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cortex
Hui Wang*, Dayang Gong, Jean C. Augustinack and
Caroline Magnain*

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General
Hospital, Harvard Medical School, Charlestown, MA, United States

Introduction: The size and shape of neurons are important features indicating

aging and the pathology of neurodegenerative diseases. Despite the significant

advances of optical microscopy, quantitative analysis of the neuronal features

in the human brain remains largely incomplete. Traditional histology on thin

slices bears tremendous distortions in three-dimensional reconstruction, the

magnitude of which are often greater than the structure of interest. Recently

development of tissue clearing techniques enable the whole brain to be analyzed

in small animals; however, the application in the human remains challenging.

Methods: In this study, we present a label-free quantitative optical coherence

microscopy (OCM) technique to obtain the morphological parameters of neurons

in human entorhinal cortex (EC). OCM uses the intrinsic back-scattering property

of tissue to identify individual neurons in 3D. The area, length, width, and

orientation of individual neurons are quantified and compared between layer II

and III in EC.

Results: The high-resolution mapping of neuron size, shape, and orientation

shows significant differences between layer II and III neurons in EC. The results

are validated by standard Nissl staining of the same samples.

Discussion: The quantitative OCM technique in our study offers a new

solution to analyze variety of neurons and their organizations in the

human brain, which opens new insights in advancing our understanding of

neurodegenerative diseases.

KEYWORDS

quantitative morphology, optical coherence tomography (OCT), neuron, cell shape, cell
size, human brain, neurodegeneration

1. Introduction

The 80–100 billion neurons in the human brain are assembled into cytoarchitectonic
regions with distinctive type, size, density, and spatial distribution patterns (Amunts and
Zilles, 2015; Ding et al., 2016). Despite over 100 years of advancement in optical microscopy,
our knowledge about neuronal features in the human remains largely incomplete.
Traditional histology remains by far the most common approach to identify neurons in
the human brain and provides ground truth for neuroanatomy and neuropathology. For
example, quantitative stereology of neuron counting in sparsely sampled postmortem tissues
serves the gold standard to assess the neuron loss in multiple neurodegenerative disorders
such as Parkinson’s and Alzheimer’s diseases (Gómez-Isla et al., 1996, 1997; Simiæ et al., 1997;
Damier et al., 1999; von Gunten et al., 2006; Dijkstra et al., 2014; Astillero-Lopez et al., 2022).
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Morphological analysis of neurons on histological slices has
also been reported in aging and Alzheimer’s diseases (Stark
et al., 2005; Artacho-Pérula and Insausti, 2007; Iacono et al.,
2009; Nassif et al., 2022). Recent efforts from the impactful
BigBrain project significantly advances histology in brainwide
analysis (Amunts et al., 2013). The study sectioned and stained
a whole human brain by 7,404 histological slices to identify the
cytoarchitecture and myeloarchitecture and enabled remarkable
quantitative analysis in subsequential studies (Amunts et al.,
2016; Paquola et al., 2020, 2021; Schiffer et al., 2021). One
unsolved challenge in traditional histology is that substantial
distortions of the thin slices cause irreducible errors in volumetric
reconstruction that are often greater than the structure of interest.
The development of various tissue clearing methods provides
a tempting solution to promote volumetric optical imaging in
fluorescence labeled tissue samples, which supports molecular
probing and cell typing in the brain (Murray et al., 2015;
Swaney et al., 2019; Yun et al., 2019; Ueda et al., 2020; Kim
et al., 2021). Despite the success of whole brain imaging in
small animals, the application of clearing in thick sections of
postmortem human tissues remains challenging due to the high
myelin density.

Optical coherence tomography (OCT) is an emerging
technique that uses intrinsic optical properties of tissues to
image the neuronal architecture and myelinated fiber tracts in
the human brain (Magnain et al., 2014; Wang et al., 2017, 2021;
Yang et al., 2020). OCT is based on an optical interferometry to
generate depth-resolved features as well as 3D reconstructions of
tissue microstructures. As a variation of OCT, OCM provides an
ultrahigh resolution up to 1 µm that allows single neurons and
axonal fibers to be visualized, and detailed pathological features
to be identified in diseased brain samples (Dubois et al., 2004;
Binding et al., 2011; Assayag et al., 2013). Our prior study has
shown that OCM at 1.25 µm resolution enabled identification
of neurons in human entorhinal cortex (EC) and Brodmann’s
areas 21 and 32 which was validated by standard histology of
Nissl stains (Magnain et al., 2015, 2019). One advantage of
OCT/OCM is the block-face imaging that allows physical slicing
to be conducted after imaging the surface of the sample block and
hence removes the distortion during volumetric reconstruction. By
integrating a vibratome into the OCT/OCM system and adopting
a serial sectioning strategy, cubic centimeters of postmortem
human tissues have been reconstructed and analyzed across
various brain structures by OCT (Wang et al., 2014, 2018;
Jones et al., 2020; Liu et al., 2021). In addition, the same slices
can be used for further validation and assessment by standard
histology.

