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Water diffusion anisotropy MRI is sensitive to microstructural changes in the brain

that are hallmarks of various neurological conditions. However, conventional

metrics like fractional anisotropy are confounded by neuron fiber orientation

dispersion, and the relatively low resolution of diffusion-weighted MRI gives

rise to significant free water partial volume effects in many brain regions

that are adjacent to cerebrospinal fluid. Microscopic fractional anisotropy

is a recent metric that can report water diffusion anisotropy independent

of neuron fiber orientation dispersion but is still susceptible to free water

contamination. In this paper, we present a free water elimination (FWE) technique

to estimate microscopic fractional anisotropy and other related diffusion indices

by implementing a signal representation in which the MRI signal within a voxel

is assumed to come from two distinct sources: a tissue compartment and a

free water compartment. A two-part algorithm is proposed to rapidly fit a set

of diffusion-weighted MRI volumes containing both linear- and spherical-tensor

encoding acquisitions to the representation. Simulations and in vivo acquisitions

with four healthy volunteers indicated that the FWE method may be a feasible

technique for measuring microscopic fractional anisotropy and other indices with

greater specificity to neural tissue characteristics than conventional methods.

KEYWORDS

diffusion, MRI, microscopic anisotropy, free water elimination, microstructure,
neuroimaging, cerebrospinal fluid

Introduction

Diffusion-weighted MRI (dMRI) is a non-invasive imaging modality that uses specialized
pulse sequences to sensitize the MRI signal to the random molecular motion of water
(Stejskal and Tanner, 1965; Tanner, 1965). On MRI-relevant time frames, water molecules
traverse microscopic length scales in tissue, and their diffusion is dictated by the presence
of restricting boundaries such as cell membranes and other structures. By exploiting the
known relationships between dMRI signal and tissue properties, dMRI measurements can
act as surrogate indicators of physical properties of neural tissue, and this capability has led
to dMRI finding use in the study of neurological disorders like multiple sclerosis (Rovaris
et al., 2005; Inglese and Bester, 2010), Alzheimer’s disease (Zhang et al., 2009), and stroke
(van Everdingen et al., 1998), among others.
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The most widely used dMRI technique is diffusion tensor
imaging (DTI). DTI is based on the first order cumulant expansion
of the logarithm of the dMRI signal as a function of diffusion
weighting or b-value (Basser et al., 1994; Frisken, 2001), which can
be represented by the equation:

Sg,b = S0e−b
∑3

i,j = 1 gigjDij (1)

where Sg,b is the diffusion-weighted MRI signal of a particular
acquisition acquired with diffusion-weighting applied in the
direction of the unit vector g = (g1, g2, g3), S0 is the MRI signal in
the absence of diffusion weighting, b is the b-value, which describes
the strength of the diffusion weighting, and Dij is ijth element of
the fully symmetric second order diffusion tensor, D. DTI requires
linear tensor encoding (LTE) acquisitions in different diffusion
directions at a single b-value plus one or more acquisitions with
no diffusion weighting and can report metrics such as the mean
diffusivity (MD) and fractional anisotropy (FA) of water diffusion.
However, the DTI representation assumes that diffusion follows
a mono-Gaussian distribution, which is a reasonable assumption
only at low b-values (Johansen-Berg and Behrens, 2009). The
diffusion kurtosis imaging (DKI) representation further expands
the cumulant expansion of the logarithm of the dMRI signal to the
second order to account for non-Gaussian diffusion but requires
the acquisition of dMRI data at two or more b-values. The DKI
model can be represented as (Jensen et al., 2005; Lu et al., 2006):

Sg,b = S0e−b
∑3

i,j = 1 gigjDij+
1
6 b2 ∑3

i,j,k,l = 1 gigjgkglWijkl+O(b3) (2)

where Wijkl denotes the ijklth element of the fully symmetric
fourth order diffusion kurtosis tensor, W, and O(b3) is a higher
order term that is negligible in brain tissue at b-values lower than
3,000 s/mm2 (Jensen and Helpern, 2010). The powder kurtosis
signal representation (paK), in which data acquired from many
diffusion directions are arithmetically averaged into a single image
volume known as the powder average, can be represented as:

Sb = S0e−bDeff+
1
6 b2D2

eff K+O(b3) (3)

where Sb is the dMRI signal of the powder averaged data at a
particular b-value, Deff is the effective diffusivity estimated from
the powder average signals, and K is the effective diffusion kurtosis
(Jensen et al., 2005; Lu et al., 2006). Note that diffusion metrics
acquired from the powder representation (e.g., Deff ) differ from
similarly-named metrics acquired from the tensor representation
(e.g., MD) (Henriques et al., 2021).

The DTI and DKI representations are limited by two major
factors that affect their specificity to neuronal microstructure: (1)
the tensors used to estimate anisotropy are sensitive to neuron
fiber orientation dispersion within the voxel, causing FA to be
reduced in brain regions containing crossing or fanning axons
(Jones et al., 2013; Szczepankiewicz et al., 2015), and (2) the
presence of cerebrospinal fluid and other free water pools (e.g.,
cysts) biases diffusion measurements in both the tensor and
powder representations, potentially confounding or masking true
microstructural changes within the tissue (Alexander et al., 2001;
Jones and Cercignani, 2010; Vos et al., 2011; Baron and Beaulieu,
2015). Typically, a voxel with these free water partial volume effects
will have elevated MD and reduced FA due to the high diffusivity
and negligible anisotropy of free water.

