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Introduction: Cervical spondylotic myelopathy (CSM) is a common form of non-

traumatic spinal cord injury (SCI) and usually leads to remodeling of the brain and

spinal cord. In CSM with gait instability, the remodeling of the brain and cervical

spinal cord is unclear. We attempted to explore the remodeling of these patients’

brains and spinal cords, as well as the relationship between the remodeling of the

brain and spinal cord and gait instability.

Methods: According to the CSM patients’ gait, we divided patients into two groups:

normal gait patients (nPT) and abnormal gait patients (aPT). Voxel-wise z-score

transformation amplitude of low-frequency fluctuations (zALFF) and resting-state

functional connectivity (rs-FC) were performed for estimating brain changes. Cross-

sectional area (CSA) and fractional anisotropy (FA) of the spinal cord were computed

by Spinal cord toolbox. Correlations of these measures and the modified Japanese

Orthopedic Association (mJOA) score were analyzed.

Results: We found that the zALFF of caudate nucleus in aPT was higher than that in

healthy controls (HC) and lower than that in nPT. The zALFF of the right postcentral

gyrus and paracentral lobule in HC was higher than those of aPT and nPT. Compared

with the nPT, the aPT showed increased functional connectivity between the caudate

nucleus and left angular gyrus, bilateral precuneus and bilateral posterior cingulate

cortex (PCC), which constitute a vital section of the default mode network (DMN). No

significantly different FA values or CSA of spinal tracts at the C2 level were observed

between the HC, nPT and aPT groups. In CSM, the right paracentral lobule’s zALFF

was negatively correlated with the FA value of fasciculus gracilis (FCG), and the right

caudate zALFF was positively correlated with the FA value of the fasciculus cuneatus

(FCC). The results showed that the functional connectivity between the right caudate

nucleus and DMN was negatively correlated with the CSA of the lateral corticospinal

tract (CST).

Discussion: The activation of the caudate nucleus and the strengthening functional

connectivity between the caudate nucleus and DMN were associated with gait
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instability in CSM patients. Correlations between spinal cord and brain function might

be related to the clinical symptoms in CSM.

KEYWORDS

resting-state fMRI, diffusion tensor imaging, cervical spondylotic myelopathy, gait instability,
caudate nucleus, corticospinal tract

1. Introduction

Cervical spondylotic myelopathy (CSM) is a common form of
non-traumatic spinal cord injury (SCI) in middle- and old-aged
populations (Bakhsheshian et al., 2017). The symptoms of CSM
include gait instability, hand clumsiness and limb sensory losses.
Moreover, gait instability is one of the most common and important
symptoms in CSM patients, which can lead to a deterioration of
health and living quality because of the high incidence of falls and
fractures (Radcliff et al., 2016). Previous studies had revealed that
the extremity kinematics and electromyographic characterization of
patients with unstable gait were changed (Haddas et al., 2018, 2019).

The chronic compression of the spinal cord causes ischemia
and Wallerian degeneration (David et al., 2019; Azzarito et al.,
2020; Tu et al., 2021). Degeneration in the spinal cord was also
associated with brain function remodeling (Bernabeu-Sanz et al.,
2020). These changes in microstructure and function might be
aimed at maintaining neurological function (Holly et al., 2007),
and the remodeling of the sensorimotor cortex and spinal cord
tracts was related to sensorimotor dysfunction in CSM (Chen
et al., 2022). In addition, the brain function (e.g., measured by
the amplitude of low-frequency fluctuations; ALFF) remodeling
contributes to disease prognosis and the partial recovery of the
primary motor cortex after decompression surgery proved the
existence of plasticity in the brain (Ryan et al., 2018; Zhao et al.,
2022b). Nevertheless, in CSM patients, the changes of brain and the
spinal cord tracts and their relationship with gait instability remain
unclear.