In this study, we advance the quantitative OCM technique
by enabling a morphological analysis of single neurons in
human entorhinal cortex. Based on the segmented neuronal
maps, we extracted the morphological parameters representing
neuron size and shape and created high-resolution maps
of neuron morphology in EC. We assessed the inter-layer
differences in multiple samples and compared the results
against standard histology of Nissl stains. Our quantitative
analysis tool provides a new solution for characterizing the
cytoarchitecture in the human brain cortex and may have great
potentials in assessing the pathological severity and stage in
neurodegenerative diseases.

2. Materials and methods

2.1. Tissue samples

Three human brains were obtained from the Massachusetts
General Hospital Autopsy Suite. The demographics were as follows:
mean age 50 ± 11 y.o., 2F/1M, postmortem interval less than
24 h, and all were neurologically normal. Each brain was immersed
in 10% formalin for at least 2 months until thoroughly fixed.
A subregion within the EC of each brain was then blocked in
approximately 3 mm2

× 5 mm2 of en-face area. The samples were
then embedded in melted oxidized agarose and covalent cross-
linking between tissue and agarose was activated using borohydride
borate solution (Ragan et al., 2012).

2.2. OCM acquisition

We used a spectral domain optical coherence microscopy
(OCM) to image the tissue samples. The details of the system
was described in previous work (Srinivasan et al., 2012). Briefly,
the broadband light source is a superluminescent diode (LS2000B
SLD, Thorlabs Inc., Newton, New Jersey) with a center wavelength
of 1,310 nm and an axial resolution of 3.5 µm in tissue. The
spectrometer consisted of a 1,024-pixel InGaAs line scan camera
(Thorlabs Inc.), providing a depth of field of 1.5 mm in tissue.
A 40× water immersion objective (Olympus LUMPLANFL/IR
40 W, NA 0.8) was used in the sample arm, yielding a lateral
resolution of 1.25 µm. Each OCM volume consisting of 1,024
A-lines × 1,024 B-lines was acquired over a field of view (FOV)
of 400 µm × 400 µm, giving a X and Y pixel size of 0.39 µm.
We imaged cortical layers I-III in each EC sample, spanning an
average area of 2 mm × 3 mm. To cover the large area of sample, the
tissue was imaged in tiles with approximately 30% overlap. The 40×

objective provides an empirical depth of focus of 10 µm in tissue.
We imaged the sample at 5 focus depths, starting at 5 µm under the
surface and going deep with a 10 µm interval in between as shown
in the schematics of Figure 1. After volumetric reconstruction,
maximum intensity projection (MIP) over the 10 µm depth was
performed at each focus depth to represent an optical section of
a 10-µm slice (Figures 1A–E) and the overlay of all depth can
be seen on Figure 2 (top left). A vibratome (TissueCyte 1,000,
TissueVision) was used to section a 50 µm slice after the imaging
over the 50-µm depth was complete. The sectioned slices were used
for histological staining. We acquired and analyzed 2–3 slices for
each sample.

2.3. Histology

The agarose from the sections was removed by heating
phosphate buffer above 50◦C. The sections were then mounted
onto glass slides and stained for Nissl substance, revealing mainly
neuronal and glial cells. The stained slices were digitized with
a camera mounted on an 80i Nikon Microscope (Microvideo
Instruments, Avon, Massachusetts) with a 20× magnification and a
pixel size of 0.37 µm. We used the image series workflow in Stereo
Investigator software (MBF Bioscience, Burlington, Vermont) to
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FIGURE 1

Images obtained at five different focus depths (A–E). Dashed lines of the framed inset represent the different focus. The MIP was performed over the
10 µm around the focus (dashed regions of the inset). Adapted from Magnain et al. (2015).