To overcome the first limitation, techniques such as
microscopic fractional anisotropy (µFA) imaging, which reports
water diffusion anisotropy independent of the neuron fiber
orientation dispersion, were developed (Jespersen et al., 2013;
Lasič et al., 2014; Shemesh et al., 2016). µFA can be estimated by
fitting traditional LTE dMRI data to various signal representations
using a priori knowledge of the underlying tissue (Kaden et al.,
2016a,b; Novikov et al., 2019) or by using advanced dMRI pulse
sequences like double diffusion encoding (Cory et al., 1990;
Henriques et al., 2020) or spherical tensor encoding (STE) (Lasič
et al., 2014; Szczepankiewicz et al., 2015; Westin et al., 2016).
Previous studies have demonstrated that µFA may be more
suitable than FA for a number of applications such as in evaluating
white matter degeneration in Parkinson’s disease (Ikenouchi
et al., 2020), delineating lesions and detecting abnormalities
in multiple sclerosis (Yang et al., 2018; Andersen et al., 2020),
and differentiating between different types of brain tumors
(Szczepankiewicz et al., 2015).

The bias caused by free water partial volume effects on DTI
and DKI measurements results from the fact that indices quantified
using both representations represent the weighted average of all
water diffusion within a voxel rather than markers of a specific
tissue. The diffusivity of free or unhindered water at 37◦C is
isotropic and approximately 3–4 times higher than that of brain
tissue, so it has a significant effect on the voxel-level dMRI
parameters, even at low volume fractions (Pierpaoli and Basser,
1996). Moreover, the free water signal is typically a factor of 2–
3 times higher than brain-tissue for the T2-weighted scans used
for dMRI, which further exacerbates these partial volume effects.
Accordingly, dMRI measurements made in brain regions with
significant free water partial volumes (Figure 1), such as the fornix
and other ventricle-adjacent regions, are greatly affected (Metzler-
Baddeley et al., 2012; Li et al., 2013).

The effects of free water partial volumes can be attenuated
by using non-zero minimum diffusion weighting (Baron and
Beaulieu, 2015) and by implementing fluid-attenuated inversion
recovery dMRI sequences (Papadakis et al., 2002; Chou et al.,
2005), but both techniques decrease signal-to-noise ratio (SNR),
the former affects DTI metrics in tissue with minimal free water,
and the latter increases specific absorption rate and scan time
(Pasternak et al., 2009). Alternatively, modifications to the DTI
and DKI representations can be used to distinguish between dMRI
signal from free water and dMRI signal from functional brain
tissue. The free water elimination DTI (FWE-DTI) representation
separates the dMRI signal into two macroscopic components:
one representing free water and one representing brain tissue
(Pasternak et al., 2009), and can be expressed as:

Sb = S0

(
fe−b

∑3
i,j = 1 gigjDT,ij +

(
1− f

)
e−b(3e−3)

)
(4)

where f is the apparent volume fraction of tissue (weighted by
differences in S0 between free water and tissue) within the voxel
of interest and DT,ij is the ijth element of the diffusion tensor
corresponding to the tissue component (DT). The (3e-3) term
represents the diffusivity of free water at 37◦C in mm2/s. Note
that signal arising from extracellular water that is hindered, such
as the water between neuronal axons, will primarily contribute
to the tissue component and not the free water component. This
representation enables more accurate estimation of tissue-specific
indices than traditional DTI and has attracted interest for use
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FIGURE 1

Free water partial volume effects at the interface between brain tissue and a ventricle containing cerebrospinal fluid (CSF). The image on the right
depicts an ideal slice in which the brain tissue and CSF are clearly delineated, while the center image depicts partial volume effects in voxels that
contain both CSF and tissue, highlighted by yellow arrows. The goal of the proposed algorithm is to obtain parameter estimates specific to the tissue
in these voxels.

in studying neurodegeneration in Alzheimer’s disease (Hoy et al.,
2017), Parkinson’s disease (Planetta et al., 2016), and traumatic
brain injury (Pasternak et al., 2014a), among others. Additionally,
the volume fraction metric is a potential surrogate marker for
edema (Pasternak et al., 2009, 2014b). While traditional DTI
can be performed using single b-shell data, FWE-DTI should
be performed with data collected at multiple b-values to reduce
model fitting degeneracies at the expense of increased scan time
(Golub et al., 2020). Recently, the FWE-DTI representation was
expanded to account for non-Gaussian diffusion in the tissue
compartment by expanding the cumulant expansion to the second
order; this modification to FWE-DTI is referred to as the free water
elimination DKI representation (Collier et al., 2018).

In this article, we propose a technique to measure water
diffusion anisotropy that combines the STE-based µFA acquisition
protocol to achieve insensitivity to neurite orientation (Lasič et al.,
2014; Szczepankiewicz et al., 2015) with the free water elimination
representations’ ability to distinguish between free water partial
volume effects and true tissue properties.