In the present study, we adopted resting-state functional
magnetic resonance imaging (fMRI) and DTI to explore the function
of the brain and microstructures of spinal tracts and attempted to
observe the correlation between gait instability and imaging features
in CSM patients. Building on preceding fMRI studies in CSM, we
hypothesized that the remodeling of particular brain regions and
spinal tracts contributes to gait instability in CSM.

2. Materials and methods

2.1. Participants

Our study included 32 right-handed CSM patients. According
to their gait, we divided the CSM patients into two groups: sixteen
normal gait patients (nPT) and sixteen abnormal gait patients (aPT).
The following inclusion criteria were used: (1) MRI demonstrated
cervical spinal cord compression with a diagnosis of CSM; (2) no
history of cervical and craniocerebral trauma or surgery; (3) no
history of psychiatric disorders; (4) no peripheral neuropathy; and
(5) no contraindications for MRI examination. Sixteen right-handed
healthy controls (HCs) were also recruited.

2.2. Clinical scale scores

Neurological function was evaluated by two experienced
clinicians by the modified Japanese Orthopedic Association (mJOA)
scale, choosing the lower extremity subscore of the mJOA describing
gait impairment (Kopjar et al., 2011).

2.3. MRI data acquisition

2.3.1. Brain image acquisition
A 3.0T MRI (General Electric 750 w, USA) scan with a 24-

channel head coil. Earplugs were used to reduce scanner noise, and
foam padding was used to minimize head motion. The settings
of resting-state blood-oxygen-level-dependent (BOLD) fMRI data
were obtained by employing a gradient-echo single-shot echo planar
imaging (GRE-SS-EPI) sequence with the following parameters:
repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms;
FOV = 220 mm × 220 mm; matrix size = 64 × 64; flip angle = 90◦;
slice thickness = 3 mm, slice gap = 1 mm; 35 interleaved axial slices;
185 volumes. High resolution 3D T1-weighted structural images were
required using a brain volume (BRAVO) sequence with the following
parameters: TR = 8.5 ms; TE = 3.2 ms; inversion time (TI) = 450 ms;
FOV = 256 × 256 mm; matrix size = 256 × 256; flip angle = 12◦; slice
thickness = 1 mm, no gap; 188 sagittal slices.

2.3.2. Cervical image acquisition
A 1.5T magnetic resonance imaging (MRI) system (Philips

Ingenia 1.5T, Holland) was used. Diffusion-weighted imaging
was acquired by employing a single-shot spin echo echo-planar
image (SS-SE-EPI) sequence with the following parameters:
TR = 3,000 ms, TE = 83 ms, FOV = 300 × 300 mm, acquisition
matrix = 100 × 98 mm, slice thickness = 3 mm, no gap; 50 slices;
15 gradient directions. The diffusion-weighted coefficients were
b = 0 and 800 s/mm2, and 16 images were acquired after each
scan. Three-dimensional (3D) T2-weighted images were obtained
with the following parameters: TR = 2,300 ms, TE = 83 ms,
slice thickness = 4 mm, FOV = 150 × 150 mm, acquisition
matrix = 176 × 139 mm, number of slices = 60, no gap.

2.4. Image processing

Brain fMRI preprocessing was performed by Statistical
Parametric Mapping (SPM) 121 and executed in the MATLAB
2013b platform (Mathworks, Sherborn, MA, USA). The procedures
included (1) removal of the first 10 time points; (2) slice timing

1 http://www.fil.ion.ucl.ac.uk/spm/
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and head motion correction (translational or rotational motion
parameters more than 3 mm or 3◦ were excluded); (3) coregistration
of functional data to the structural T1-weighted image and
normalization into the Montreal Neurological Institute (MNI) space
with a resampling voxel size of 3 × 3 × 3 mm; (4) smooth 6 mm
full-width half-maximum Gaussian Kernel;(5) removal of nuisance
covariate regression (cerebrospinal fluid signals, white matter signals,
and Friston-24 head motion parameters) and linear trend.

