, this predictive
model can identify patients with relatively favorable prognosis at early
stages and allows active clinical intervention.

Glasgow coma scale, a clinical behavioral scale, is easy to perform
and widely used in the intensive care unit and often included in
prognostic models. Our study found that GCS correlated with the
outcomes of comatose patients (P < 0.001); the findings are in
accordance with those in previous studies (Emami et al., 2016; Nik
et al., 2018).

Electroencephalogram is the result of recording the spontaneous
electrophysiological activity emitted by cortical vertebral cells of
the human brain. Three EEG related indicators in the predictive
model can be applied to assess the brain injury condition of
comatose patients from different layers. The EEG background
activity reflects the electrical activity of the patient’s brain and it’s
a clue to how active the brain is. EEG background activity was
classified into two categories based on predominant frequency and
amplitude (Wang et al., 2022a), and proved to be associated with
the prognosis of comatose patients. At baseline, the two prognostic
groups differed significantly for predominant EEG background
activity, since poor EEG patterns was more frequently observed
in patients in unfavorable group, whereas mildly and moderate
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FIGURE 4

Visualization nomogram to predict the consciousness recovery of comatose patients after acute brain injury. The total score of each variable and the
corresponding probability of consciousness recovery of comatose patients can be visualized in the nomogram. For example, a case is shown in the
nomogram (red). This case represents a comatose patient with GCS scores of 8, the EEG-R is absent, the sleep spindles is present, the EEG background
activity at level 3, and the FzMMNA is 1.42 µV. In consideration of these five variables, the total score for this patient was 274, corresponding to a
probability of regaining consciousness of 0.937. Number 0 in EEG background activity refers to diffuse slowing (DS), low voltage (LV), and Alpha coma.
Number 1 in EEG background activity refers to normal, mildly abnormal (MiA), moderately abnormal (MoA), and spindle coma.

abnormal EEG activities in another group. Besides, two special EEG
coma patterns, alpha and spindle coma were also included. When
a prominent generalized, often frontally predominant, non-reactive
alpha frequency activity constitute the principal EEG features in
comatose patients, the patterns are referred to as alpha coma (Nuwer,
2021). And this kind of pattern often imply a poor prognosis,
because its appearance suggests either the inputs from the thalamus
or the neural filtering networks of the cortex are disturbed, or
both are damaged. Spindle coma is an electroclinical entity that
has been used to describe an EEG pattern of “sleep-like” activity in
comatose patients (Emidio et al., 2019). Although, the spindle coma is
usually resulted from a pontomesencephalic junction lesion (Husain,
2006), it is associated with favorable outcome in most situations,
according to previous studies (Cologan et al., 2013; Rasch and Born,
2013). For the reason that existence of spindles often indicates the
residual function of thalamus and thalamic-cortex circuit. On the
contrary, the absence of spindles in comatose patients with acute
brain injury results from the interruption of either the ascending
reticular thalamocortical pathway or of the thalamocortical loops,
which may result in difficulty in regaining consciousness.

EEG-R is defined as the diffuse, transient, and repeatable changes
in electroencephalogram activity (amplitude and/or frequency)
following environmental stimuli, such as pain or sound (Azabou
et al., 2018a). The presence of EEG-R suggests the integrity of the
peripheral sensory pathways, brainstem, subcortical structure, and
cerebral cortex, and lack of EEG-R may indicate severe dysfunction in
any of the aforementioned structures, tampering the cortical activity
secondary to external stimuli (Altwegg-Boussac et al., 2017). Our
study found that EEG-R was an independent predictive factor for
outcome in comatose patients with acute brain injury. In addition,
we noticed that EEG-R had a PPV of 78.0% and a relatively low
NPV of 62.7%. We propose that this finding might be attributed
to the fact that the results were evaluated with the naked eye
because the stimulation protocol in EEG-R has not been uniformly
standardized. Accordingly, subjectivity cannot be ruled out when
assessing the presence of EEG-R. In other words, the absence of
EEG-R, as judged by the examiner, does not necessarily reflect
the real brain functional status of the patients. Thus, further
studies are warranted to better standardize and clarify the EEG-R
protocol.
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FIGURE 5

Calibration curve of the nomogram. Internal validation was performed using the 100 bootstrap resampling method. The predicted probability and the
actual probability are presented by the X and Y axes, respectively.

