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Alzheimer’s disease (AD) is a progressive neurodegenerative condition 
characterized by tau pathology and accumulations of neurofibrillary tangles 
(NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, 
synaptic dysfunction, and cognitive deficits. The current review explained the 
molecular mechanisms behind the implications of Aβ aggregation in AD via 
multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor 
protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The 
fibrils increase oxidative stress, inflammatory cascade, and caspase activation 
to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), 
which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is 
accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, 
which leads to a deficiency in neurotransmitters and cognitive impairment. 
There are presently no efficient or disease-modifying medications for AD. It is 
necessary to advance AD research to suggest novel compounds for treatment 
and prevention. Prospectively, it might be  reasonable to conduct clinical trials 
with unclean medicines that have a range of effects, including anti-amyloid and 
anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, 
and cognitive enhancement.

KEYWORDS

Alzheimer’s disease, amyloid-beta, tau protein, oxidative stress, neuroinflammation, 
acetylcholine, mechanisms

Introduction

The deposition of aggregated amyloid-beta (Aβ) peptide is the hallmark of Alzheimer’s 
disease (AD), a neurodegenerative disorder that progresses over time (Riyaz Basha et al., 2005). 
Due to changes in the brain and the formation of plaques and tangles, it has been linked to 
neuronal damage and death (Kehoe et al., 2009). AD is the most prevalent type of dementia, 
accounting for 60% to 70% of dementia cases among older people (Burns and Iliffe, 2009; Zhang 
et al., 2018).

AD symptoms include short-term memory loss, as well as a progressive decline in the 
patient’s capacity for thought, judgment, problem-solving, communication, and self-care (Mount 
and Downton, 2006; Prasansuklab and Tencomnao, 2013). The daily life of an AD patient is also 
impacted by symptoms including confusion, impatience, aggression, mood swings, personality 
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and behavior changes, issues with attention and spatial orientation, 
and loss of long-term memory (Prasansuklab and Tencomnao, 2013).

The fifth-leading cause of death in persons over 65 years is AD 
(Winston, 2020). Over 26.6 million individuals worldwide suffer from 
it, and its prevalence is significantly increasing yearly (Prince et al., 
2014; Olajide and Sarker, 2020). More than 106 million AD patients 
are anticipated to exist worldwide by 2050. The disease will affect 1 in 
85 people, according to estimates (Brookmeyer et al., 2007), as the 
population ages and environmental factors take effect (Prince 
et al., 2014).

AD is a leading cause of disability and life reliance among elderly 
adults worldwide (Nichols et al., 2019), and has a profound influence 
on individuals, their families, and societies at large (Winston, 2020). 
The estimated cost of dementia in 2015 was $818 billion, or 1.1% of 
the GDP (Youssef et al., 2019). In 2020, it was anticipated that treating 
AD would cost $305 billion in total, and as the population ages, the 
amount is expected to rise to more than $1 trillion (Winston, 2020). 
The expense of dementia globally is predicted to reach $2 trillion by 
2030 (Wimo et al., 2017). There are currently no effective or disease-
modifying medications for AD (Fu et al., 2019). Many of the clinical 
trials failed in recent years, however, quite a number of the trials are 
under evaluation. It is essential to advance AD research to suggest new 
compounds for treatment and prevention. The objective of the current 
review is to describe the mechanisms behind the implications of Aβ 
aggregation in AD using multiple pathways. The literature data 
published between the years 1993 and 2020 were collected using 
PubMed and Scopus.

Amyloid-beta

The intracellular cleavage of the amyloid precursor protein (APP) 
by the proteolytic enzymes beta-(β-) secretase and gamma-(γ-) 
secretase produces the short peptide known as Aβ, which has 40–42 
amino acids (Prasansuklab and Tencomnao, 2013). The APP is 
localized at neuronal synapses and is abundantly expressed in the 
brain (Thinakaran and Koo, 2008; O’brien and Wong, 2011). It has 
been linked to synaptic plasticity, cell–cell or cell-matrix interactions, 
neuroprotection, and regulation of neuronal cell development (Storey 
and Cappai, 1999).