ALFF calculation: We used the fast Fourier transform to obtain
the power spectrum, calculated the square root at each frequency
of the power spectrum and obtained the averaged square root
across the 0.01–0.08 Hz frequency range. This averaged square root
value was the ALFF value, and zALFF was transformed by z-score
transformation and used for subsequent group-level analysis.

Seed-based functional connectivity (FC) calculation: We adopted
the seed-to-voxel correlation to calculate the FC value between seeds
and the whole brain. We obtained the FC map by analyzing linear
correlation between seeds and the other voxels in the whole brain,
and zFC map was transformed by Fisher’s z transformation and
used for subsequent group-level analysis. Seeds were selected by the
zALFF clusters showing a between group differences approach, which
was calculated by the “REST Image calculator” in RESTplus V1.27
[Resting State fMRI Data Analysis Toolkit plus (Jia et al., 2019)].

Cervical image preprocessing was performed by the Spinal
Cord Toolbox (version 5.3.0) and the PAM50 spinal cord template
(De Leener et al., 2017). The procedures included (1) spinal cord
segmentation by a deep-learning-based algorithm (Gros et al., 2019);
(2) vertebral labeling by manual identification of the C2/3 disk;
(3) registration to the PAM50 template by linear and non-linear
algorithms; (4) warp the template to match the subject imaging; and
(5) computing the cross-sectional area (CSA) and DTI parameters
at the C2 level. In addition, we conducted motion correction before
processing the DTI data (Xu et al., 2013).

2.5. Statistical analyses

2.5.1. Brain function analyses
One way analysis of variance (ANOVA) was performed in HC,

nPT and aPT within the gray matter masks, and age and gender were
used as covariates, p ≤ 0.001 (significance threshold) was corrected
for multiple comparisons with familywise error (FWE) correction
at the cluster level via SPM12. The zALFF values of significantly
different brain regions were extracted and performed by one way
ANOVA with Bonferroni post-hoc test, and these brain regions were
chosen as seed regions for FC analyses. None of the participants
exhibited abnormalities in brain structures.

2.5.2. Cervical image analyses
Previous studies have shown that several spinal cord tracts are

related to locomotion and gait, including the fasciculus gracilis
(FCG), fasciculus cuneatus (FCC), lateral corticospinal tract (CST),
and spinocerebellar tract (SCT) (Yasuda et al., 1993; Fink, 2013; Chalif
et al., 2022; Smith et al., 2022). Considering that the compression
of the spinal cord may reduce the measurement accuracy (Hopkins
et al., 2018),we chose the spinal cord at the C2 level. Therefore,
we computed the CSA and fractional anisotropy (FA) values of
those paired tracts at the C2 level by the Spinal Cord Toolbox. One
way ANOVA with Bonferroni post-hoc test was used to analyze the

difference in CSA and FA value between the HC, nPT and aPT groups.
Due to the absence of some CSM patients, we finally adopted 6 HC’
and 18 patients’ (10 nPT and 8 aPT) cervical images for analyses.

All statistical analyses were performed using GraphPad Prism
9.0 (San Diego, CA, USA) software2. Normality was tested by
D’Agostino-Pearson’s. Chi-square test was used for gender difference
analysis. One way ANOVA with Bonferroni post-hoc test was
performed for finding the different CSA, FA value between the HC
and nPT/aPT groups. Two-sample t-test was used to analyze mJOA
score between the nPT and aPT groups. Pearson correlation analysis
was used to analyze the correlation between the mJOA scores and
zALFF values, as well as their correlation with FC and FA values.
When the data did not follow a normal distribution, Mann-Whitney
test and the Spearman correlation were used. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

3. Results

3.1. Demographic data and clinical scale
scores

No significant difference was noted in age or gender between the
nPT, aPT, and HC groups (P > 0.05). No significant difference was
found in the symptom duration between aPT and nPT (P > 0.05).
The mJOA score of nPT was higher than the score of aPT (P< 0.001).
To evaluate gait impairment, we analyzed the lower extremity
subscore of the mJOA. Compared with aPT, nPT showed a higher
score in the lower extremity (P < 0.001; Mann-Whitney test), and
there was no significant difference in the upper extremity, sensation
or sphincter score of mJOA between nPT and aPT (P > 0.05)
(Table 1).

