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Purpose: Minimal hepatic encephalopathy (MHE) is characterized by mild

neuropsychological and neurophysiological alterations that are not detectable by

routine clinical examination. Abnormal brain activity (in terms of the amplitude of

low-frequency fluctuation (ALFF) has been observed in MHE patients. However,

little is known concerning temporal dynamics of intrinsic brain activity. The

present study aimed to investigate the abnormal dynamics of brain activity

(dynamic ALFF; dALFF) and static measures [static ALFF; (sALFF)] in MHE patients

and to strive for a reliable imaging neuromarkers for distinguishing MHE patients

from cirrhosis patients. In addition, the present study also investigated whether

intrinsic brain activity predicted the severity of liver damage.

Methods: Thirty-four cirrhosis patients with MHE, 28 cirrhosis patients without

MHE, and 33 age-, sex-, and education-matched healthy controls (HCs)

underwent resting-state magnetic resonance imaging (rs-fMRI). dALFF was

estimated by combining the ALFF method with the sliding-window method, in

which temporal variability was quantized over the whole-scan timepoints and

then compared among the three groups. Additionally, dALFF, sALFF and both two

features were utilized as classification features in a support vector machine (SVM)

to distinguish MHE patients from cirrhosis patients. The severity of liver damage

was reflected by the Child–Pugh score. dALFF, sALFF and both two features were

used to predict Child–Pugh scores in MHE patients using a general linear model.

Results: Compared with HCs, MHE patients showed significantly increased

dALFF in the left inferior occipital gyrus, right middle occipital gyrus, and right

insula; increased dALFF was also observed in the right posterior lobe of the

cerebellum (CPL) and right thalamus. Compared with HCs, noMHE patients

exhibited decreased dALFF in the right precuneus. In contrast, compared with

noMHE patients, MHE patients showed increased dALFF in the right precuneus,

right superior frontal gyrus, and right superior occipital gyrus. Furthermore, the
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increased dALFF values in the left precuneus were positively associated with poor

digit-symbol test (DST) scores (r = 0.356, p = 0.038); however, dALFF in the

right inferior temporal gyrus (ITG) was negatively associated with the number

connection test–A (NCT-A) scores (r = -0.784, p = 0.000). A significant positive

correlation was found between dALFF in the left inferior occipital gyrus (IOG)

and high blood ammonia levels (r = 0.424, p = 0.012). Notably, dALFF values

yielded a higher classification accuracy than sALFF values in distinguishing MHE

patients from cirrhosis patients. Importantly, the dALFF values predicted the

Child–Pugh score (r = 0.140, p = 0.030), whereas sALFF values did not in the

current dataset. Combining two features had high accuracy in classification in

distinguishing MHE patients from cirrhotic patients and yielded prediction in the

severity of liver damage.

Conclusion: These findings suggest that combining dALFF and sALFF features

is a useful neuromarkers for distinguishing MHE patients from cirrhosis patients

and highlights the important role of dALFF feature in predicting the severity of

liver damage in MHE.

KEYWORDS

minimal hepatic encephalopathy (MHE), dynamic amplitude of low-frequency
fluctuations, support vector machine background, amplitude of low-frequency
fluctuation (ALFF), support vector machine (SVM)

Introduction

Minimal hepatic encephalopathy (MHE) is considered a
subclinical or early stage of hepatic encephalopathy, manifesting
with mild abnormalities in cognitive function, neurophysiology,
and metabolism (Weissenborn, 2019). Patients with MHE
secondary to cirrhosis have a high incidence and have a risk of
progression to overt hepatic encephalopathy (OHE), potentially
risking individual health and imposing a burden on health
care services (Weissenborn et al., 2004; Dhiman et al., 2010;
Labenz et al., 2019; Zhang et al., 2020). Notably, neurocognitive
dysfunction in MHE patients is subtle and cannot be found by
routine clinical exams (Dhiman et al., 2010). Therefore, it is worth
investigating the neuropathophysiological mechanism and reliable
diagnostic biomarkers of MHE.

Resting-state functional magnetic resonance imaging (rs-
fMRI) studies have shown that abnormal intrinsic brain activity
can reveal MHE-related biological mechanism. The amplitude
of low-frequency fluctuations (ALFF), as a highly sensitive
brain measure reflecting intrinsic brain activity, can be used
to explore possible mechanisms (Zang et al., 2007). ALFF has
been one of the most widely used neuroimaging biomarkers
in assessing spontaneous fluctuations in brain activity, which
may reflect baseline brain activity underlying disease status
(Fryer et al., 2015). For instance, Chen et al. (2016a) confirmed
that patients with MHE have abnormal ALFF in multiple
brain regions, revealing abnormal baseline spontaneous brain
fluctuations related to the neuropathophysiological mechanism. In
addition, some researchers argue that abnormal ALFF in certain
brain regions may neurophysiological mechanisms, for example,
the precuneus, thalamus (Chen et al., 2020a) and prefrontal cortex

(Zhong et al., 2016). Several researchers using ALFF as a biological
marker found that MHE-related neurophysiological defects were
associated with dysfunctions in brain regions belonging to specific
subnetworks, e.g., the default-mode network (DMN) and visual
network (VN) (Qi et al., 2012).