FIGURE 6

Receiver operating characteristic curve (ROC) of the nomogram. The
AUC of the nomogram was 0.939 (95% CI: 0.899–0.979). AUC, area
under the curve.

Mismatch negativity is the maximal negative wave presented after
standard and deviant stimuli during the latency of 100–250 ms.
In patients with disorders of consciousness, the latency can be

FIGURE 7

Decision curve analysis (DCA) of the nomogram. X-axis and y-axis
represent threshold probability and net benefit, respectively. When the
threshold probability value of the predictive model is between 0.05
and 0.92, the patients will obtain the corresponding net benefit.

up to 300 ms (Wang et al., 2018). MMN indicates the cortical
function of differentiation and orientation to different sound stimuli,
or so-called pre-attention processing. MMN originates from the
auditory cortex in the Heschl’s gyri and fronto-central area, and
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generally has a maximal amplitude at the Fz site (Pakarinen et al.,
2007; Wang et al., 2020). Besides, MMN can also be evoked in
patients under sedation (Azabou et al., 2018b), anesthesia (Kenemans
and Kahkonen, 2011), sleep (Chennu and Bekinschtein, 2012), and
disorders of consciousness (Morlet and Fischer, 2014; Wang et al.,
2020). Previous studies have demonstrated a correlation between
MMN and favorable outcomes, yet few studies have incorporated
the MMN amplitude into quantitative analysis. Subjective factors can
easily be mixed into the interpretation of MMN, and it is difficult
to apply in clinical practice (Morlet and Fischer, 2014; Schall, 2016).
Therefore, we investigated the relationship between FzMMNA and
patient’s outcomes and found that FzMMNA could be a valuable
indicator to predict consciousness recovery of comatose patients. It
is worth mentioning that patients who regained consciousness had
higher MMN amplitudes than patients who did not. A higher MMN
amplitude suggests an increase in alertness levels, which is crucial
for detecting changes in the environment and adapting behavior.
Indeed, the MMN amplitude is also possibly associated with the
binding of the glutamic acid and the N-methyl-D-aspartate receptors,
which play an important role in modulating MMN-indexed auditory
discrimination (Impey et al., 2016); this may be the reason why MMN
amplitude increased in DoC patients who regained consciousness
after tDCS treatment (Wang et al., 2020).

In this study, age, coma etiology, pupillary light reflex as well as
PAV were not associated significantly with prognosis in our study.
This result may be attributed to the selection bias and limited sample
size. Certainly, further studies with a larger sample size are needed
for verification.

In deed, 5 indicators in our predictive model evaluated the brain
function of the comatose patients after acute brain injury from
different dimensions and achieved a high accuracy (AUC = 0.939).
As long as conditions permit, we should use as many tools as possible
to predict the prognosis of patients synthetically in clinical practice.

Limitations

There are three major limitations in our study. Firstly, the sample
size of this study was not large enough to support the selection
of more factors into the model. As we all know, the prognosis
assessment of comatose patients after brain injury requires as many
monitoring methods as possible to achieve a more accurate and stable
prediction. Secondly, taking into account the medical safety and
clinical needs of patients, it was impossible to eliminate prognosis
in clinical work without using any sedative drugs when EEG and
MMN examinations were performed; thus, we included patients
treated with dexmedetomidine, which is commonly used in our ward
for sedation. Thirdly, most of the patients in our study underwent
neurosurgery, while a small number did not. This difference may
affect the outcome of patients. These three limitations may affect the
results of this study.

Conclusion

In summary, our study develops a promising prediction model
with a wide range of clinical utility for the consciousness recovery
of comatose patients after acute brain injury. Besides, considering
the spread of clinical practice, it is critical that, as a clinical

tool, the predictors in the model can be conveniently obtained
at the patients’ bedsides, which will provide important reference
value for clinicians. Certainly, further prospective multimodal
monitoring to predict the consciousness recovery of comatose
patients after brain injury study is needed for the establishment of
prediction model.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Medical Ethics Committee of Xiangya Hospital
of Central South University ethical approval number (202210230).
Written informed consent for participation was not required for this
study in accordance with the national legislation and the institutional
requirements.