2 https://www.graphpad.com/

TABLE 1 Demographic and clinical characteristics.

nPT (n = 16)
mean ± SD

aPT (n = 16)
mean ± SD

HC (n = 16)
mean ± SD

P-value

Age (years) 51.38 ± 6.91 53.56 ± 9.51 52.63 ± 10.76 0.797

Gender (M/F) 8/8 8/8 8/8 >0.999

CSM duration
(month)

15.06 ± 2.87 17.25 ± 3.25 – 0.618

mJOA score 15.31 ± 0.79 12.81 ± 1.23 – <0.001

mJOA UE
subscore

3.56 ± 0.51 3.62 ± 0.62 – >0.999

mJOA LE
subscore

7 ± 0 4.5 ± 0.82 – <0.001

mJOA sensory
subscore

1.75 ± 0.58 1.69 ± 0.48 – 0.741

mJOA
sphincter
subscore

3 ± 0 3 ± 0 – >0.999

nPT, normal gait patients; aPT, abnormal gait patients; HC, healthy control; CSM, cervical
spondylotic myelopathy; UE, upper extremity; LE, lower extremity. One way ANOVA test
was performed among nPT, aPT, and HC groups. Chi-square test was performed for gender
difference. Two-sample t-test was performed between nPT and aPT groups. Mann-Whitney
test was performed when the data did not follow a normal distribution.
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3.2. zALFF differences between HC, nPT,
and aPT

The zALFF of the right caudate nucleus, right postcentral gyrus,
and right paracentral lobule were significantly different among the
three groups (FWE correction, corrected p ≤ 0.05 at cluster level;
Figure 1A and Table 2). Those significantly changed brain regions
were extracted as seeds for subsequent analysis. To explore the
differences further, we extracted the zALFF values of the seeds in HC,
nPT/aPT and performed one-way ANOVA with Bonferroni post-hoc
test. The right caudate zALFF value in aPT was higher than that in
HC (p < 0.05) and lower than that in nPT (p < 0.01). The zALFF
values of right postcentral gyrus and paracentral lobule were higher
than those of nPT and aPT (p< 0.001) (Figure 1B). The right caudate
nucleus was the only significantly different region between nPT and
aPT, which indicated that it might be related to gait instability in
CSM.

3.3. Seed-based functional connectivity
differences in CSM patients with different
gaits

Compared with the nPT, the aPT showed increased FC between
the caudate nucleus and the left angular gyrus, bilateral precuneus,
and bilateral posterior cingulate cortex (PCC) (FWE correction,
corrected p ≤ 0.05 at cluster level) (Figure 2 and Table 3).
Interestingly, these brain regions are a part of the default mode
network (DMN). No significant group differences were observed in
FC with other seed regions.

3.4. Spinal tract differences in HC and CSM
patients with different gaits

We computed the FA value and CSA of the FCG, FCC, CST, and
SCT and preformed one-way ANOVA with Bonferroni post-hoc test
(Figure 3A). No significant difference in the FA value or CSA of these
tracts at C2 level was observed between the HC, nPT, and aPT groups
(Figure 3B).

To explore the relationship between the spinal cord and brain in
CSM, we analyzed the correlation between zALFF and FC values of
changed brain regions and CSA and FA values of spinal tracts. In
CSM patients, we found that the zALFF value of right paracentral

TABLE 2 Regions of significant z-score transformation amplitude of
low-frequency fluctuations (zALFF) difference in three groups.