Many rs-fMRI studies treated brain activity during the scan as
a static and uniform process, but increasing studies have shown
that spontaneous brain fluctuations are temporally variable (Felipo
et al., 2013; Lu et al., 2020; Sun et al., 2021). Combining ALFF
with sliding-window approaches, the dynamic ALFF (dALFF)
method was proposed to capture the dynamic changes in brain
fluctuations over time (Wen et al., 2021), which has been used
to study neuropsychiatric diseases, such as drug addiction (Wen
et al., 2021), schizophrenia (Fu et al., 2018) and Parkinson’s
disease (Zhang et al., 2021). Static ALFF (sALFF) is not a new
indicator of intrinsic brain activity compared to dALFF. The
sALFF treats ALFF as static throughout all the time frame. Briefly,
sALFF indicates the stable activation of brain regions and reflects
baseline energy consumption to support basic brain function, while
dALFF displays the adaptability and flexibility of spontaneous brain
activity through changes in resting-state energy expenditure (Jiang
et al., 2020). Therefore, new insights may be gained by using dALFF
to explore brain function in MHE. Specifically, we compared the
discriminative power of dALFF, sALFF and both two features by
using SVM, a typical machine learning classification tool (Chen
et al., 2016a; Chen et al., 2020b; Cheng et al., 2021). We also used
a general linear model in MHE to predict the Child–Pugh score,
a scale commonly used clinically to measure the degree of liver
damage in cirrhosis patients.

This research aimed to characterize MHE intrinsic brain
activity patterns compared with HCs and cirrhosis without MHE
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(noMHE). We sought to seek an accurate biomarker to distinguish
MHE patients from cirrhosis patients and predict the severity
of liver damage.

Materials and methods

Participants

The study was approved by the Ethics Committee of Ningxia
Medical University General Hospital. Written informed consent
was obtained from all subjects before the study. A total of
71 patients diagnosed with hepatitis B virus-related hepatic
cirrhosis by clinical evaluations and laboratory examinations
were recruited from our Department of Infectious Diseases.
Three patients with liver cancer were excluded. The gender-,
age-, and education –matched healthy controls (HCs) were
recruited from the local community through advertisements. All
participants were between 35 and 55 years old, and had 6–
11 years of education. Exclusion criteria for patients were (1)
any brain disease, neuropsychiatric disorders or related history;
(2) history of psychotropic drug addiction; (3) diabetes, anemia
or other chronic metabolic conditions; (4) claustrophobia and
other contraindications to MRI; (5) inability to complete the
Psychometric Hepatic Encephalopathy Score (PHES) examination;
and (6) excessive head movement during imaging (translation
>2 mm, rotation >2◦). Six patients (four patients with MHE,
two patients without MHE) were excluded due to excessive head
movements during the scan. In the HC groups, two subjects were
excluded due to excessive head movements. Consequently, 62
patients (34 MHE patients, 28 patients without MHE) and 33 HCs
were included in the final analyses.

Neuropsychological assessments

According to previous studies, the diagnosis of mild hepatic
encephalopathy is based on neuropsychological assessments from
the PHES, which include the type A number connection test (NCT-
A) and digit-symbol test (DST) (Cheng et al., 2021). If both of
above tests were positive, the patient was diagnosed with mild
hepatic encephalopathy, and if one test was positive, the patient was
diagnosed with simple cirrhosis. All subjects were evaluated on the
NCT-A and DST scales under the guidance of the same specially
trained physician before the 1 h BOLD-fMRI scan.

Laboratory parameters

Before MRI scanning, the following laboratory parameters were
measured: venous blood ammonia levels, albumin levels, total
bilirubin levels, prothrombin time, and presence of ascites. One
day before venous blood sampling, the patient was instructed to
avoid smoking, and the sample was placed in a freezer immediately
after collection. The Child–Pugh score is a clinically used grading
scale for quantitative assessment of liver reserve function in patients
with cirrhosis. Higher scores indicate more severe liver damage (Lv
et al., 2021). The Child Pugh score includes five different indicators

(general condition, venous blood ammonia levels, albumin levels,
total bilirubin levels, prothrombin time, and presence of ascites)
scored as 1, 2, or 3. Scores on the five indicators are summed,
resulting in a minimum score of five and a maximum score of 15.
According to the sum, liver reserve function is classified as A (5–6
points), B (7–9 points), or C (10–15 points).