Materials and methods

Previously, we demonstrated that µFA can be estimated by
jointly fitting multi-shell LTE and STE dMRI data to the powder
average diffusion kurtosis representation, as per the following
equations (Arezza et al., 2021):

Sb,LTE = S0e−bDeff+
b2D2

eff KLTE
6 (5)

Sb,STE = S0e−bDeff+
b2D2

eff KSTE
6 (6)

µFA =
√

3
2

(
1+

6
5 (KLTE − KSTE)

)− 1
2

(7)

where the subscripts LTE and STE denote the encoding scheme.
By combining equations (5) and (6) with a FWE representation,
the powder average free water elimination kurtosis representation

(FWE-paK) can be defined in the LTE and STE encoding schemes
via the following equations:

Sb,LTE = S0

(
fe−bDT+

b2D2
T KLTE
6 +

(
1− f

)
e−b(3e−3)

)
(8)

Sb,STE = S0

(
fe−bDT+

b2D2
T KSTE
6 +

(
1− f

)
e−b(3e−3)

)
(9)

where DT is the effective diffusivity in the tissue compartment, KLTE
is the effective diffusion kurtosis in the tissue compartment in the
LTE scheme, and KSTE is the effective diffusion kurtosis in the tissue
compartment in the STE scheme. The DT , KLTE, and KSTE terms
obtained using equations (8) and (9) characterize water diffusion in
brain tissue independent of free water. Accordingly, µFA estimated
from equation (7) using these corrected indices should characterize
water diffusion anisotropy in tissue free of the bias caused by free
water partial volumes. This imaging strategy which combines the
FWE-paK signal representation with µFA imaging acquisition will
be referred to herein as the FWE imaging method, whereas the
technique that involves fitting the data to the powder kurtosis
representation will be referred to as the conventional method.

Fitting algorithm

In this work, a two-part algorithm (denoted Part I and Part
II) was used to obtain a solution to the joint fitting of STE
and LTE data. In the first part of the algorithm, low b-value
(b ≤ 1,000 s/mm2) powder average STE data were fitted to a FWE
representation for effective powder average diffusivity (FWE-paD)
to obtain estimates of f and DT . The equation was derived from
equation (9) by setting KSTE = 0:

Sb,STE = S0

(
fe−bDT +

(
1− f

)
e−b(3e−3)

)
(10)

The indices computed with equation (10) were used as initial
guesses in the second part of the algorithm, in which powder
average STE and powder average LTE data across all b-values were
jointly fitted to equations (8) and (9).
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Part I of the algorithm exploits the FWE-paD representation’s
lower complexity relative to the FWE-paK representation, reducing
the number of unknown variables to be solved for by omitting the
effective kurtosis term. The effects of non-Gaussian diffusion on
dMRI, while deleterious to signal representations based on the first
order cumulant expansion of the dMRI signal, are minimal at low
b-values; thus, f and DT can be initially estimated despite omitting
the second order term in the cumulant expansion. Using only
the STE data as input further reduces the effects of non-Gaussian
diffusion on the fit because it typically has minimal kurtosis. More
specifically, LTE introduces a variance to the powder average signal
due to the different diffusion encoding directions used for each
acquisition; STE signals are free of this variance and deviate less
from the mono-Gaussian diffusion assumption inherent to the
FWE-paD signal representation in tissue-containing voxels (Lasič
et al., 2014; Henriques et al., 2020). In this work, an iterative method
was used to solve the FWE-paD equation. In each iteration, the low
b-value STE data were first fitted to the FWE-paD representation
[equation (10)] using the least squares method with a fixed estimate
of DT = 7e− 4 mm2/s used as an initial guess in the first iteration.
Then, a correction was implemented to constrain f and (1− f ) to
be positive. The DT estimate was then updated by again fitting the
data to equation (10) using the least squares method, this time with
f and (1− f ) as fixed inputs. A correction was implemented at the
end of each iteration to set DT to 0 in voxels with very small tissue
compartments (f < 0.1). The FWE-paD fit performed in Part I
could be replaced by other techniques to obtain initial estimates of
f and DT depending on data availability; for example, if low b-value
STE data is not available, LTE data can be fitted to the FWE-DTI
model depicted in equation (4).

In Part II of the algorithm, the LTE and STE data across all
b-values were jointly fitted to the FWE-paK representation using
the f and DT indices from Part I as initial estimates. Again, an
iterative method was employed that was similar to that of Part
I. In each iteration, the data were first fitted to the equations (8)
and (9) to solve for DT , KLTE and KSTE using a fixed f value (the
first iteration used the value of f that was obtained from Part 1).
Corrections were performed to constrain KLTE to be positive and
KSTE to be greater than or equal to−0.1. Then, the data were jointly
fitted to equations (8) and (9), this time using fixed estimates of
DT , KLTE and KSTE to obtain an updated estimate of f . A final
correction was performed at the end of each iteration to constrain
f and (1− f ) to be positive.

Part I and Part II were each performed for 100 iterations for all
simulated and in vivo implementations of FWE-µFA investigated
in this article. For all cases, adding more iterations caused negligible
changes in the output parameters. The fitting code is openly
available at gitlab.com/coreybaron/fwe_ufa.