Author contributions

LZ, JW, YC, and XC contributed to the consult literature
materials and design the study. LZ and JW acquired the data. LZ,
YY, and XC analyze the data. LZ, SC, and GL prepared the tables
and figures. LZ, JW, and ZL were major contributors in writing the
manuscript. JY, YC, and XC revised the manuscript and made the
final version of the manuscript. All authors read and approved
the final manuscript.

Funding

This work was supported by grants from the Research and
Development Plan of Key Areas of Hunan Province, China
(2020SK2070) and the China Foundation for International Medical
Exchange for Young and Middle-aged Medical Research Special Fund
(Z-2018-35-2004).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1088666
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1088666 February 7, 2023 Time: 9:5 # 10

Zhou et al. 10.3389/fnins.2023.1088666

References

Admiraal, M. M., van Rootselaar, A. F., and Horn, J. (2018). International consensus
on EEG reactivity testing after cardiac arrest: Towards standardization. Resuscitation 131,
36–41. doi: 10.1016/j.resuscitation.2018.07.025

Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic
counterpart (MMNm) elicited by sound changes. Ear Hear 16, 38–51. doi: 10.1097/
00003446-199502000-00004

Altwegg-Boussac, T., Schramm, A. E., Ballestero, J., Grosselin, F., Chavez, M., and
Lecas, S. (2017). Cortical neurons and networks are dormant but fully responsive during
isoelectric brain state. Brain 140, 2381–2398. doi: 10.1093/brain/awx175

Azabou, E., Navarro, V., Kubis, N., Gavaret, M., Heming, N., and Cariou, A. (2018a).
Value and mechanisms of EEG reactivity in the prognosis of patients with impaired
consciousness: A systematic review. Crit. Care 22:184. doi: 10.1186/s13054-018-2104-z

Azabou, E., Rohaut, B., Porcher, R., Heming, N., Kandelman, S., and Allary, J. (2018b).
Mismatch negativity to predict subsequent awakening in deeply sedated critically ill
patients. Br. J. Anaesth. 121, 1290–1297. doi: 10.1016/j.bja.2018.06.029

Ballesteros, M. A., Rubio-Lopez, M., San Martín, M., Padilla, A., López-Hoyos, M.,
Llorca, J., et al. (2018). Serum levels of S100B from jugular bulb as a biomarker of
poor prognosis in patients with severe acute brain injury. J. Neurol. Sci. 385:109. doi:
10.1016/j.jns.2017.12.017

Chennu, S., and Bekinschtein, T. A. (2012). Arousal modulates auditory attention and
awareness: Insights from sleep, sedation, and disorders of consciousness. Front. Psychol.
3:65. doi: 10.3389/fpsyg.2012.00065

Claassen, J., Doyle, K., Matory, A., Couch, C., and Rohaut, B. (2019). Detection of Brain
Activation in Unresponsive Patients with Acute Brain Injury. J. N. England J. Med. 380,
2497–2505.

Cologan, V., Drouot, X., Parapatics, S., Delorme, A., Gruber, G., Moonen, G., et al.
(2013). Sleep in the unresponsive wakefulness syndrome and minimally conscious state.
J. Neurotrauma. 30, 339–346. doi: 10.1089/neu.2012.2654

Daltrozzo, J., Wioland, N., Mutschler, V., and Kotchoubey, B. (2007). Predicting coma
and other low responsive patients outcome using event-related brain potentials:
A meta-analysis. Clin. Neurophysiol. 118, 606–614. doi: 10.1016/j.clinph.2006.
11.019

Emami, P., Czorlich, P., Fritzsche, F., Westphal, M., Rueger, J., Lefering, R., et al. (2016).
Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome
in pediatric and adult severe traumatic brain injury: A retrospective, multicenter cohort
study. J. Neurosurg. 126, 760–767. doi: 10.3171/2016.1.JNS152385