However, aggregation of Aβ, produced from the cleavage of the 
amyloidogenic pathway causes neurotoxicity. Most of the body’s cells, 
including vascular endothelial cells, thyroid epithelial cells, and 
neuronal and nonneuronal cultured cells, produce Aβ monomers 
(Schmitt et  al., 1995; Fukumoto et  al., 1999; Hayes et  al., 2002; 
Kitazume et  al., 2010). Although compared to other cell types, 
neuronal cells appear to produce more Aβ (Fukumoto et al., 1999), 
demonstrating the possibility that the Aβ-peptide is crucial for 
maintaining proper CNS physiology. According to the increased long-
term potentiation (LTP) mediated by Aβ40, there is a theory that Aβ 
may play a crucial role in synaptic structural-functional plasticity that 
underlies learning and memory (Koudinov and Koudinova, 2005).

The amyloid hypothesis

According to the amyloid hypothesis, which explains why synaptic 
dysfunction and neurodegeneration are brought on by the aggregation 

of the Aβ-peptide (Van Dyck, 2018). The main contributing factor to 
AD is errors in the mechanisms directing Aβ formation, accumulation, 
or elimination. Aβ aggregation stages impair cell-to-cell 
communication and stimulate the immune system, which then causes 
inflammation and eventually kills brain cells.

Formation of amyloid-beta

The APP is processed in two distinct pathways as shown in 
Figure 1. Nonamyloidogenic pathway: The α-secretase enzyme first 
cleaves APP within the Aβ domain, and then γ-secretase cleaves at the 
C-terminus. Amyloidogenic pathway: Instead of α-secretase, 
β-secretase (BACE1) cleaves APP first at the N-terminus of the Aβ 
domain, and γ-secretase then cleaves it at the C-terminus. The Aβ 
amylogenic peptides are produced by this chain of events, which then 
assemble into oligomers to create extracellular neurotoxic plaques in 
the brain. A similar APP intracellular C-terminal domain (AICD) is 
released from both pathways (Thinakaran and Koo, 2008). When 
compared to other fragments, Aβ is chemically “stickier” than those 
formed by APP proteolytic processes. Small clusters (oligomers) are 
formed by the fragments initially, followed by chains of clusters 
(fibrils), and finally “mats” of fibrils (beta-sheets). The final stage is the 
forming of plaques which contain clusters of beta-sheets and other 
chemicals (Jung et al., 2010). The amyloid cascade hypothesis (ACH) 
explains AD pathogenesis from the outcome of two significant facts: 
(i) Identification of Aβ as a key component of senile plaques (SPs). (ii) 
Mutations of APP genes and the presenilin 1 and 2 genes (PSEN1 and 
PSEN2) which are typically detected at the early stage of AD. As a 
result, it is believed that the emergence of Aβ within SPs is caused by 
these mutations, which also cause dementia and neuronal cell death 
(Reitz, 2012).

Formation of neurofibrillary tangles

The aggregation of Aβ causes the formation of neurofibrillary 
tangles (NFTs) from hyperphosphorylation of tau and its accumulation 
into tangles is another pathological cause of AD (McGleenon et al., 
2009). In normal conditions, tau supports neuronal structures and 
functions in the brain (Kolarova et  al., 2012). However, under 
pathological circumstances, tau became excessively 
hyperphosphorylated and aggregated into fibrils known as 
neurofibrillary tangles. The accumulation of abnormal tau and tangles 
in neurons leads to neurotoxicity and neuronal degeneration (Gómez-
Isla et  al., 1997). In addition to the formation of NFTs, Tau 
phosphorylation impairs tau’s ability to bind microtubules, which 
impacts neuronal activities such as axonal transport and mitochondrial 
respiration (Ittner and Götz, 2011). Microtubule depolymerization, 
self-aggregation, and detachment caused by tau hyperphosphorylation 
result in neuronal cell death (Suganthy et al., 2016).

Mechanisms of Alzheimer disease

AD pathogenesis starts from the deposition of Aβ which trigger 
SPs formation, followed by the death of neurons due to NFTs 
formation (Armstrong, 2011). Neurotoxic mechanisms in the 
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pathology of AD include aberrant protein aggregation, dysfunction of 
mitochondrial, decreased neurotransmitter production, inflammation, 
and oxidative stress (Figure 2). However, the buildup of Aβ and the 
aggregation of tau are the two most prevalent etiologic models of 
Alzheimer’s pathogenesis (Bloom, 2014).