Brain region MNI
coordinates

Cluster
voxels

F value

Right postcentral
gyrus

27, –39, 72 53 16.4

Right caudate
nucleus

12, 9, –9 25 22.05

Right paracentral
lobule

6, –27, 75 33 18.81

HC, healthy control; nPT, normal gait patients; aPT, abnormal gait patients; MNI, Montreal
Neurological Institute.

lobule correlated with the streamlines at the FA value of FCG at the
C2 level (r = –0.475; p = 0.046), and the right caudate zALFF value
correlated with the streamlines at the FA value of FCC at the C2
level (r = 0.519; p = 0.027) (Figure 3C). A negative correlation was
observed between the CSA of the CST at C2 level and the FC between
caudate nucleus and right precuneus (r = –0.561; p = 0.016), and left
PCC (r = –0.573; p = 0.013), and right PCC (r = –0.575; p = 0.013)
(Figures 3D, E).

3.5. Clinical scale scores and parameters
of the brain and spinal cord

A positive correlation was observed between patients’ mJOA and
caudate zALFF values (r = 0.560; p < 0.001) and FA values of SCT
(r = 0.507; p = 0.032) at the C2 level, as well as a correlation between
mJOA lower extremity scores and caudate zALFF values (Spearman’s
ρ = 0.489; p = 0.004) (Figures 4A, B). No significant correlation
between the symptom duration and parameters of spinal tracts was
noted (P > 0.05).

Patients’ mJOA was negatively correlated with the FC between
the caudate nucleus and the left angular gyrus (r = -0.577; p < 0.001),
bilateral (left, r = –0.536; p = 0.002, right, r = –0.616; p < 0.001)
precuneus, and bilateral (left, r = –0.561; p < 0.001, right, r = –0.562;
p < 0.001) PCC (Figure 4A). A similar correlation was observed
between the mJOA lower extremity scores and the FC between the
caudate nucleus and the left angular gyrus (Spearman’s ρ = –0.619;
p < 0.001), bilateral (left, Spearman’s ρ = –0.637; p < 0.001, right,
Spearman’s ρ = –0.649; p < 0.001) precuneus, and bilateral (left,
Spearman’s ρ = –0.619; p < 0.001, right, Spearman’s ρ = –0.546;
p = 0.001) PCC (Figure 4A).

4. Discussion

The current study explored the changes in the brain and
spinal cord in CSM patients with gait instability. We found that
the zALFF of the right caudate nucleus, right postcentral gyrus,
and right paracentral lobule were significantly different among
HC, nPT, and aPT groups, while zALFF value of the caudate
nucleus was the only significantly different region between nPT
and aPT groups. The FC between the caudate nucleus and the
left angular gyrus, bilateral precuneus and bilateral PCC were
also increased in aPT. There was no difference in spinal tract

TABLE 3 Regions of significant functional connectivity (FC) difference
between abnormal gait patients (aPT) and normal gait patients (nPT).

Seed Brain region MNI
coordinates

Cluster
voxels

T value

aPT>nPT – – –

Right
caudate nucleus

Left angular gyrus –54, –57, 27 50 –4.51

Bilateral
precuneus/
bilateral PCC

–6, –48, 36 104 –4.66

nPT, normal gait patients; aPT, abnormal gait patients; MNI, Montreal Neurological Institute;
PCC, posterior cingulate cortex.
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FIGURE 1

z-score transformation amplitude of low-frequency fluctuations (zALFF) differences between HC, nPT, and aPT groups. (A) The right caudate nucleus,
right postcentral gyrus, and right paracentral lobule were the significantly different brain regions among the three groups. (B) The zALFF values of these
significantly different brain regions were extracted and analyzed by one-way analysis of variance (ANOVA) with Bonferroni post-hoc test. The caudate
zALFF in aPT was higher than that in HC, and lower than that in nPT. The zALFF of the right postcentral gyrus and paracentral lobule in HC was higher
than those of aPT and nPT. CU, caudate nucleus; PCG, postcentral gyrus, PRL, paracentral lobule; HC, healthy control; nPT, normal gait patients; aPT,
abnormal gait patients. *P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 2