Synthetic dMRI simulations

To investigate the differences between the FWE-µFA method
proposed herein and standard fitting, equations (8) and (9) were
used to generate synthetic LTE and STE powder average signals
to simulate white matter (WM) and gray matter (GM) voxels.
These simulations were designed to also probe the performance of
the non-convex fitting algorithm under the influence of noise and

incorrect estimates for the free water diffusivity. For each voxel,
signals were generated for b-values of 0, 700, 1,000, 1,400, and
2,000 s/mm2. To simulate a typical WM configuration, µFA was
measured from publicly available dMRI data (Baron and Arezza,
2020) using the conventional µFA method (Arezza et al., 2021), and
typical parameter values were extracted from frontal WM voxels in
which free water contamination is expected to be minimal relative
to tissue in other brain regions. The corresponding parameters
are DT = 8e− 4mm2/s, KLTE = 1.2, and KSTE = 0.1, which
corresponds to a µFA of 0.85 as per equation (7). These parameters
were used to simulate the signal acquired in voxels with simulated
tissue volume fractions (fsim) of 0.2, 0.4, 0.6, 0.8, and 1 via
equations (8) and (9). Rician noise was simulated by adding
random Gaussian noise to the real and imaginary components of
the signal and then computing the magnitude of the noisy signal.
The standard deviation of the noise added to the signals was
scaled by 1/

√
Nacq(b), where Nacq(b) is the number of acquisitions

used experimentally (refer to Section “Materials and methods:
In vivo”) for each b-value, to account for averaging from multiple
acquisitions when the powder average is computed. Note that
the noise standard deviation was chosen to achieve a specific
SNR for the case in which fsim = 1 and the b-value is 0. WM
voxels were simulated at SNR values of 10, 20, and 40 (before
scaling noise based on the number of acquisitions) with a fixed
free water diffusivity of 3e−3 mm2/s to assess the effects of noise
on the measurements. Also, WM voxels were simulated with free
water diffusivities of 2.85e− 3 and 3.15e−3 mm2/s at the SNR
of 20 to assess how deviations in free water diffusivity affect
the measurements. Notably, principal component analysis (PCA)
denoising (Veraart et al., 2016) is typically used for in vivo data
prior to parameter fitting and, accordingly, the simulations likely
explore a more challenging fitting scenario than in vivo.

Due to the presence of free water in cortical GM voxels, as
well as the heterogeneity between different deep GM regions of the
brain, a typical GM configuration is difficult to assess. For this work,
GM µFA was set to 0.55 as this is within the range of values found
in the hippocampus (Yoo et al., 2021) and other deep GM regions
(Lawrenz et al., 2016); using the same DT as the WM simulations,
the KLTE and KSTE values were set to 0.9 and 0.6, which yields
the desired µFA = 0.55 via equation (7). GM simulations were
performed over the same tissue volume fractions, SNRs, and free
water diffusivities as the WM simulations.

A total of 1,000 realizations of random noise were generated
for each simulation configuration. The FWE and conventional
methods of estimating µFA were performed on the simulated
voxels, and the mean and standard deviation of the following
indices were computed across all setups for both methods: DT ,
effective anisotropic kurtosis (Kaniso), effective isotropic kurtosis
(Kiso), and µFA. The effective kurtosis terms were computed as
follows:

Kaniso = KLTE − KSTE (11)

Kiso = KSTE (12)

The relative error against the known ground truth was computed
for each measurement using the following equation:

Rel. Error =
Xmeas − XGT

XGT
(13)
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where X is the metric of interest and the subscripts meas and GT
denote the measured value and known ground truth, respectively.

Monte Carlo simulations

The synthetic powder average signals simulated in the previous
section were derived using the same equation as is used in Part II
of the fitting algorithm, which may glamorize the FWE technique.
To validate those results, Monte Carlo random walk simulations
were performed using Camino (Cook et al., 2006) to compare FWE
with the conventional signal representation in a scenario in which
the ground truth was known. The simulation geometry was set
to be infinitely long cylinders to represent neuronal axons with a
1 µm radius, 0.7 intra-tube volume fraction, and water diffusivity
of 2e− 3 mm2/s (Dhital et al., 2019); note that this case is assumed
to represent a tissue volume fraction of fsim = 1 as the extra-tube
water is restricted and thought to contribute to DT . A free water
compartment was simulated using a diffusivity of 3e− 3 mm2/s
and was added to the tissue to achieve fsim values of 0.2, 0.4, 0.6,
0.8, and 1. LTE and STE signals were simulated at b-values of 0,
700, 1,000, 1,400, and 2,000 s/mm2, with 15 diffusion directions
acquired at each b-value in the LTE scheme.

LTE and STE data were powder averaged and the following
metrics were estimated using the conventional and FWE methods:
DT , Kaniso, Kiso, and µFA. The metrics computed using the
conventional paK method at fsim = 1 were assumed to be the
ground truth and were used to compute the relative error for all
other measurements.

In vivo

To assess the FWE µFA algorithm in real dMRI data,
four healthy volunteers (two female and two male, mean
age 28.0 ± 6.6 years) were scanned on a 3T Prisma whole
body MRI system (Siemens, Munich, Germany) located in
the Center for Functional and Metabolic Mapping at Western
University with 80 mT/m strength and 200 T/m/s slew rate.
Volunteers first underwent T1-weighted MPRAGE acquisitions
with 1 mm isotropic resolution to provide structural image volumes
for segmenting regions-of-interest (ROIs). Then each subject
underwent dMRI scans consisting of five acquisitions with no
diffusion-weighting (b = 0 s/mm2), and 3, 15, 6, and 22 LTE
acquisitions plus 6, 10, 10, and 27 STE acquisitions at b-values of
700, 1,000, 1,400, and 2,000 s/mm2, respectively. The STE pulse
sequence used is described in Arezza et al. (2021). The other
parameters for the dMRI acquisitions were: TE/TR = 94/4,500 ms,
field-of-view = 220 × 200 mm2, resolution = 2 mm (isotropic),
48 slices, and rate 2 in-plane parallel imaging combined with rate
2 simultaneous multislice. Note that the b-values acquired in the
dMRI acquisitions match those of the synthetic dMRI and Monte
Carlo simulations.