FIGURE 2

Overlay of the OCM obtained at the five different depths and Nissl stain images of a representative slice of entorhinal cortex, with corresponding
neuron and cortical layer segmentation. The blue neurons are excluded from the analysis as detailed in Section “2.6. Morphological analysis”.

automatically mosaic the entire slice, and stitched the tiles with a
Fiji plug-in (Preibisch et al., 2009). The top right panel of Figure 2
showed a Nissl-stained section of EC covering layers I–III. We
found that layer II exhibits large neurons in island formation in our
samples, confirming the location of our blocking in EC.

2.4. Image segmentation

We segmented the neurons on the stitched OCM images at
each individual depth and Nissl images (Figure 2, top) using an
adaptive thresholding provided in the OpenCV library (Bradski,

2000) as described in more details in Magnain et al. (2015), followed
by a manual editing (Figure 2, bottom). The manual editing
added missing neurons and removed non-neuronal features such
as glia cells and vessels. Since OCM images were contaminated
by speckle noise, we first reduced the noise on the MIP images
at the five depths of each slice using a non-orthogonal wavelet
algorithm optimized on a region of the image containing mainly
noise (Gargesha et al., 2008). Neuron segmentation was conducted
on individual focus depth of the OCM images, resulting in 5
segmentation images for each physical slice, which are represented
by the 5 different copper colors in Figure 2 (bottom left). The
five segmentation images were used separately for morphological
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analysis in the following sections. In addition, they were also
overlaid to generate a stacked OCM segmentation, referred to as
OCM5, with a thickness corresponding to the 50-µm Nissl slice.
The purpose of the stacked OCM images was to compare the
analysis with traditional Nissl stains. Finally, we segmented the
cortical layers for each slice based on the cellular architecture on
both the OCM and Nissl images. The black lines of Figure 2
(bottom) show the boundaries between layers I and II, and layers
II and III.

2.5. Image registration between OCM
and Nissl

To assess the colocalization of the neurons between the
Nissl and OCT images, we registered the two modalities into a
common coordinate space. As histological slices bear inevitable
distortions during tissue processing, a non-linear registration
procedure was required. Corresponding landmarks on Nissl
and OCM5 images were manually selected, and a non-linear
transformation between the landmark points was computed based
on a thin-plate spline deformation model (Bookstein, 1989) using
an ITK library (National Library of Medicine Insight Segmentation
and Registration Toolkit) (Yoo et al., 2002). The computed
transformation was applied to the Nissl images, and the warped
Nissl images were resampled into the OCM coordinates. The
performance of the registration tool has been thoroughly tested in
Magnain et al. (2015).

2.6. Morphological analysis

The morphological analysis was performed on the segmented
images at a single neuron level. First, morphological profiles
of neurons were extracted using the regionprops function in
Matlab Image Processing Toolbox (R2020b). Each neuron was
fitted by an ellipse that used the normalized second central
moments of the neuron. The output of the fitting provided
five important morphological parameters that were used in the
following analysis, including (1) centroid, the neuron’s center of
mass coordinate, (2) majorAxisLength, the length of the major
axis of the ellipse representing the length of the neuron, (3)
minorAxisLength, the length of the minor axis of the ellipse
representing the width of the neuron, (4) area, the number of
pixels in a segmented neuron, and (5) orientation, the angle of
the major axis with respect to the horizontal axis. After the
morphological extraction, the neurons were further grouped into
specific cortical layers, depending on the location of their centroids
in a layer mask.

As the slice thickness is greater than most of the neuron size,
the neurons on the digitized Nissl slices might overlap, resulting
in an underestimation of the number of neurons, overestimation
of their size (area, length, and width) and wrong estimation of
the orientation. In contrast, there are fewer segmented neurons
overlapping on OCM of individual focus depth. Some neurons
might also be cut during the sectioning and only partially
stained or imaged by OCM, which lead to underestimation of
their size. Therefore, prior to any further analysis, each case

underwent a filtering process using the neuron area data at
the individual OCM depth. Among the segmented neurons in
Nissl and OCM, if their area is not within 5–95th percentile of
the neuron area distribution from overall OCM datasets, these
segmented components are likely outliers and are filtered out.
Example of excluded neurons can be seen in blue in Figure 2
(bottom).

We averaged the morphological parameter of individual
neurons in a neighborhood window and slide the window over
the slice to generate the neuronal morphological maps. Pixels
holding a morphological metric of the neuron (the centroid) was
sampled in the window. The inclusion criterion was determined
by the centroid of the neuron: if a neuron’s centroid was inside
the window, its morphological profile was included. We tested
different window sizes for averaging, including 25 µm ×25 µm,
50 µm × 50 µm, and 100 µm × 100 µm, and used
100 µm × 100µm as the optimal window size in the results.
The step size of sliding was set to be 50% of the window size.
Four neuronal morphological maps were generated for each slice,
including neuron area, neuron length, neuron width, and neuron
orientation.