Differences of functional connectivity between the nPT and aPT. Compared with nPT, aPT exhibited increased caudate nucleus connectivity to several
brain regions: the left angular gyrus, bilateral precuneus, and bilateral posterior cingulate cortex. nPT, normal gait patients; aPT, abnormal gait patients;
CU, caudate nucleus; ANG, angular gyrus; PCU, precuneus; PCC, posterior cingulate cortex.

parameters at the C2 level between HC, nPT and aPT. The FA
value of FCG was negatively correlated with the paracentral lobule’s
zALFF, and FA value of FCC was positively correlated with the
caudate zALFF. The CSA of the CST was negatively correlated
with the FC between right caudate nucleus and right precuneus
and bilateral PCC.

4.1. The caudate nucleus

The caudate nucleus, as part of the basal ganglia, is involved
in somatic locomotion. The gait and balance had a significant
correlation with the volume of the caudate nucleus in patients
with white matter hyperintensities (Macfarlane et al., 2015). Similar
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FIGURE 3

Comparison of spinal tracts and the relationship between fractional anisotropy (FA), cross-sectional area (CSA), z-score transformation amplitude of
low-frequency fluctuations (zALFF) value and caudate connectivity. (A) The CSA and FA values of paired FCG, FCC, CST, and SCT at the C2 level were
computed by the Spinal Cord Toolbox. (B) One-way analysis of variance with Bonferroni post-hoc test was preformed and no significant difference in
the FA value or CSA of these tracts at the C2 level was noted between the HC, nPT, and aPT groups. (C) The zALFF of PRL was negatively correlated with
the FA value of FCG and the zALFF of CU was positively correlated with the FA value of FCC. (D) FC between the right CU and left ANG, bilateral PCU, and
bilateral PCC was extracted. (E) The CSA of the CST at C2 level was negatively correlated with the FC between the right CU and right PCU and bilateral
PCC. FCG, fasciculus gracilis; FCC, fasciculus cuneatus, CST, lateral corticospinal tract; SCT, spinocerebellar tract; FC, functional connectivity; PRL,
paracentral lobule; CU, caudate nucleus; ANG, angular gyrus; PCU, precuneus; PCC, posterior cingulate cortex.

FIGURE 4

The heatmap demonstrates the relationship between the cerebral functional magnetic resonance imaging (fMRI), spinal diffusion tensor imaging (DTI)
parameters and clinical scale scores. (A) Patients’ modified Japanese Orthopedic Association (mJOA) and mJOA lower extremity scores were positively
correlated with caudate z-score transformation amplitude of low-frequency fluctuations (zALFF). Patients’ mJOA and mJOA lower extremity scores were
negatively correlated with the FC between the caudate nucleus and left angular gyrus, bilateral precuneus, and bilateral PCC. (B) Patients’ mJOA were
positively correlated with FA of the SCT at C2 level. CU, caudate nucleus; ANG, angular gyrus; PCU, precuneus; PCC, posterior cingulate cortex; FCG,
fasciculus gracilis; FCC, fasciculus cuneatus, CST, lateral corticospinal tract; SCT, spinocerebellar tract; LE, lower extremity.
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FIGURE 5

Possible pattern diagram of relationship between the caudate nucleus, the DMN and gait impairment. nPT, normal gait patients; aPT, abnormal gait
patients; CU, caudate nucleus; FC, functional connectivity; DMN, default mode network.