MRI data acquisition

The scanning device was a GE 3.0T HDMR (SIGNA EXCITE
3.0T HDMR) with an 8-channel head coil. Resting-state BOLD-
fMRI date was acquired using a gradient-recalled echo echo-
planar imaging (GRE-EPI) sequence with the following parameters:
TR/TE = 2,000 ms/30 ms, flip angle = 90◦, FOV = 240× 240 mm2,
matrix = 64× 64, slice thickness = 3 mm, 35 contiguous axial slices
with no slice gap, and volumes = 240. All participants were asked to
avoid purposeful thinking and keep their eyes closed.

Data preprocessing

The Data Processing & Analysis for Brain Imaging (DPABI,
v2.3)1 Toolkit with Statistical Parametric Mapping (SPM) software
(Zang et al., 2007) was used for functional raw data preprocessing.
The first 10 time points were removed. The remaining 230 volumes
were corrected by slice-timing and realignment for head motion
correction (subjects were excluded if they had a maximal head
motion displacement >2 mm or rotation >2.0◦). The mean
framewise displacement (FD) of each subject was computed. After
spatial normalization to the standard EPI template, the functional
dates were resampled to 3× 3× 3 mm isotropic voxels. Then, using
a linear regression analysis, some spurious variances, including
24 head motion parameters, global signals, white matter signals,
and cerebrospinal fluid signals, were regressed out. To ensure
consistency across the whole period, the present study did not
perform scrubbing (Yan et al., 2013). To reduce motion-related
impacts, the group-level analysis was performed with mean FD as
a covariate (Supplementary Figure 4). Next, a 6 mm full-width at
half-maximum Gaussian kernel was used to smooth the functional
maps. Bandpass filters were applied to functional images after linear
trends were removed.

Dynamic and static ALFF calculation

Dynamic ALFF was calculated using the sliding window
method in the Dynamic Brain Connectome (Dynamic BC) toolbox
(Liao et al., 2014). In this study, each window size included
50 time frames. The window size, as an important parameter,
still has no standard configuration. In this study, a window
size of 50 time frames (100 s) and a window overlap of 90%
[step size of 5 time frames (10 s)] were set to calculate the
dALFF values of each subject, as in most previous studies (Cui
et al., 2020; Zheng et al., 2021). The whole time series of each

1 www.rfmri.org/dpabi
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subject was divided into 39 time windows. Each window had
a corresponding dALFF mapping. We assessed the temporal
variability of intrinsic brain activity by calculating the variance of
the dynamic brain activity under the 39 time windows. Finally,
the dALFF mapping were normalized to z scores for statistical
analysis. In addition, to determine whether dALFF provided
overlapping or complementary information, we also calculated
the sALFF values for each subject by DPABI (Zang et al., 2007).
After preprocessing, the time series for each voxel was bandpass
filtered (0.01–0.08 Hz) to remove the effects of very-low-frequency
drift and high frequency noise. Next, the filtered time series
was transformed to a frequency mapping Y with a fast Fourier
transform. Then, ALFF was calculated according to the following
formula:

ALFF =
N2∑

i=N1

Yi / (N2 − N1)

Where N1 and N2 are the data index locations for the lowest
and highest frequencies of the selected band corresponding to the
discrete frequency spectrum, respectively. In the present study, the
frequency band of 0.01–0.08 Hz and 230 time frames were selected
to calculate sALFF values for each group, and the sALFF value of
each voxel was divided by the global mean of the sALFF values.

Classification analysis and Child–Pugh
score prediction analysis

The classification performance of abnormal dALFF, sALFF
and both two features values at the individual level by SVM
based on MVPA for Neuroimaging (MVPANI) software (Peng
et al., 2020) distinguished MHE patients from noMHE patients
with the following steps. (1) The dALFF, sALFF and both
two features mapping of MHE and noMHE patients served as
classification features for the SVM method. (2) K-fold cross-
validation was utilized to evaluate the SVM model performance. In
each trial, all patients (34 MHE and 28 noMHE) were randomly
divided into K groups. One of the training folds was selected
as the testing dataset. The remaining K-1 groups were used as
the training set. Use the selected training dataset to train the
model and evaluate it with the testing dataset. K is usually
set as 10. (3) To estimate whether the classification results of
the classifier model were robust and reliable, this present study
used permutations = 5,000 to assess the statistical significance
of the model. The total accuracy/specificity/sensitivity metric
was used to evaluate the classification performance of the SVM
model.

To examine the relationship between changes in intrinsic
brain activity and the severity of liver damage, we used a
general linear model to predict the Child–Pugh score for each
patient in the MHE group. Firstly, we used the different dALFF
values of the MHE group and the noMHE group as well
as leave-out cross-validation (LOOCV) to produce a robust
prediction model. In each LOOCV, we selected one subject’s
data as the test set, and the remaining subjects’ data were
used as the training set to predict the Child–Pugh score of the
subject was predicted based on constructed prediction model.