Emidio, A. C., Faria, R., Patricio, P., Canas, N., Messias, A., and Meneses-Oliveira, C.
(2019). Spindle coma in the intensive care unit: Different aetiologies - different outcomes.
Eur. J. Case Rep. Intern. Med. 6:001316. doi: 10.12890/2019_001316

Estraneo, A., Fiorenza, S., Magliacano, A., Formisano, R., Mattia, D., and Grippo,
A. (2020). Multicenter prospective study on predictors of short-term outcome in
disorders of consciousness. Neurology 95, e1488–e1499. doi: 10.1212/wnl.00000000000
10254

Friberg, H., Westhall, E., Rosén, I., Rundgren, M., Nielsen, N., and Cronberg, T. (2013).
Clinical review: Continuous and simplified electroencephalography to monitor brain
recovery after cardiac arrest. Crit Care 17:233. doi: 10.1186/cc12699

Grimm, S., Escera, C., Slabu, L., and Costa-Faidella, J. (2011). Electrophysiological
evidence for the hierarchical organization of auditory change detection in the human
brain. Psychophysiology 48, 377–384. doi: 10.1111/j.1469-8986.2010.01073.x

Hebb, M. O., McArthur, D. L., Alger, J., Etchepare, M., Glenn, T. C., and Bergsneider,
M. (2007). Impaired percent alpha variability on continuous electroencephalography
is associated with thalamic injury and predicts poor long-term outcome after human
traumatic brain injury. J. Neurotrauma. 24, 579–590. doi: 10.1089/neu.2006.0146

Husain, A. M. (2006). Electroencephalographic assessment of coma. J. Clin.
Neurophysiol. 23, 208–220. doi: 10.1097/01.wnp.0000220094.60482.b5

Impey, D., de la Salle, S., Baddeley, A., and Knott, V. (2016). Effects of an NMDA
antagonist on the auditory mismatch negativity response to transcranial direct current
stimulation. J. Psychopharmacol. 31, 614–624. doi: 10.1177/0269881116665336

Injury (2019). Global, regional, and national burden of traumatic brain injury and
spinal cord injury, 1990-2016: A systematic analysis for the Global Burden of Disease
Study 2016. Lancet Neurol. 18, 56–87. doi: 10.1016/s1474-4422(18)30415-0

Jennett, B., Snoek, J., Bond, M. R., and Brooks, N. (1981). Disability after severe head
injury: Observations on the use of the Glasgow Outcome Scale. J. Neurol. Neurosurg.
Psychiatry 44, 285–293. doi: 10.1136/jnnp.44.4.285

Jones, S. J. (2002). The internal auditory clock: What can evoked potentials reveal
about the analysis of temporal sound patterns, and abnormal states of consciousness?
Neurophysiol. Clin. 32, 241–253. doi: 10.1016/s0987-7053(02)00309-x

Kang, X. G., Yang, F., Li, W., Ma, C., Li, L., and Jiang, W. (2015). Predictive value
of EEG-awakening for behavioral awakening from coma. Ann. Intensive. Care 5:52.
doi: 10.1186/s13613-015-0094-4

Kenemans, J. L., and Kahkonen, S. (2011). How human electrophysiology informs
psychopharmacology: From bottom-up driven processing to top-down control.
Neuropsychopharmacology 36, 26–51. doi: 10.1038/npp.2010.157

Krishnamurthi, R. V., Ikeda, T., and Feigin, V. L. (2020). Global, regional and country-
specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid
haemorrhage: A systematic analysis of the global burden of disease study 2017.
Neuroepidemiology 54, 171–179. doi: 10.1159/000506396

Logi, F., Pasqualetti, P., and Tomaiuolo, F. (2011). Predict recovery of consciousness
in post-acute severe brain injury: The role of EEG reactivity. Brain Inj. 25, 972–979.
doi: 10.3109/02699052.2011.589795

Monteiro, E., Ferreira, A., Mendes, E., Dias, C., Czosnyka, M., Paiva, J., et al. (2021).
Brain multimodal monitoring in severe acute brain injury: Is it relevant to patient
outcome and mortality? Acta Neurochir. Suppl. 131, 83–86.