results were also found in the studies of Parkinson’s disease and
cognitive impairment (Rosso et al., 2017; Surkont et al., 2021). When
healthy volunteers move through a narrow space, their caudate
nucleus is also activated (Marchal et al., 2019). The abnormal
activity of muscles was associated with gait instability in CSM
(Haddas et al., 2019). Locomotion is a complex behavior that
involves the coordinated activation of a large number of muscles.
The initiation of locomotion is connected with many brain regions,
including the cerebral cortex, the basal ganglia, the midbrain and
the hindbrain (Kiehn, 2016). Previous studies also reported that
the volume and function of the basal ganglia were changed in
CSM (Woodworth et al., 2019; Zhao et al., 2020). In the present
study, we observed that the right caudate zALFF value in aPT was
higher than the value in HC, and lower than that in nPT, and it
was the only significantly different region between nPT and aPT.
Moreover, caudate activity was positively correlated with patients’
mJOA lower extremity scores. Hence, we consider that the caudate
nucleus might be related to the generation of gait instability in
CSM.

4.2. FC between the caudate nucleus and
default mode network

The default mode network (DMN) is a large-scale brain network
that involves memory processes, conceptual processing and emotion
processing (Smallwood et al., 2021). A previous study revealed that
the activity of DMN was changed, as well as FC between DMN and
other brain regions in CSM (Zhao et al., 2020). In the present study,
the aPT exhibited enhanced FC between the caudate nucleus and
the left angular gyrus, bilateral precuneus, and bilateral PCC, which
constitute a vital section of the DMN. The angular gyrus is closely
related to action-feedback monitoring and locomotion (Baarbe et al.,
2021), and the precuneus was also associated with walking speed
and ability of across obstacles (Gonzales et al., 2019). Duan et al.
(2012) reported that increased FC between the caudate nucleus and
DMN (including the PCC and angular gyrus) could enhance the
concentration. The CSM patients with gait instability might need to
pay more attention to their locomotion. Therefore, the aPT group

exhibited higher FC between the caudate nucleus and DMN. In
addition, the significantly different FC were negatively correlated
with the mJOA lower extremity scores in current study, we speculated
the strengthening FC between caudate nucleus and DMN was aimed
at maintaining gait stability in CSM.

4.3. Parameters of spinal tracts

In the current study, no significantly different FA value or CSA of
tracts at the C2 level were observed between the HC, nPT, and aPT
group, which was not consistent with previous studies (Kerkovsky
et al., 2012; Chen et al., 2022). In CSM, degeneration of the spinal cord
above the compressed level is correlated with Wallerian degeneration
(Tu et al., 2021). Its effect was limited by the distance and lesion
severity, and degeneration was less pronounced with increasing
distance from the lesion (Azzarito et al., 2020). The majority of
patients in our study had mild or moderate myelopathy, which may
account for the difference. Another reason is that previous studies
measured the spinal cord parameters manually, while the present
study was performed with the Spinal Cord Toolbox. Therefore, our
method can decrease manual measurement errors.

The main difference between nPT and aPT was gait instability
in our study. Previous studies revealed that FCG, FCC, CST and
SCT were associated with locomotion and gait (Yasuda et al., 1993;
Fink, 2013; Chalif et al., 2022; Smith et al., 2022), while there was no
difference in these spinal tract parameters at C2 the level between
nPT and aPT in the present study. Thus, we thought these spinal
tracts microstructures at C2 level might not be correlated to the gait
instability in CSM.

The present study found no significant correlation between the
symptom duration and parameters of spinal tracts. However, the
existing literature on the relationship between symptom duration and
spinal cord parameters seemed inconsistent. Some studies found no
correlation between symptom duration and DTI parameters (Kara
et al., 2011; Gohmann et al., 2019), whereas Wu et al. (2020) reported
a statistical correlation. The spinal cord compression often preceded
the onset of symptoms and signs (Bednarik et al., 2004). Furthermore,
the parameters of spinal cord in asymptomatic patients had changed
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(Kerkovsky et al., 2012). It was not easy to identify the specific time
of spinal cord compression since the CSM duration was based on the
earliest incidence of clinical symptoms, which might account for our
results.