Finally, we used Pearson’s correlation analysis to determine
whether the predicted Child–Pugh score was correlated with
the observed Child–Pugh score in MHE. In addition, we also
employed a LOOCV procedure to predict Child–Pugh scores
according to sALFF values and combination of dALFF values
and sALFF values.

Statistical analysis

Clinical and demographics characteristics were evaluated
among the three groups by in SPSS (version 23.0). Sex differences
were analysed by using the chi-square (χ2) test. Differences
in, age, years of education and neuropsychological scores
among the three groups were assessed by one-way analysis of
variance (ANOVA). A two-sample t-test in SPM was employed
to determine the brain regions with differences in dALFF and
sALFF values among the three groups under a gray matter
mask. Furthermore, the Spearman correlation analysis was
applied to assess the associations of the dALFF and sALFF
values in specific brain regions with neuropsychological test
scores and blood ammonia levels in the MHE group. Gaussian
random field theory (GRF) correction with Pvoxel < 0.005
and Pcluster < 0.05 was applied. Pearson’s correlation was
employed to determine whether predicted Child–Pugh
score is correlated with the observed Child–Pugh score in
patients with MHE.

Results

Clinical characteristics

The current study included 34 MHE patients, 28 noMHE
patients, and 33 HCs. The detailed characteristics and clinical data
are displayed in Table 1. Age, sex, and educational differences
between the three groups were non-significant. Patients with MHE
performed significantly worse than patients without MHE and HCs
on cognitive tests.

Dynamic and static ALFF among the
three groups

Compared with HCs, MHE patients exhibited reduced dALFF
variability mainly in the right CPL and right thalamus, and
increased dALFF variability in the right insula, IOG and right
middle occipital gyrus (MOG). In contrast, compared with noMHE
patients, MHE patients showed increased dALFF in the right
precuneus, right superior frontal gyrus (SFG), and right superior
occipital gyrus (SOG). noMHE patients showed decreased dALFF
in the right precuneus compared with HCs (GRF corrected, cluster
size ≥ 40 voxels, voxel-level p < 0.005, cluster-level p < 0. 05;
Figure 1 andTable 2). The present study also found that no or fewer
alterations in sALFF. Differences in sALFF among the three groups
are shown in the attached Supplementary data (Supplementary
Figure 1 and Supplementary Table 1).
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TABLE 1 Comparison of clinical data among subjects in the two groups.

MHE (n = 34) noMHE (n = 28) HC (n = 33) χ 2/t/F value P-value

Sex (M/F) 19/15 15/13 17/16 0.128† 0.937

Age (years) 43.51± 7.36 45.32± 8.17 46.87± 7.24 1.655‡ 0.197

Education (years) 11.00± 2.79 12.12± 2.98 11.15± 2.78 1.359‡ 0.262

Child-Pugh score (A/B/C) 2/8/24 1/17/10 – – –

NCT-A (seconds) 70.60± 35.47 34.24± 5.15 20.65± 8.43 7.876§ 7.430||5.370¶ <0.001§ <0.001||<0.001¶

DST (score) 26.03± 20.35 44.86± 9.05 44.05± 11.00 4.489§ 0.310||4.536¶ <0.001§ 0.757||<0.001¶

Ammonia (mg/dl) 71.72± 8.5 55.2± 6.53 – 6.894 <0.001

Albumin (mg/dl) 42.15± 7.52 41.22± 7.98 – 0.471 0.640

Total bilirubin (mg/dl) 110.54± 86.56 88.56± 111.27 – 0.875 0.381

Prothrombin time (seconds) 20.61± 6.25 18.83± 7.32 – 1.050 0.298

Ascites (no/small/moderate/massive) 2/9/15/5 5/17/5/1 – – –

Data are presented as the mean ± standard deviation. †Pearson χ2 test of two groups (two-tailed). ‡One-way analysis of variance test among three groups. §Two-sample t-test between the
MHE and HC groups (two-tailed). ||Two-sample t-test between noMHE and HC groups (two-tailed). ¶Two-sample t-test between the MHE and noMHE groups (two-tailed). DST, digit-symbol
test; HC, healthy control; MHE, mild hepatic encephalopathy; NCT-A, number connection test of type–A; noMHE, cirrhosis patients without mild hepatic encephalopathy.

FIGURE 1

Group differences in the temporal variability of intrinsic brain activity. (A) Temporal variability of the dynamic amplitude of low-frequency fluctuation
(dALFF) between the minimal hepatic encephalopathy (MHE) and healthy control (HC) groups was identified using two-sample t-tests.
(B) Significance of dALFF values differences between the MHE and noMHE groups. (C) Significance of dALFF differences between the cirrhosis
without MHE (noMHE) and HC groups. The statistical significance level was set at Pvoxel < 0.005, and Pcluster < 0.05 [Gaussian random field
(GRF)-corrected, cluster extent threshold at k ≥ 40]. Hot colourss represented increased dALFF, and blue colors represent decreased dALFF.