The neuropathological events in AD patients are the result of the 
toxicity of amyloid oligomers and fibrils, which are from the 
aggregated forms of Aβ. The bodies regulate the amyloid level via a 

variety of methods as Aβ accumulates. The concentration of 
Aβ-peptide is controlled in healthy brain tissue by its production from 
APP; the influx across the blood–brain barrier (BBB) via its interaction 
with the receptor for advanced glycation end products (RAGE; Deane 
et al., 2003, 2009); and its clearance via the low-density lipoprotein 
receptor-related protein-1 (LRP1) from the brain and enzymatic 
breakdown in the brain (Selkoe, 2001; Deane et  al., 2003, 2009). 
Additionally, the levels of Aβ affect how RAGE is expressed. RAGE is 

FIGURE 1

Beta-amyloid formation from the proteolytic digestion of the APP. AICD: APP intracellular C-terminal domain (Thinakaran and Koo, 2008).

FIGURE 2

Schematic diagram of AD pathology. Created with BioRender.com.
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upregulated when there is excessive Aβ synthesis, and this leads to 
neurotoxicity (Prasansuklab and Tencomnao, 2013) as shown in 
Figure 3. Thus, impairments in these regulatory processes may cause 
excessive Aβ-peptide to build up and deposit in the brains of AD 
patients. By binding to Aβ12-28 residues, apolipoprotein E (ApoE) 
regulates Aβ’s accumulation and lessens its clearance (Prasansuklab 
and Tencomnao, 2013; Zhang et al., 2018) from the brain (Sagare et al., 
2007). Three isoforms of ApoE such as ApoE4 (E4), ApoE3 (E3), and 
ApoE2 (E2; Liu et al., 2013), regulate cholesterol levels in various ways 
to influence γ-secretase activity and Aβ synthesis (Osenkowski et al., 
2008). According to Bales et al. (2009) and Castellano et al. (2011), the 
brain Aβ levels and amyloid plaque loading rely on the ApoE isoforms, 
demonstrating the modulatory involvement of ApoE in Aβ 
metabolism, aggregation, and deposition (Liu et  al., 2013). The 
differential lipidation status exhibited by ApoE isoforms affects Aβ 
clearance. The ApoE particles may seize Aβ and stimulate cellular 
uptake and degradation of ApoE-Aβ complexes (Kim et al., 2009). Aβ 
clearance at the blood–brain barrier is inhibited by ApoE in an 
isoform-dependent manner (E4 > E3 and E2). According to studies, 
E4 is less effective than E3 and E2 at mediating the clearance of Aβ 
(Deane et al., 2008; Jiang et al., 2008).

Effects of metal ions on Aβ and tau 
aggregation

Strong neurotoxic candidates that alter Aβ and tau aggregation 
include metal dyshomeostasis (Figure 4). Metal ions’ effects on the 
aggregation of Aβ and tau have been elucidated. Metals like Zn2+, Cu2+, 
Fe3+, Mn2+, Pb2+, Cd2+, Hg2+, and Al3+ stimulate amyloidogenic 

pathways and Aβ aggregation. [red arrow] (O’brien and Wong, 2011). 
The neurotoxic Aβ-peptide produced by the cleavage of the APP by 
β- and γ-secretase is secreted into the extracellular space where it 
spontaneously changes into amyloid plaques. On the other hand, as 
seen in Figure 4A, the presence of Mg2+, Fe2+, and Li2+ inhibits the 
production of Aβ [blue arrow] (O’brien and Wong, 2011).

Tau hyperphosphorylation and aggregation are promoted by 
metal ions like Zn2+, Cu2+, Fe3+, Mg2+, Mn2+, Pb2+, Cd2+, Hg2+, and Al3+ 
[red arrow]. Numerous kinases, including glycogen synthase kinase-3 
beta (GSK-3β; Rankin et  al., 2007), cyclin-dependent kinase 5 
(CDK-5), and others, strongly phosphorylate tau (Kimura et al., 2014). 
If protein phosphatase 2A (PP2A) is not activated, the 
hyperphosphorylation of tau may persist (Goedert, 1993). Tau that has 
been hyperphosphorylated forms NFTs. As depicted in Figure 4B, 
metal ions like Fe2+, and Li2+, however, lessen tau hyperphosphorylation 
[blue arrow].