To examine the directional arrangement of the neurons, we
obtained the mean neuronal orientation and orientation dispersion
maps from the distribution of the morphological parameter
“orientation,” defined previously, of the neurons within a local
neighborhood. A 250 µmm × 250 µmm sliding window with
50% overlap was used. The window size was increased compared
to the above morphological maps to obtain an accurate mean
orientation and enable a clearer visualization of the spatial patterns.
The orientation is an angle ranging from 0 to 180 degree.
We combined them into 18 bins of 10-degree interval. Due
to the circular nature of the orientation, the mean neuronal
orientation was calculated using the circular statistics toolbox
developed by Berens (2009) for Matlab, which is based on
computed the weighted sum (due to the binned angle) of the cos
and sin of the angles. The orientation dispersion was calculated
by the full width at half maximum of the binned orientation
distribution.

2.7. Statistical analysis

Comparison of neuronal morphological parameters were
conducted between cortical layers in EC. To examine the inter-
laminar difference, the metrics of neuron area, length, and width
were compared between layer II and III by performing a Kruskal–
Wallis test over individual slices as well as an unpaired t-test group
average across all the slices. We also examined the difference of
neuron orientations between layer II and III, by two metrics–mean
orientation and orientation dispersion.

To validate the OCM derived neuron morphology, we
compared the results against those obtained from the Nissl stain.
As each Nissl slice (50-µm thick) includes five OCM imaging at
different focus depths, we first stacked the corresponding OCM
sections of five focus depths and named it OCM5. We then obtained
the mean morphological parameters of each slice on OCM5 and
Nissl images using method in Section “2.6. Morphological analysis”
and conducted a paired-sample t-test between the two modalities.
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FIGURE 3

OCM en-face morphological maps in a representative entorhinal cortical slice.

3. Results

We performed morphological analysis on OCM images for a
total of 7 slices obtained from the 3 samples. The Results section
first demonstrated the morphological maps of a representative slice,
and then showed quantitative comparisons between cortical layers
in EC. To validate the results from novel OCM, we performed
the same morphological analysis on Nissl images as well for
corresponding slices. We compared the morphological metrics
between OCM and Nissl images.

3.1. En-face morphological maps

We obtained locally averaged morphological maps on OCM
images. Figure 2 showed the 2D map of neuron area, length,
and width in one representative slice, using an averaging window
of 100 µm×100 µm. All the morphological maps highlight the
typical island organization in layer II. The majority of segmented
neurons in EC presents a pyramidal shape that is anisotropic. The
length of the cells is about 2 times greater than the width. The
mean length of the neurons in layer II is comparable to layer III,
whereas the mean width is bigger in layer II. The mean neuron
area is higher in the cell islands of layer II than in layer III. We
also presented the morphological maps with smaller and larger
averaging windows (50 µmm × 50 µmm, 25 µmm × 25 µmm and
200 µmm ×200 µmm) in Supplementary Figure 1, which showed
similar features as in Figure 3 albeit less obvious to capture due to
high noise. The morphological maps of all slices can be found in
Supplementary Figure 2.

Figure 4 shows the 2D map of the mean orientation and
orientation dispersion for the same representative slice as in
Figure 3. The Nissl (top row) and the OCM (bottom row) images
are in great agreement. Although the mean orientation of the
neurons is similar between layer II and III, neuronal orientation
shows much higher dispersion in layer II than in layer III where
the neurons get more aligned deeper into the cortex (i.e., layer III).
The orientation and dispersion maps of all slices can be found in
Supplementary Figures 3, 4 for OCM and Nissl, respectively.

3.2. Comparison of neuronal
morphology between cortical layers in
EC

We closely examined OCM derived morphological features of
individual neurons in layer II and III. Tables 1, 2 summarized

FIGURE 4

The mean orientation and orientation dispersion of neurons in EC.
Top row: Nissl, bottom row: OCM. The mean orientation value is
color coded by the color wheel. The unit of the orientation
dispersion is degree.

TABLE 1 Neuron morphological parameters (area, length and width)
obtained from OCM for each slice with respect to the layer.