Post-processing for the dMRI data included PCA denoising
(Veraart et al., 2016) and Gibbs ringing correction using MRtrix3
(Kellner et al., 2016; Tournier et al., 2019), and eddy current artifact
correction using FSL Eddy (Andersson and Sotiropoulos, 2016).
Powder average signals were then computed from the LTE and STE
data at each b-value and were then fitted to equations (8) and (9)

to obtain µFA via the FWE method and fitted to equations (5) and
(6) using ordinary least squares to obtain µFA via the conventional
method.

The T1-weighted image volumes were used to obtain masks for
ROIs because of their superior resolution and soft-tissue contrast
compared to the dMRI image volumes. WM ROI masks were
generated using the FAST tool from FSL (Zhang et al., 2001)
using a probability threshold of 99% and limiting the masks to
the region of the brain superior to the thalamus. Masks for the
hippocampus, putamen, and thalamus were generated using the
FIRST tool from FSL (Patenaude et al., 2011). ROI masks for the
fornix were manually drawn. The T1 volumes were then registered
to the powder averaged b = 0 s/mm2 volumes using symmetric
diffeomorphic and affine transformations with ANTS software;1

these transformations were then applied to each of the ROI masks
to register them to dMRI space.

The ROIs were selected to test several specific hypotheses.
The WM and putamen are generally less contaminated by free
cerebrospinal fluid than other regions, so it was expected that
measurements made with the FWE and kurtosis µFA methods
would be similar. The thalamus and hippocampus ROIs represent
deep GM structures adjacent to free water, in which it was expected
that the DT would be reduced and µFA would be elevated when
using the FWE technique due to mitigation of free water signal.
The fornix, which is both adjacent to the lateral ventricles and small
relative to the image resolution, represents an ROI that is likely
to have significant free water contamination; thus, much lower DT
and much higher µFA were expected in this region when the FWE
technique was used.

Mean and standard deviation of the following indices were
computed in each of the ROIs to compare the FWE and
conventional µFA techniques: DT , Kaniso, Kiso, and µFA. Voxels
with f < 0.25 after fitting were excluded from this analysis
because there is very little tissue signal for which the diffusion
parameters correspond to, which leads to unstable estimations
of the parameters.

Results

Synthetic dMRI simulations

The relative errors of measurements made with the FWE and
conventional techniques at different SNR levels are depicted in
Figure 2. Note that the for the conventional method, only the
20 SNR case is displayed because relative errors did not differ by
more than the plot line thickness at the various SNR levels. For all
volume fractions except fsim = 1, and at all three SNR levels, the
FWE µFA method yielded more accurate mean measurements of
DT and µFA than the conventional method in both the WM and
GM configurations. At fsim = 0.2, the FWE method substantially
overestimated f in both the WM and GM simulations; however,
resulting DT and µFA estimates were closer to the ground truth
than measurements produced by the conventional method. FWE
estimates of Kaniso were higher than estimates produced by the
conventional method across all fsim, while estimates of Kiso were

1 https://github.com/ANTsX/ANTs
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FIGURE 2

Relative error in diffusion MRI indices measured in synthetic white matter (WM) and gray matter (GM) voxels at various SNR levels and a free water
diffusivity of 3e− 3mm2/s. The x-axis depicts the simulated volume fraction (fsim), while the ground truth value for each metric is denoted as GT.
The red line with crosses indicates the mean measurements made using the conventional (Conv) method at SNR = 20, the black line with circles
depicts the FWE method at SNR = 20, the green line with inverted triangles depicts the FWE method at SNR = 10, and the blue line with triangles
depicts the FWE method at SNR = 40.

lower. The variance of parameter estimations over the 1,000
repetitions increased for decreasing fsim.

The relative errors of measurements made with the FWE and
conventional techniques using different free water diffusivities are
depicted in Figure 3. Note that for the conventional method, only
the 3e− 3mm2/s case is displayed because relative errors did not
differ considerably regardless of free water diffusivity. The FWE
µFA method again yielded more accurate mean measurements of
DT and µFA than the conventional method in both WM and GM
configurations for all free water diffusivity values and across all
volume fractions except fsim = 1. f was again overestimated at
fsim = 0.2, with the greatest relative error being observed in the
signal with a simulated free water diffusivity of 2.85e− 3mm2/s.
FWE estimates of Kaniso were again higher than estimates produced
by the conventional method across all fsim, while estimates of Kiso
were lower.