Induction of oxidative stress by Aβ in AD

The polymeric forms of Aβ cause alterations in biochemical 
components and brain cell activities that lead to neuropathology 
associated with AD symptoms. According to reports, one of the 
earliest clinical manifestations of AD is increased oxidative stress. 
Hydrogen peroxide (H2O2) created due to the reduction of metal ions 
by Aβ-peptides served as a mediator of the oxidative stress as shown 
in Figure 5 (Huang et al., 1999; Atwood et al., 2003). Aβ-peptides act 
as powerful oxidation catalysts and can capture transition metal ions 
like Cu, Fe, and Zn (Miura et al., 2000). In addition, it was shown that 
Aβ was toxic to neuronal cultures, and Cu2+ ions made it more toxic 

FIGURE 3

Diagrammatic representation of the regulatory systems for Aβ in an AD patient’s brain. Aβ, amyloid-beta; BBB, Blood–brain barrier; RAGE, Receptor for 
advanced glycation end products; AICD, APP intracellular C-terminal domain; APP, Amyloid precursor protein; ApoE, apolipoprotein E; E4, ApoE; E3, 
ApoE3; E2, ApoE2. Created with BioRender.com.
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(Cuajungco et al., 2000). Reactive oxygen species can be produced by 
the Aβ/Cu(Fe) complexes as a toxin mediator (Huang et al., 1999). 
Furthermore, AD brains have an extracellular and intracellular 
accumulation of metal ions with high concentrations of Aβ plaques 
(Lovell et al., 1998; Religa et al., 2006), which produced free radicals. 
Because of lipid peroxidation and oxidative protein modification, 

several biomolecules in the AD brain experience conformational and 
structural changes that impair their ability to function, which, in 
turn, affects a variety of cellular processes (Qi et  al., 2005). By 
upregulating the expression of the BACE1 gene, increasing oxidative 
stress enhances APP processing and ultimately increases Aβ 
generation (Tong et al., 2005; Coma et al., 2008; Quiroz-Baez et al., 

A B

FIGURE 4

Metal ions’ effects on the aggregation of Aβ and tau. (A) Amyloid Plaques, (B) Tau tangle. Aβ, amyloid-beta; CDK5, Cyclin-dependent kinase; GSK-3β, 
Glycogen synthase kinase-3beta; NFTs, Neurofibrillary tangles; PP2A, protein phosphatase 2A (O’brien and Wong, 2011).

FIGURE 5

Diagram showing how Aβ and metal ions combine to cause oxidative stress in AD. Aβ, amyloid-beta; LP, Lipid peroxidation; NMDAR, N-methyl-D-
aspartate receptor; VDCC, Voltage-dependent calcium channel; ER, endoplasmic reticulum; APP, Amyloid precursor protein; ATP, Adenosine 
triphosphate. Created with BioRender.com.
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2009). This causes oxidative stress and endoplasmic reticulum (ER) 
stress by increasing ROS and the accompanying rise in abnormal 
APP and phosphorylated tau. The ER function can be  severely 
damaged by long-term ER stress, which also causes apoptotic 
signaling (Ogata et al., 2006; Kouroku et al., 2007). Aβ promotes Ca2+ 
release from neurons’ ER Ca2+ pools, increasing intracellular free Ca2+ 
(Zhou et al., 2020). Increased expression of the NR2B subunit of 
NMDAR causes a rise in Ca2+ ion concentration in extrasynaptic 
regions (Jusko et  al., 2008), which, then increases the level of 
intracellular endoplasmic reticulum Ca2+ production (Yin et  al., 
1994). Studies revealed that Ca2+ overload could increase ER stress 
and facilitate mitochondrial Ca2+ uptake by suppressing the 
expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl2) 
and increasing the phosphorylation of extracellular regulated protein 
kinases (Erk) protein, which would ultimately lead to cytotoxicity 
and cellular apoptosis (Hajnóczky et al., 2003; Zieg et al., 2008; Zhang 
et al., 2018).