4.4. Correlation between the brain and
spinal cord

In recent years, there have been many studies on the functional
changes in the brain and spinal cord in CSM. Kuang and Zha (2019).
reported that zALFF values were increased in the superior frontal
gyrus in CSM patients, and the FC values between changed region
and somatosensory cortex were increased. Zhao et al. (2022b) proved
that zALFF values of the precentral gyrus could predict the prognosis
of CSM. Moreover, the FA value of CST and posterior columns
(including FGC and FCC) were decreased, which was related to
clinical scale scores (Grabher et al., 2016). These studies suggested
that the brain and spinal cord might change together.

The spinal cord is a continuation of the brain, and its function
is strongly correlated (Vahdat et al., 2020). A recent animal study
reported that reduced inflammation in the spinal cord was related
to improved neuronal survival in the brain and neurological recovery
(Li et al., 2020). In a CSM study, Zhao et al. (2022a) found that FA
of posterior cervical spinal cord and FC of the somatosensory cortex
were relevant. The present study showed that the FA value of FCG
was negatively correlated with the paracentral lobule’s zALFF, and
FA value of FCC was positively correlated with the caudate zALFF,
while CSA of the CST was negatively correlated with the FC between
right caudate nucleus and DMN in CSM patients. The FCG and FCC
are the ascending tract that leads to critical proprioceptive feedback.
The CST is a major descending tract that leads from brain to spinal
cord, and it was associated with motor functions. The corticospinal
reserve capacity plays a vital role in the remodeling of motor region
in CSM (Zdunczyk et al., 2018). The symptoms of CSM include gait
instability, hand clumsiness and limb sensory losses. We thought that
the correlations between spinal cord and brain function might be
related to the clinical symptoms in CSM.

4.5. CSM and brain remodeling

As reported, CSM patients showed decreased FC between
thalamus and paracentral lobe/precentral gyrus after decompression
surgery. Moreover, the decreased FC was positively correlated with
upper limb movement in post-operative CSM patients (Peng et al.,
2020). In CSM patients, the recovery of upper limb pain was related to
a decreased FC between postcentral gyrus and dorsolateral prefrontal
cortex (Sawada et al., 2020). All these studies indicated that the brain
function in CSM patients had changed, which were also related to
the severity and prognosis of CSM. The neurological function was
usually improved by recruiting other brain regions in CSM patients
(Bhagavatula et al., 2016; Ryan et al., 2018). Judging from the results
of our study, the maintenance of gait might be responsible for the
recruitment of caudate nucleus, and the zALFF of caudate nucleus
might be a new imaging biomarker in CSM since the caudate nucleus
was the only significantly different region among HC, nPT and aPT
groups. We considered that the FC between the caudate nucleus and
DMN may be decreased or normal after the improvement of gait, but
it should be explored in our further studies.

Overall, basing on our results, we hypothesized that the brain
remodeling might occur before the degeneration of spinal tracts at
the C2 level, different activities of the caudate nucleus may be related
to the generation of gait instability, while strengthening FC between
caudate nucleus and DMN was aimed at maintaining gait stability in
CSM (Figure 5), but this conjecture must be explored in follow-up
work.

Several limitations in the present study must be acknowledged.
Our study was a cross-sectional study that recruited a limited number
of participants, and a longitudinal study will be better for observing
the evolution of CSM. Another limitation was that the majority
of patients had mild or moderate myelopathy. Further studies in
a large sample of subjects with more severe disease may be of
interest in the future.

5. Conclusion

In CSM patients with gait instability, activation of the caudate
nucleus likely plays an important role in the generation of gait
instability. Furthermore, the strengthening FC between the caudate
nucleus and DMN seems to compensate for gait instability.
Correlations between spinal cord and brain function might be related
to the clinical symptoms in CSM. Our findings contribute to a deeper
understanding of gait instability and could have implications on the
diagnosis of CSM.
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