Monte Carlo simulations

The relative errors of measurements made with the FWE
and conventional techniques in the Monte Carlo simulations
are depicted in Figure 4. Across all fsim, the FWE method
underestimated f by approximately 3%. At fsim = 1,
measurements of DT and Kiso made using the FWE method
were underestimated by approximately 4.8 and 35%, respectively,
relative to measurements made using the conventional method,
while measurements of µFA and Kaniso were overestimated by
2.8 and 10.5%, respectively. Measurements made with the FWE
technique were consistent across all fsim, while the relative error in
all measurements made with the conventional technique increased
with decreasing fsim (except Kiso error, which appeared to peak
at a volume fraction in the range of 0.4 < fsim < 0.6). All
metrics measured with the FWE method were much closer to the
ground truth than those measured with the conventional method
at fsim < 1.

In vivo

Example slices of DT , Kaniso, Kiso, and µFA generated with
the FWE and conventional methods are depicted in Figure 5, as
well as a sample slice depicting voxels with f < 0.25. Zoom-ins
of a cortical region are depicted in Figure 6, where decreases in
Kiso and DT , and increases in µFA and Kaniso, are observed for
FWE relative to the conventional method throughout the cortex,
which agrees with expectations from the simulations. The ROIs are
depicted in T1-weighted images in Figure 7, as well as the mean and
standard deviations of relevant diffusion indices generated using
the two methods. Mean volume fractions in the WM, putamen,
hippocampus, thalamus, and fornix regions were 0.96, 0.96, 0.82,
0.82, and 0.64, respectively. Differences in DT and µFA between the
two methods were smallest in the WM and putamen ROIs. When
the FWE method was employed, DT was reduced by 6.4 and 7.5%
in the WM and putamen, respectively, compared to measures made
using the conventional method, while µFA was increased by 3.5 and
5.3%. Greater differences between methods were observed in the
deep GM regions: DT was reduced by 37.1% in the hippocampus
and 42.8% in the thalamus when FWE was used, while µFA was
increased by 22.0 and 16.8% in those regions. The most significant
differences between methods were observed in the fornix, in which
DT was reduced by 59.2% and µFA was increased by 30.5% when
FWE was applied. In all ROIs, mean Kaniso was reduced while mean
Kiso was increased when FWE was used.

Discussion

The FWE method presented herein allows for rapid
computation of free water-corrected µFA because it uses
alternating least squares estimations for f and the various diffusion
parameters, which are individually rapid. The total processing
time was < 1 min for each subject on a common personal desktop
computer. In this work, 100 iterations were performed for each
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FIGURE 3

Relative error in diffusion MRI indices measured in synthetic white matter (WM) and gray matter (GM) voxels with various free water diffusivities
(DCSF) and an SNR of 20. The x-axis depicts the simulated volume fraction (fsim), while the ground truth value for each metric is denoted as GT. The
red line with crosses indicates the mean measurements made using the conventional (Conv) method with DCSF = 3e− 3mm2/s, the black line with
circles depicts the FWE method with DCSF = 3e− 3mm2/s, the purple line with inverted triangles depicts the FWE method with
DCSF = 2.85e− 3mm2/s, and the teal line with triangles depicts the FWE method with DCSF = 3.15e− 3mm2/s.

FIGURE 4

Relative error in diffusion MRI indices measured using the conventional (Conv) and FWE methods on signals simulated using a Monte Carlo
technique. The geometry consisted of infinitely long cylinders with a 1 µm radius and 0.7 intra-tube fraction. The x-axis depicts the simulated
volume fraction (fsim), while the ground truth value for each metric is denoted as GT. The red line with crosses indicates the measurements made
using the conventional (Conv) method while the black line with circles indicates measurements made using the FWE method.

step, but computation time could be further reduced by setting
termination criteria for instances in which 100 iterations would
be excessive. One such example would be to use the estimate of f
from Part 1 to omit voxels with very high CSF contamination (e.g.,
f < 0.25) from Part 2.

In synthetic dMRI simulations, the FWE method produced
more accurate measurements of DT and µFA than the conventional
method across all volume fractions except fsim = 1. At fsim = 1, the
simulated signal vs. b-value curve has no free water component
and resembles the paK signal representation (equations 5 and 6),
so the two-compartment representation is redundant and falsely
detects a small free water compartment due to the added noise.
In simulations with no added noise (data not shown), the FWE
and conventional methods both correctly measure DT and µFA at
fsim = 1, though only the FWE method yields correct indices at
lower fsim.

The increase in Kaniso when the FWE method was employed
can be explained by the fact that Kaniso arises solely from the tissue
compartment. Kaniso describes the variance in the dMRI powder
average signal due to the eccentric shape of neuron fibers and other
compartments (Jones et al., 2013); for example, a dMRI acquisition

in the direction parallel to neuronal axons will yield a lower signal
than one perpendicular to the axons. By removing the isotropic free
water compartment, the effect of Kaniso on the remaining signal
component is amplified. The reduction in Kiso when the FWE
method was used can be attributed to the fact that Kiso describes
the variance in diffusivity across compartments; thus, removing
the free water compartment, which contains a significantly higher
mean diffusivity than neural tissue, attenuates this metric.

Comparisons between measurements made at different SNR
values revealed that the FWE technique is susceptible to noise, as
mean measurements accuracy decreased and standard deviation
across 1,000 voxels increased with decreasing SNR. Despite its
sensitivity to noise, the FWE technique still produced more
accurate mean measurements at the low SNR of 10 than the
conventional method did at any SNR level in regions with
reduced fsim. These results suggest that the effects of free water
partial volume contamination can be more deleterious to dMRI
measurements than noise at the SNR levels typically achieved
in vivo.