Induction of neuroinflammation by Aβ in 
AD

The expression of pro-inflammatory cytokines was increased in 
response to neuropathological insults induced by Aβ and its 
interaction with vascular RAGE (Deane et  al., 2008). Microglia 
enhance the clearance of Aβ, but a constant generation of Aβ causes 
the microglia to become chronically activated, which promotes more 
amyloid deposition (Hickman et al., 2018). According to Kim and 
Choi (2015), exposure to Aβ results in microglial activation, which, 
in turn, causes the generation of reactive oxygen species and 
neurotoxic pro-inflammatory cytokines. Tau hyperphosphorylation 
is a result of ROS-activating p38 mitogen-activated protein kinases 
(p38 MAPK; Giraldo et al., 2014). p38 MAPK has been linked to 
neuroinflammation and AD due to its ability to activate nuclear 
factor-B (NF-κB; Kheiri et  al., 2018), a master regulator of 
neuroinflammation gene transcription in the brains of AD patients 
(Chen et al., 2012; Liao et al., 2016; Olajide and Sarker, 2020). But data 
indicate that nuclear factor E2-related factor 2 (Nrf2) is negatively 
regulated by NF-κB (Liu et al., 2008; Kim and Vaziri, 2010; Yu et al., 
2011). Substantial evidence connects the activation of the Nrf2 
protection mechanism to NF-κB-mediated inflammatory actions 
(Nair et al., 2008; Sandberg et al., 2014). To uphold the aforementioned 
finding, Rojo et al. (2010) showed that cyclooxygenase-2 (COX-2), 
inducible nitric oxide synthases (iNOS), IL-6, and TNF-α levels are 
elevated when microglia are activated in Nrf2-deficient rats. Ramsey 
et al. (2007) first noticed this, reporting that the hippocampus of AD 
patients’ brains had lower amounts of Nrf2 than normal. According 
to Lee and Kim (2017), through the activation of p38 MAPK, Aβ 
plaques cause neuronal impairments such as mitochondrial 
dysfunction, apoptosis, tau phosphorylation, and synaptic 
dysfunction; the primary cause of neuroinflammation in AD is 
increased microglial p38 MAPK signaling brought on by Aβ, which 
results in the production of pro-inflammatory mediators such 
interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), 
cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase 
(iNOS); the pathophysiology of the AD brain is worsened by the 
production of IL-1β from microglia, which increases p38 MAPK 
activation in neurons and astrocytes; Aβ plaques and IL-1β generated 
an increase in P38 MAPK activation in astrocytes. By releasing iNOS, 

COX-2, and TNF-α, this activation accelerates neuroinflammation 
(Figure 6).

Effects of Aβ on acetylcholine in AD

As a neurotransmitter, acetylcholine (Ach) aids in the 
communication between nerve cells and is essential for memory and 
learning processes (Kihara and Shimohama, 2004; Francis, 2005). A 
report revealed that Alzheimer’s patients have reduced amounts of 
Ach in their brains (Kihara and Shimohama, 2004). Ach is decreased 
because oxidative stress is induced and inflammatory cytokines are 
produced by Aβ (Esposito et al., 2006). Free radicals produced due to 
amyloid peptides have been shown to lower the concentration of Ach 
by causing cholinergic neurons in the hippocampus to degenerate 
(Vinod et al., 2009). Additionally, acetylcholinesterase (AChE) activity 
increases and deactivates acetylcholine in synaptic clefts in the vicinity 
of amyloid plaques (Mordn et al., 1993; Sberna et al., 1997). According 
to another study, the amyloid peptide inhibits the production of 
acetylcholine (ACh) by causing choline to seep through cell 
membranes (Ehrenstein et al., 1997). Ach deficiency caused cognitive 
impairment and ultimately AD (Parent et  al., 2013; Deture and 
Dickson, 2019) as shown in Figure 7.