Correlation analyses

We extracted dALFF mapping values from the three groups and
then performed further correlation analysis with blood ammonia
levels and neuropsychological scores. dALFF values in the right
IOG was positively correlated with blood ammonia (r = 0.424,
p = 0.012). Aberrant dALFF values in the left precuneus gyrus

were positively correlated with DST scores (r = 0.356, p = 0.038).
Aberrant dALFF values in the right ITG were negatively correlated
with NCT-A scores (r = -0.784, p = 0.000). We set a significance
threshold of p < 0.01 for all correlation analyses (uncorrected;
Figure 2). The results of correlation analyses on sALFF patterns are
shown in the Supplementary Figure 2. None of the sALFF results
were significant.
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TABLE 2 Group differences in dynamic amplitude of low-frequency fluctuation (dALFF) between mild hepatic encephalopathy (MHE) patients, cirrhosis
without MHE (noMHE) patients, and healthy controls (HCs).

Group Brain regions Brodmann
area

MNI coordinates Cluster size
(voxels)

T value

x y z

MHE-HC Right cerebellum posterior lobe – 36 –78 –54 55 –4.16

Right thalamus – 6 –21 0 54 –4

Left inferior occipital gyrus 19 –39 –78 –6 44 2.98

Right middle occipital gyrus 19 33 –75 33 40 3.11

Right insula 48 48 –9 6 47 4.11

MHE-noMHE Right precuneus 23 12 –48 24 108 5.07

Right superior frontal gyrus 32 15 48 21 53 5.11

Right superior occipital gyrus 19 21 –93 33 50 4.99

noMHE-HC Right precuneus 23 9 –51 21 92 –6.62

MNI, Montreal Neurological Institute.

Classification performance and
Child–Pugh score prediction

Using individual dALFF values as features, the SVM
classification performance reached a total accuracy of 81%,
sensitivity of 83%, and specificity of 88%; and the area under
curve (AUC) of the classification achieved 0.88. For sALFF, the
total accuracy was 69%, the sensitivity was 67%, the specificity
was 72%, and the AUC of classification was 0.75. However, for
the combination of two features, the total accuracy was 96%,
the sensitivity was 89%, the specificity was 92%, and the AUC
of classification was 0.93. Thus, dALFF was more useful for
classification than sALFF, and the combination of two features play
a higher accuracy classification performance than single dALFF
or sALFF features. Permutation tests for the three classification
analyses showed p < 0.001 (Figure 3). We also found that dALFF
values predicted the Child–Pugh scores (r = 0.140, p = 0.030), while
sALFF values and combination of dALFF values and sALFF values
did not (r = 0.058, p = 0.169; r = 0.057, p = 0.225) (Figure 4).

Validation analysis

We chose 30 time frames and 80 time frames to recalculate the
primary results to confirm the impact of dALFF variability on the
outcomes at various sliding-window lengths. See (Supplementary
Figure 3) for detailed validation results.

Discussion

This study used dALFF and sALFF to investigate brain
fluctuation characteristics in cirrhosis patients with and without
MHE as well as their relationships with cognitive dysfunction.
Anthors found d, dALFF showed similar and complementary brain
activation information compared with the sALFF. The classification
accuracy was superior when using combination of dALFF and
sALFF compared with that using dALFF as features or sALFF as
features. Additionally, the altered dALFF values in these regions

between the MHE group and the noMHE group could predict the
severity of liver damage.

The dynamic characteristics of brain activity, commonly
measured by dALFF, reflect intrinsic brain function during mental
and cognitive processes (Wang et al., 2016; Kucyi et al., 2017)
and have recently been widely used as neuroimaging markers
to deepen knowledge about the neural mechanisms underlying
various neurological and psychiatric disorders (Kim et al., 2017;
Li et al., 2018). Although the cognitive deficits in MHE were
confirmed to be associated with abnormal dynamic functional
connectivity networks (Chen et al., 2017; Cheng et al., 2021;
Cai et al., 2022), whether the time-varying patterns of regional
intrinsic brain activity are aberrant remains unknown. Compared
to dynamic functional connectivity, dynamic brain activity can be
presented with respect to captures fluctuation in spatial variability
and strength using first-level statistics (Fu et al., 2018). The present
study extends the findings regarding altered dynamic functional
connectivity in patients with cirrhosis and characterizes the time-
varying patterns of intrinsic regional brain activity in patients with
cirrhosis.