Synthetic dMRI simulations assessing the effects of deviations
in the assumed free water diffusivity revealed that measurements
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FIGURE 5

(A) Example slices of tissue diffusivity (DT), anisotropic kurtosis
(Kaniso), isotropic kurtosis (Kiso), microscopic fractional anisotropy
(µFA), and fluid volume fraction (1-f) measured in one of the healthy
volunteers. The images on the left were computed using the free
water elimination (FWE) method while those on the right were
computed using the conventional (Conv) method. Note that DT is
used interchangeably with D for the conventional method.
(B) Sample slice depicting a binary map showing voxels with tissue
volume fractions less than 0.25, which were omitted in
region-of-interest analyses.

made with the FWE technique are generally less accurate when
the diffusivity of free water is not exactly 3e− 3mm2/s. In real
tissue, deviations from the assumed temperature of 37◦C and biases
due to differences in T1 and T2 can alter the free water diffusivity
and affect the accuracy of the signal fitting algorithm (Pasternak
et al., 2009, 2014b). However, this limitation is shared by all multi-
compartment signal representations that use fixed estimates of free
water diffusivity and can only be overcome by determining the
value prior to the fitting or by attempting to solve for the free water
diffusivity in each voxel as an additional variable at the expense of

FIGURE 6

Example cerebral cortex images of tissue diffusivity (DT), anisotropic
kurtosis (Kaniso), isotropic kurtosis (Kiso), microscopic fractional
anisotropy (µFA), and tissue volume fraction (f) measured in one of
the healthy volunteers. The images on the left were computed
using the free water elimination (FWE) method while those on the
right were computed using the conventional (Conv) method. Note
that DT is used interchangeably with D for the conventional
method. The yellow arrow highlights a region in which a significant
difference is observed between the FWE and conventional µFA
measurements due to high free water contamination.

computation time and potential misestimation. Note that despite
this limitation, the FWE method still yielded more accurate mean
measurements than the conventional method at lower fsim.

In the Monte Carlo simulations, the FWE method
underestimated f by a relatively constant 3% for all simulated
tissue volume fractions. At fsim = 1, the water-containing
cylinders comprise of 70% of the simulated volume, but the extra-
tube water is restricted by their presence and likely contributes
to DT . This bias likely resulted from kurtosis arising from the
simulation geometry being partially misattributed to a free water
compartment. Nevertheless, the bias is small and consistent for
different volume fractions, which mitigates deleterious effects when
comparing different regions or subjects. Note that repeating the
Monte Carlo simulation with 60 directions at each b-value instead
of 15 did not reduce the bias in f , which suggests that an inadequate
number of directions in the powder average was not the cause.
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FIGURE 7

Comparison between the conventional (Conv) and free water elimination (FWE) methods in four healthy volunteers. Depicted on the left is a coronal
T1-weighted MPRAGE slice from one of the volunteers highlighting the five regions-of-interest (ROIs). Note that volumetric ROIs were used, despite
the single slice depiction. On the right are plots comparing the mean diffusivity (DT), microscopic fractional anisotropy (µFA), isotropic kurtosis (Kiso),
and anisotropic kurtosis (Kaniso) produced by the Conv and FWE methods. In all ROIs, DT and Kiso were reduced when FWE was applied, while µFA
and Kaniso were elevated, though the magnitude of this difference varied by region. Note that DT is used interchangeably with D for the conventional
method.

The FWE method also showed promising results when used to
measure DT and µFA in healthy volunteers as differences between
the two methods in the various ROIs agreed with expectations.
In all ROIs, DT was reduced and µFA was elevated when the
FWE method was used (Figure 7); these changes are intuitive as
removing an isotropic signal compartment with high diffusivity
from the overall signal, which also contains anisotropic signal
components from neurites and other eccentric compartments,
will raise the measured diffusion anisotropy and lower the mean
diffusivity. The results of the in vivo imaging analysis agreed with
the hypotheses that the effects would be smallest in the WM and
putamen regions and greatest in the free water-adjacent fornix
ROI (Figure 7). Furthermore, the f parameter allowed for the
removal of voxels with high CSF contamination from the ROI
analysis, improving mean measurements. However, one drawback
of the technique is that there are no ground truth measurements to
validate the measured indices against. Comparing measured tissue
volume fractions against known values from the literature can act
as a pseudo-validation of the FWE method, though it should be
noted that the measured f index represents the T2-weighted signal
fraction of the tissue compartment rather than the true volume
fraction. To convert f to the true volume fraction of tissue, fT , a
correction can be made as per the following equation (Veraart et al.,
2018):

f =
fTe−TE/T2Tissue

fTe−TE/T2Tissue +
(
1− fT

)
e−TE/T2CSF

(14)

Literature reports free water volume fractions of < 2% for WM
and 7–9% for GM with high standard deviations (Ernst et al., 1993;
Bender and Klose, 2009), which correspond to fT values of > 0.98
for WM and 0.91–0.93 for GM. Assuming T2CSF = 1,250 ms
(Piechnik et al., 2009), T2WM = 70 ms (Stanisz et al., 2005), and
T2Putamen = T2Hippocampus = T2Thalamus = 95 ms (Stanisz et al.,
2005; Bartlett et al., 2007) at 3T, the approximate mean fT values
for the WM, putamen, hippocampus, and thalamus regions were

0.99, 0.98, 0.92, and 0.92 in the healthy volunteers imaged in this
work. As expected, the volume fraction in the fornix was measured
to be much lower than the other ROIs (f = 0.64); no correction
was performed for this region because many voxels contained large
volumes of pure CSF, which violates the assumptions of equation
14. While previous studies have found evidence that brain tissue
volume fraction decreases with age due to increased interstitial
space (Chad et al., 2018), such effects are not expected to have
impacted the results of this work due to the young age of the
participant cohort.