Current state of AD treatment

According to Yiannopoulou and Papageorgiou (2013), the 
formation of amyloid oligomers, which mediates the amyloid cascade, 
is primarily responsible for neurotoxicity. The main pathophysiologic 
pillars are oxidation, inflammation, excessive glutamate, and tau 
hyperphosphorylation. Anti-amyloid disease-modifying treatments 
(DMTs) have therefore concentrated on three main mechanisms of 
action (MOAs), including reducing the formation of Aβ42, reducing 
the burden of Aβ-plaque, and promoting Aβ clearance (Yiannopoulou 
and Papageorgiou, 2020). Hence, inhibiting the formation of 
A𝛽-peptide accumulation and tau hyperphosphorylation may be part 
of the treatment for AD (Mendiola-Precoma et al., 2016). Physical 
exercise, a healthy diet, and mental stimulation are further AD 
prevention strategies (Nelson and Tabet, 2015).

Compounds used in clinical trials for the 
treatment of AD

Acetylcholinesterase inhibitors (AChEIs), such as rivastigmine, 
donepezil, and galantamine, are clinically effective in increasing the 
availability of acetylcholine at synapses and thereby inhibiting 
cognitive decline in AD (Andrieu et al., 2015; Hampel et al., 2018; 
Cummings et al., 2019). Nevertheless, diarrhea, nausea, and vomiting 
are some of the typical negative effects of AChEIs on the digestive 
system (Yiannopoulou and Papageorgiou, 2020). Memantine, which 
was approved in 2003, selectively binds to open calcium channels that 
are controlled by NMDA receptors, inhibiting NMDA-mediated ion 
flux and reducing pathologically excessive glutamate levels 
(Yiannopoulou and Papageorgiou, 2013; Matsunaga et  al., 2015; 
Cummings et  al., 2019). Memantine also reduces the activity of 
glycogen synthase kinase 3𝛽 (GSK-3𝛽), which, in turn, reduces tau 
phosphorylation (Prentice et al., 2015; Folch et al., 2016).
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FIGURE 6

Diagrammatic representation of how Aβ causes neuroinflammation in AD. Aβ, amyloid-beta; NF-κB, Nuclear factor-κB; p38 MAPK, p38 Mitogen-
activated protein kinases; Nrf2, Nuclear factor E2-related factor 2; IL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor-α; COX-2, Cyclooxygenase-2; 
and iNOS, Inducible nitric oxide synthase (Schnöder et al., 2016; Lee and Kim, 2017). Created with BioRender.com.

FIGURE 7

Aβ and acetylcholine interactions in an AD schematic diagram. APP, Amyloid precursor protein; Aβ, Amyloid-beta; Ach, acetylcholine; AChE, 
acetylcholinesterase (DeTure and Dickson, 2019). Created with BioRender.com.
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Despite extensive and expensive trials, the Food and Drug 
Administration (FDA) has not approved any DMTs or new 
medications for AD since 2003 (Anderson et al., 2017; Hukins et al., 
2019). The β-secretase (BACE) inhibitors, lanabecestat (Burki, 2018), 
verubecestat (Egan et al., 2019), and atabecestat (Henley et al., 2019), 
as well as the anti-amyloid agents such as semagacestat (Doody et al., 
2013), bapineuzumab (Vandenberghe et al., 2016), and solanezumab 
(Neurology, 2016), failed in recent phase 3 clinical trials. The 
acknowledged explanations for the numerous failures include 
inadequate understanding of the pathophysiology, inappropriate drug 
doses, late therapies in disease progression, and wrong therapeutic 
targets (Gauthier et al., 2016).

Conclusion

The current review explained the molecular mechanisms of Aβ 
mediating AD via multiple events, including Aβ production and 
accumulation, tau hyperphosphorylation, metal dyshomeostasis, 
oxidative stress, neuroinflammation, and inhibition of acetylcholine 
production. There are presently no efficient or disease-modifying 
medications for AD. Some of the clinical trials targeting the above events 
failed in recent years, however, quite a number of the trials are under 
evaluation. It is necessary to advance AD research to suggest novel 
compounds for treatment and prevention. Prospectively, it might 
be reasonable to conduct clinical trials with unclean medicines that have 
a range of effects, including anti-amyloid, anti-tau, neurotransmitter 
modulation, anti-neuroinflammatory, neuroprotective, and cognitive  
enhancement.
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