Three classification models for
distinguishing MHE

Our study proposes the combination of dALFF and sALFF as
a reliable imaging neuromarkers for the detection of MHE from
noMHE. noMHE has the potential to progress into MHE, which
can cause impairment of cognitive function and further progress
to irreversible brain damage (Tapper et al., 2020). Therefor it is
important to distinguish MHE from noMHE. SVM is a classifier
with high classification accuracy that solves the classification
problem of small sample sizes that are non-linear and have
high dimensionality (Peng et al., 2020). Some researchers have
also applied SVM classifiers to help diagnose MHE patients. For
example, Chen et al. used an SVM classifier to distinguish MHE
patients from HCs, identifying six brain regions with sALFF values
with the best discriminative power (Chen et al., 2016a). Others
found that a combination of the SVM approach and regional
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FIGURE 2

Scatter plots of dynamic amplitude of low-frequency fluctuation (dALFF) with blood ammonia levels and neuropsychological scores. (A) The
temporal variability of dALFF in the right IOG was positively correlated with blood ammonia levels (r = 0.424, p = 0.012, uncorrected). (B) The
temporal variability of dALFF in the left precuneus gyrus was positively correlated with digit-symbol test (DST) scores (r = 0.356, p = 0.038,
uncorrected). (C) The temporal variability of dALFF in the right inferior temporal gyrus (ITG) was negatively correlated with number connection
test–A (NCT-A) scores (r = -0.784, p = 0.000, uncorrected).

homogeneity (ReHo) helped to identify MHE patients (Chen
et al., 2016b). Chen et al. confirmed that SVM analysis based
on SVM analysis based on GM volumetry has the potential to
help diagnose MHE in cirrhotic patients (Chen et al., 2020b). In

addition, someone confirmed that compared with static features,
dynamic features were better for distinguishing MHE patients from
HCs (Cheng et al., 2021). In this present study anthors set three
classification models (dALFF, sALFF and both two features) by
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FIGURE 3

Results of classification analyses. Null distribution on the permutation test (indicated by the histogram) and the actual classification accuracy
(indicated by the red vertical line). The P-value is shown at the top of the life figure. (A) The classification using altered dynamic amplitude of
low-frequency fluctuation (dALFF) variability achieved an accuracy of 81%, sensitivity of 83%, and specificity of 88%. (B) The classification using
altered static amplitude of low-frequency fluctuation (sALFF) achieved an accuracy of 69%, sensitivity of 67%, and specificity of 72%. (C) The
classification using combination of two features achieved an accuracy of 96%, sensitivity of 89%, specificity of 92%, and the area under curve (AUC)
of classification was 0.93.

SVM to compare their classification performance in distinguish
MHE patients from noMHE. In this study, anthors achieved a
high accuracy of 81% for the classification of dALFF values as
a feature, which improved by 12% accuracy than sALFF values

as a feature. In addition, comparing combining two features
model with single feature model, the former obviously improved
classification accuracies when comparing single dALFF model
and sALFF model by 15, and 27%, respectively. These findings
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FIGURE 4

Temporal variability of dynamic amplitude of low-frequency fluctuation (dALFF) predicts Child–Pugh scores. (A) The use of dynamic ALFF to predict
the Child–Pugh scores (r = 0.140, p = 0.030). (B) The use of static amplitude of low-frequency fluctuation (sALFF) to predict the Child–Pugh score
(r = 0.058, p = 0.169). (C) The use of combination of dALFF and sALFF features to predict the Child–Pugh score (r = 0.057, p = 0.225). Filled circles
represent data included in this correlation analysis, while open circles indicate data excluded from this analysis. Solid and dashed red lines represent
the best-fit line and 95% confidence intervals of Pearson’s correlation analysis, respectively. ALFF, amplitude of low-frequency fluctuation.

suggest that combining models may be a powerful neuroimaging
biomarker for the detection of MHE. The underlying reason for
this is that this combining two features model not only considered
intrinsic brain activity intensity information but also consider the
dynamic changes of intrinsic brain activity in MHE. So only by
considering the intrinsic activity intensity effects of the brain in
space and the time-varying effects in time, can the MHE complex
fluctuation information of the brain be accurately characterized.

The presence of the null distribution of the permutation test
is often attributed to the overall number of classification groups
and the SVM weights of the two features (Gaonkar et al., 2015;
Linn et al., 2016; Krell et al., 2017). In the present study the same
numbers in each classification model were used for dALFF and
sALFF, and in the dALFF permutation test anthors observed a null
distribution with a bimodal distribution. Therefore, anthors believe
that this bimodal frequency distribution for dALFF is due to the
significant difference in the dALFF classification weights between
the two classification models. Anthors also combined the use of
dALFF and sALFF to distinguish patients from noMHE cirrhosis
patients; this method had high accuracy in classification with more
significantly different amounts, and yielded a bimodal frequency
distribution for dALFF.