There are several limitations potentially affecting this study.
Diffusion time discrepancies between the LTE and STE sequences,
and between the three gradient channels in the STE sequence,
were not taken into consideration in this work. Different diffusion
times in the LTE and STE acquisitions could lead to slight
differences between the respective powder average signals that
are misattributed to be differences between KLTE and KSTE, while
different diffusion times in the different gradient channels for the
STE acquisitions could give rise to orientational biases (Jespersen
et al., 2019). These potential biases are not expected to have had
a significant effect on the results of this work since both the FWE
method and conventional method were applied to the same data,
and any biases caused by time-dependent diffusion would affect
both approaches. However, future studies should consider using
optimized STE sequences to ensure that the diffusion time of the
STE and LTE sequences match and that there are no orientational
biases in the STE sequence.

Another limitation is that the time required for an acquisition
protocol to acquire powder average signals at 4 b-values in both LTE
and STE schema could be prohibitively long for some applications
(our in vivo scan required 9 min).

Both the conventional and FWE approaches used herein
assume that any deviation from mono-Gaussian diffusion in the
tissue arises exclusively from two distinct sources: Kaniso and
Kiso. However, restricted diffusion inside compartments, exchange
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between compartments, and microstructural disorder can also
contribute to the overall kurtosis and are often categorized
together in a term known as microscopic kurtosis (Kµ) (Jespersen
et al., 2019; Henriques et al., 2020). Though most µFA imaging
techniques do not consider Kµ, recent studies have found that it is
non-negligible in the human brain and that ignoring it can lead to
biases (Novello et al., 2022). Despite this limitation, µFA techniques
that do not distinguish Kµ from other kurtosis sources have shown
promising diagnostic and research capabilities and still represent a
significant advance over the widely used DTI metrics.

The images produced by the FWE method (Figures 5, 6) appear
grainier than those produced by the conventional method and
higher standard deviations were measured in all metrics when the
FWE method was used, both in simulations (Figures 2, 3) and
in vivo (Figure 7). This increased variance is expected due to the
increased complexity of the FWE-pAK representation relative to
the paK representation. Studies that use the FWE technique should
design MRI protocols that sample more b-shells to improve the
data fit and acquire more LTE and STE scans at each b-value
to raise the SNR of the powder average signals. A minimalistic
protocol, such as those described in the literature (Nilsson et al.,
2019; Arezza et al., 2021), may be insufficient for FWE imaging.
Also, regularization enforcing spatial smoothness, similar to that
applied in other applications of FWE, could likely help mitigate this
issue (Pasternak et al., 2009; Golub et al., 2020).

The conventional and FWE methods used in this work
both derive µFA and other metrics using orientationally-averaged
signals in the LTE scheme, which can introduce biases into
measurements due to the positively-skewed distribution of Rician
noise (Gudbjartsson and Patz, 1995; Aja-Fernandez and Vegas-
Sanchez-Ferrero, 2018) and due to non-uniform or insufficient
sampling of the diffusion sphere in the LTE regime (Afzali et al.,
2021). While measures were taken to denoise and preprocess
the in vivo dMRI data used in this work, some of the LTE
b-shells were minimalistic (e.g., only six directions were acquired at
1,400 s/mm2). The simple arithmetic averaging method used in this
work to compute powder average signals may be suboptimal given
the minimalistic LTE acquisition protocol used, and more advanced
algorithms to compute the powder average signal could potentially
reduce biases (Afzali et al., 2021).

In conclusion, the two-compartment µFA imaging technique
presented in this work represents an extension to a conventional
µFA imaging technique that integrates a free water compartment
to extract tissue-specific indices of D, Kaniso, Kiso, and µFA.
This approach requires only modest assumptions about the
content of the voxel and makes no assumptions about the tissue
microstructure–it could be described as a “macrostructural model.”
To solve the ill-conditioned fit of the data to equations (8)
and (9), a two-part algorithm was employed to first determine
initial guesses of key parameters and then to perform the joint
fit. Any dMRI protocol designed to estimate µFA via the FWE
method proposed in this work will be versatile due to the need
for multiple b-shells in both LTE and STE schema and can
also be fitted to the conventional µFA method and the DKI
signal representation; furthermore, if a significant number of LTE
directions are acquired at b = 1,000 s/mm2, the data can be
fitted to the widely adopted DTI signal representation as well.
Both simulation and real data experiments indicated that the FWE
method may be a feasible technique for measuring µFA and other

dMRI indices with greater specificity to neural tissue characteristics
by removing free water partial volume effects. It should also be
noted that other µFA approaches, such as the STE techniques that
use the gamma signal model, double diffusion encoding (DDE)
techniques, and techniques that exclusively derive the metrics from
LTE acquisitions, could likely also be modified to include a free
water compartment.
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