Morlet, D., and Fischer, C. (2014). MMN and Novelty P3 in coma and other altered
states of consciousness: A review. Brain Topogr. 27, 467–479. doi: 10.1007/s10548-013-
0335-5

Nik, A., Sheikh Andalibi, M. S., Ehsaei, M. R., Zarifian, A., Ghayoor Karimiani, E.,
and Bahadoorkhan, G. (2018). The efficacy of glasgow coma scale (GCS) score and acute
physiology and chronic health evaluation (APACHE) II for predicting hospital mortality
of icu patients with acute traumatic brain injury. Bull. Emerg. Trauma. 6, 141–145.
doi: 10.29252/beat-060208

Nuwer, M. R. (2021). Alpha coma in COVID encephalopathy. Clin. Neurophysiol. 132,
202–203. doi: 10.1016/j.clinph.2020.10.005

Pakarinen, S., Takegata, R., Rinne, T., Huotilainen, M., and Näätänen, R. (2007).
Measurement of extensive auditory discrimination profiles using the mismatch negativity
(MMN) of the auditory event-related potential (ERP). J. Clinical. 118, 177–185.

Rasch, B., and Born, J. (2013). About sleep’s role in memory. Physiol. Rev. 93, 681–766.
doi: 10.1152/physrev.00032.2012

Riker, R. R., Shehabi, Y., Bokesch, P. M., Ceraso, D., Wisemandle, W., Koura, F.,
et al. (2009). Dexmedetomidine vs midazolam for sedation of critically ill patients: A
randomized trial. JAMA 301, 489–499. doi: 10.1001/jama.2009.56

Romagnosi, F., Bernini, A., Bongiovanni, F., Iaquaniello, C., Miroz, J. P., Citerio, G.,
et al. (2022). Neurological pupil index for the early prediction of outcome in severe acute
brain injury patients. Brain Sci. 12:609. doi: 10.3390/brainsci12050609

Rosburg, T. (2019). Filtering and other methodological issues of auditory N100 gating
studies. Clin. Neurophysiol. 130, 197–198. doi: 10.1016/j.clinph.2018.11.004

Sandroni, C., Cronberg, T., and Sekhon, M. (2021). Brain injury after cardiac arrest:
Pathophysiology, treatment, and prognosis. Intensive Care Med. 47, 1393–1414. doi:
10.1007/s00134-021-06548-2

Schall, U. (2016). Is it time to move mismatch negativity into the clinic? Biol. Psychol.
116, 41–46. doi: 10.1016/j.biopsycho.2015.09.001

Synek, V. M. (1988). Prognostically important EEG coma patterns in diffuse anoxic
and traumatic encephalopathies in adults. J. Clin. Neurophysiol. 5, 161–174. doi: 10.1097/
00004691-198804000-00003

Teasdale, G., and Jennett, B. (1974). Assessment of coma and impaired consciousness.
A practical scale. Lancet 2, 81–84. doi: 10.1016/s0140-6736(74)91639-0

Vespa, P. M., Nuwer, M. R., Juhász, C., Alexander, M., Nenov, V., Martin, N.,
et al. (1997). Early detection of vasospasm after acute subarachnoid hemorrhage using
continuous EEG ICU monitoring. Electroencephalogr. Clin. Neurophysiol. 103, 607–615.
doi: 10.1016/s0013-4694(97)00071-0

Wang, J., Huang, L., Ma, X., Zhao, C., Liu, J., and Xu, D. (2022b). Role of quantitative
EEG and EEG reactivity in traumatic brain injury. Clin. EEG Neurosci. 53, 452–459.
doi: 10.1177/1550059420984934

Wang, J., Chen, X., Zhou, L., Liu, Z. Y., Xia, Y. G., and You, J. (2022a). Assessment of
electroencephalography and event-related potentials in unresponsive patients with brain
injury. Neurophysiol. Clin. 52, 384–393. doi: 10.1016/j.neucli.2022.07.007

Wang, X. Y., Guo, Y. K., Zhang, Y. G., and Li, J. J. (2020). Combined Behavioral
and mismatch negativity evidence for the effects of long-lasting high-definition tDCS
in disorders of consciousness: A pilot study. Front. Neurosci. 14:381. doi: 10.3389/fnins.
2020.00381