Prediction model for the severity of liver
damage

More importantly, dALFF predicted the severity of liver
damage. Previous studies have found that neuroimaging features
are related to the severity of liver damage (Lin et al., 2019; Ye et al.,
2020; Lin et al., 2022). Anthors are not aware of any prior study
that has reported employing dynamic values to predict the severity
of live damage. Anthors found that dALFF values successfully
predicted the severity of liver damage while sALFF values and
the combination of dALFF and sALFF did not, which suggest
that dALFF values may be a more powerful neuromarker early
warning liver damage for MHE in the current sample. Anthors
speculated that the poor predictive performance of the combination
dALFF and sALFF may be caused by the small sample size. This
present study did not underestimate the key role of sALFF in MHE

diagnosis. Further studies are needed to verify the contribution of
sALFF in MHE identification.

Altered local brain activity (dALFF and
sALFF) in related functional brain regions

Minimal hepatic encephalopathy patients showed increased
dALFF variability in both the IOG and MOG and decreased sALFF
in bilateral superior occipital gyrus, which are involved in visual
information processing (Lee et al., 2000; Wandell et al., 2007).
Notably, a decline in visual function is a prominent feature of MHE
(Amodio et al., 2004; Arias et al., 2015). The occipital lobe is a key
node of the visual network that is involved in visual information
integration and processing (Wang et al., 2019). Many fMRI studies
have reported incongruous and irregular neuronal connectivity in
the visual cortex in MHE patients (Bajaj et al., 2017; Zhang et al.,
2017a; Wang et al., 2019). Similar to Cheng et al. (2021)’s results,
our findings suggest that the abnormal temporal variability of the
occipital lobe is associated with impaired visual processing in MHE
patients. Moreover, we found that the increased dALFF value in
the left IOG was positively correlated with blood ammonia levels.
The degradation of ammonia, a main toxic substance in the brain,
the results in increased glutamine levels in astrocytes, causing both
swelling and dysfunction of these cells (Córdoba and Mínguez,
2008). Some research has suggested that in MHE patients, the
aberrant ALFF in the bilateral cuneus/superior occipital lobule is
related to the toxic effects of blood ammonia levels (Chen et al.,
2012a; Qi et al., 2012). Thus, its abnormal brain activity in the
occipital lobe could result in visual-related dysfunction, which may
be caused by the degradation of ammonia.

The present study also found considerably increased dALFF
in the right insular cortex in MHE patients. Some studies
have found that the insula is involved in executive function
in MHE patients (Chen et al., 2012a; Qi et al., 2012). The
insula, as a critical hub linking the prefrontal and parietal
lobes and complex brain networks, plays an important role in
transmitting top-down information (Menon and Uddin, 2010;
Woo et al., 2017). Top-down processing may involve activation
of areas associated with executive function (Diamond, 2013). In
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addition, the salience network (SN), including the dorsal anterior
cingulate and anterior insular cortices, is a brain network that can
regulate resource allocation in other brain networks to adapt to
changing environmental conditions, such as by helping to reduce
DMN activity and increase processing of external stimuli (Seeley
et al., 2007). Alterations in the insular cortex, including reduced
network efficiency and aberrant spontaneous activity, may upset
the balance of executive function-associated networks, resulting
in attention deficits and reduced executive function (Bajaj et al.,
2009). Furthermore, the insular cortex, itself a limbic structure,
is connected to a set of other limbic and related areas, such as
the cingulate gyrus, hippocampus, parahippocampal gyrus, dental
nucleus, papillary nuclei and amygdala, whose functions are related
to emotion, behavior, working memory and perceptual processing
(Vogt et al., 2003; Rolls, 2019). Anthors also observed increased
sALFF differences in the left parahippocampal gyrus between MHE
patients and HCs. Therefore, our study suggests that aberrant
dALFF in the right insula may underlie the abnormal executive
function, emotional or behavioral regulation, learning and memory
performance of MHE patients as well as the interconnection of the
above information.

The functions of the thalamus and cerebellum are closely
related to executive control and emotional regulation (Bostan and
Strick, 2018; Dacre et al., 2021) and are involved in the initial
discrimination of emotional and sensory information (Cummings,
1993; Smith et al., 2002; Philp et al., 2014). Anthors found
considerably lower dALFF in the right thalamus and CPL and
higher sALFF in the right thalamus in MHE patients. Temporal
variability in brain fluctuations, such as increased (decreased)
dALFF, indicates weakened (strengthened) stability (Christoff
et al., 2016), may be the result of changes or adaptation in
cognitive function and alterations in pathophysiological states
(Preti et al., 2017). Therefore, in light of previous studies,
anthors speculate that aberrant thalamic and cerebellar structure
and function may contribute to cognitive impairments in MHE.
In addition, cerebellar and cerebral cortical function are not
isolated but rather were connected by important circuits, such
as the corticocerebellar–thalamic–cortical circuit (CCTCC), which
regulates neurobehavioral and executive functions (Castellazzi
et al., 2018; Li et al., 2022). Therefore, anthors believe that
disturbed synchronization of neural activity in the right thalamus
and CPL may disturb the balance of the CCTCC. Importantly,
in this study, anthors found that the right thalamus indicated by
two different brain fluctuation detection methods. These results
were in line with earlier static ALFF investigations that found
that cirrhotic patients with and without MHE had abnormal
local brain functional activity in the thalamus (Zhang et al.,
2017a; Li et al., 2019; Zhang et al., 2020). Most likely, the
thalamus may be a critical pathological node for understanding
the neurophysiological mechanisms of MHE, and hypoactivation
of the thalamus can reveal the mechanisms underlying cognitive
impairment in MHE.