Wang, X., Fu, R., Xia, X., Chen, X., Wu, H., and Landi, N. (2018). Spatial properties
of mismatch negativity in patients with disorders of consciousness. Neurosci. Bull. 34,
700–708. doi: 10.1007/s12264-018-0260-4

Wijnen, V. J., van Boxtel, G. J., Eilander, H. J., and de Gelder, B. (2007). Mismatch
negativity predicts recovery from the vegetative state. Clin. Neurophysiol. 118, 597–605.
doi: 10.1016/j.clinph.2006.11.020

Zhou, L., Wang, J., Wu, Y., Liu, Z. Y., Yu, Y., Liu, J. F., et al. (2021). Clinical significance
of mismatch negativity in predicting the awakening of comatose patients after severe
brain injury. J. Neurophysiol. 126, 140–147. doi: 10.1152/jn.00658.2020

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1088666
https://doi.org/10.1016/j.resuscitation.2018.07.025
https://doi.org/10.1097/00003446-199502000-00004
https://doi.org/10.1097/00003446-199502000-00004
https://doi.org/10.1093/brain/awx175
https://doi.org/10.1186/s13054-018-2104-z
https://doi.org/10.1016/j.bja.2018.06.029
https://doi.org/10.1016/j.jns.2017.12.017
https://doi.org/10.1016/j.jns.2017.12.017
https://doi.org/10.3389/fpsyg.2012.00065
https://doi.org/10.1089/neu.2012.2654
https://doi.org/10.1016/j.clinph.2006.11.019
https://doi.org/10.1016/j.clinph.2006.11.019
https://doi.org/10.3171/2016.1.JNS152385
https://doi.org/10.12890/2019_001316
https://doi.org/10.1212/wnl.0000000000010254
https://doi.org/10.1212/wnl.0000000000010254
https://doi.org/10.1186/cc12699
https://doi.org/10.1111/j.1469-8986.2010.01073.x
https://doi.org/10.1089/neu.2006.0146
https://doi.org/10.1097/01.wnp.0000220094.60482.b5
https://doi.org/10.1177/0269881116665336
https://doi.org/10.1016/s1474-4422(18)30415-0
https://doi.org/10.1136/jnnp.44.4.285
https://doi.org/10.1016/s0987-7053(02)00309-x
https://doi.org/10.1186/s13613-015-0094-4
https://doi.org/10.1038/npp.2010.157
https://doi.org/10.1159/000506396
https://doi.org/10.3109/02699052.2011.589795
https://doi.org/10.1007/s10548-013-0335-5
https://doi.org/10.1007/s10548-013-0335-5
https://doi.org/10.29252/beat-060208
https://doi.org/10.1016/j.clinph.2020.10.005
https://doi.org/10.1152/physrev.00032.2012
https://doi.org/10.1001/jama.2009.56
https://doi.org/10.3390/brainsci12050609
https://doi.org/10.1016/j.clinph.2018.11.004
https://doi.org/10.1007/s00134-021-06548-2
https://doi.org/10.1007/s00134-021-06548-2
https://doi.org/10.1016/j.biopsycho.2015.09.001
https://doi.org/10.1097/00004691-198804000-00003
https://doi.org/10.1097/00004691-198804000-00003
https://doi.org/10.1016/s0140-6736(74)91639-0
https://doi.org/10.1016/s0013-4694(97)00071-0
https://doi.org/10.1177/1550059420984934
https://doi.org/10.1016/j.neucli.2022.07.007
https://doi.org/10.3389/fnins.2020.00381
https://doi.org/10.3389/fnins.2020.00381
https://doi.org/10.1007/s12264-018-0260-4
https://doi.org/10.1016/j.clinph.2006.11.020
https://doi.org/10.1152/jn.00658.2020
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	A predictive model for consciousness recovery of comatose patients after acute brain injury
	Introduction
	Materials and methods
	Patients
	MMN paradigm
	MMN data acquisition and analysis
	EEG data acquisition and analysis
	Prognosis assessment
	Predictive variables
	Statistical analysis

	Results
	Patients
	Predictors selection
	Development of a prediction nomogram
	Validation of the nomogram
	Clinical utility of the nomogram

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