Increased dALFF values in the right SFG and right precuneus
were found in MHE patients compared with those noMHE groups.
The frontal lobe, as the most powerful functional region of the
brain, participates in spatial working memory and information
processing; the prefrontal lobe also supports executive function
and emotion regulation (Funahashi, 2006). For MHE patients,
abnormalities in the SFG may disrupt visuospatial functioning

(Liao et al., 2012; Zhang et al., 2017b). The precuneus participates
in visuospatial integration and working memory, deficits in which
are associated with MHE (Chen et al., 2012a; Ni et al., 2012;
Chen et al., 2013). Therefore, anthors hypothesize that aberrant
neural activity in the precuneus contributes to impaired visual
function and impaired recall of specific memories in MHE
patients. Consistent with this notion, scores on the DST score,
one of the neuropsychological assessments that may reflects
psychomotor, visuomotor, attention, speed, and visual memory
impairment, was significantly positively correlated with the dALFF
values in the precuneus in this study. Together with previous
studies, this finding shows that the precuneus may be more
important than changes in other brain regions in understanding
the biological mechanisms underlying cirrhosis-related cognitive
dysfunction (Chen et al., 2012b; Ni et al., 2014; Cheng et al.,
2017). In addition, the inferior frontal gyrus and precuneus
are crucial hubs of the DMN (Chen et al., 2017). Previous
studies have shown that the DMN is impaired to varying
degrees in MHE patients (Qi et al., 2012; Tsai et al., 2019).
According to previous and current finding, anthors propose that
abnormal brain activity in the DMN may be a non-invasive and
accurate neuroimaging biomarker for identifying patients with
MHE.

Earlier investigations have reported altered precuneus activity
in patients with noMHE (Ni et al., 2012; Cheng et al., 2017; Zhang
et al., 2017b). Consistent with prior studies, anthors discovered
reduced dALFF in the precuneus in cirrhosis patients without
MHE compared to that in HCs. The precuneus may participate in
short-term memory and enhance the attention-modulated visual
field (Halbertsma et al., 2020; Luo et al., 2020). As a result,
anthors suggest that reduced dALFF in the precuneus disrupts
the balance of visual information regulation and results in various
cognitive disorders connected to vision, such as deficiencies in
visual memory, visuomotor function, and visuospatial thinking.
sALFF did not reveal significantly differ between the noMHE
patients and HCs.

This study has some limitations. First, the sample size was
relatively small. Larger samples are required in the future to
confirm our findings. Second, the size of the sliding window
remains under discussion. This present study conducted additional
experiments (30 time frames and 80 time frames) to verify that
the impact of different sliding window sizes on the experimental
results; these results differed only slightly. Fifty time frames met the
criterion of the minimum length less than 1/fmin (52); thus, it is
more frequently used in similar studies (Li et al., 2020; Ma et al.,
2020; Yang et al., 2022). Third, the reproducibility of predictive
models is an unavoidable issue (Woo et al., 2017). In future
investigations, the model of MHE brain activity dynamics in the
present study should be adapted to include additional participants
at various study centers. Compared with leave-one-out cross-
validation (LOOCV), K-fold cross-validation has less variance in
prediction and is more suitable for studies with small samples (Shen
et al., 2017). In addition, SVM is sensitive to differences in feature
scales, which have a strong influence on SVM accuracy verification.
Finally, anthors did not exclude unavailable time nodes from the
scan time series, but anthors used the mean FD as a covariate in
statistical analysis to balance the effect of scrubbing bad time points
and eliminate the effect of head movement on our experimental
results.
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Conclusion

In summary, this study revealed that abnormal dALFF
and sALFF in MHE patients mainly affected brain regions
or networks associated with visual function, cognitive control
and executive function, emotion regulation, and spatial working
memory, indicating that reduced or impaired visual function
dysfunction, impaired cognition, emotion regulation and spatial
memory were associated with MHE. More broadly, combination
dALFF and sALFF features play a higher accuracy classification
performance than single dALFF or sALFF features., and these
dALFF abnormalities predicted the severity of liver damage, while
sALFF and combination dALFF and sALFF abnormalities did not.
This novel study suggests that combining dALFF and sALFF is
better to distinguish MHE from cirrhosis patients and highlights
the important contribution of alterations in dALFF variability for
predicting the severity of liver damage in MHE patients.
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