Morphological Parameters

Area Length Width

Layers µm2 µm µm

Layer II

Case 1 Slice 1 207.7 ± 75.9 21.5 ± 6.1 13.0 ± 2.7

Case 1 Slice 2 243.5 ± 77.1 23.0 ± 5.8 14.1± 2.6

Case 2 Slice 1 453.9 ± 148.1 33.4 ± 9.1 18.7 ± 3.7

Case 2 Slice 2 384.0 ± 167.1 31.7 ± 9.8 16.5 ± 4.2

Case 3 Slice 1 489.8 ± 115.7 34.6 ± 6.9 19.4 ± 3.1

Case 3 Slice 2 370.0 ± 121.5 28.5 ± 6.9 17.7 ± 3.4

Case 3 Slice 3 269.3 ± 91.3 23.9 ± 5.7 15.2 ± 3.0

Layer III

Case 1 Slice 1 170.9 ± 56.8 19.9 ± 5.2 11.7 ± 2.3

Case 1 Slice 2 189.8 ± 65.7 20.2 ± 5.3 12.5 ± 2.4

Case 2 Slice 1 439.4 ± 128.8 35.0 ± 9.4 17.8 ± 3.0

Case 2 Slice 2 353.6 ± 160.8 33.3 ± 11.7 14.9 ± 3.6

Case 3 Slice 1 460.6 ± 118.7 34.9 ± 7.4 18.2 ± 2.9

Case 3 Slice 2 329.4 ± 108.0 27.0 ± 6.3 16.6 ± 3.2

Case 3 Slice 3 258.9 ± 83.0 23.6 ± 5.4 14.9 ± 2.7

these features obtained from OCM and Nissl, respectively, for
each slice with respect to the layer. We compared the parameters
of neuron area, length, and width between the two layers in
each of the seven slices. A Kruskal–Wallis test showed significant
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TABLE 2 Neuron morphological parameters (area, length and width)
obtained from Nissl for each slice with respect to the layer.

Morphological Parameters

Area Length Width

Layers µm2 µm µm

Layer II

Case 1 Slice 1 241.9 ± 81.1 24.5 ± 6.5 13.6 ± 2.9

Case 1 Slice 2 270.4 ± 87.8 25.6 ± 6.5 14.4 ± 2.9

Case 2 Slice 1 383.7 ± 125.0 32.4 ± 7.7 16.5 ± 3.6

Case 2 Slice 2 373.9 ± 175.6 31.6 ± 10.9 16.4 ± 4.9

Case 3 Slice 1 452.9 ± 132.4 34.3 ± 8.7 18.7 ± 4.2

Case 3 Slice 2 369.8 ± 127.1 29.6 ± 7.1 16.8 ± 4.0

Case 3 Slice 3 304.0 ± 110.6 25.0 ± 6.2 15.9 ± 3.5

Layer III

Case 1 Slice 1 204.7 ± 64.0 23.7 ± 6.3 12.4 ± 2.5

Case 1 Slice 2 218.9 ± 69.3 24.6 ± 6.8 12.7 ± 2.5

Case 2 Slice 1 319.4 ± 116.8 32.9 ± 10.1 14.0 ± 3.0

Case 2 Slice 2 340.1 ± 142.4 34.1 ± 12.2 14.4 ± 3.7

Case 3 Slice 1 379.3 ± 114.2 33.6 ± 8.4 15.9 ± 3.1

Case 3 Slice 2 297.4 ± 102.2 28.8 ± 8.6 14.1 ± 2.6

Case 3 Slice 3 267.8 ± 73.6 26.0 ± 6.2 13.9 ± 2.2

differences of neuron area and width in all of the 7 slices (Figure 5,
bottom). Layer II exhibited consistently larger area and width. The
length difference between the layers was less prominent. Statistical
tests of morphological analysis in Nissl images showed similar
results, which validated the findings in OCM images (Figure 5,
top). We further conducted a group analysis, comparing the mean
morphological parameters between layer II and III neurons in the 7
slices using a paired t-test. The OCM morphological analysis found
that the neuron area (p< 0.005, N = 7) and width (p< 0.001, N = 7)
are significantly greater in layer II of entorhinal cortex than those
of layer III, which was supported by the same analysis in the Nissl
stains (p < 0.001 and p < 0.001, N = 7).

3.3. Comparison between OCM and Nissl
stain

We compared the morphological parameters derived by OCM5
(stack of five 10-µm OCM images) against those extracted by Nissl
stains. Box plot in Figure 6 showed the mean parameters of area,
length, and width obtained by individual slices. Paired-sample t-test
(N = 7) revealed that the mean morphological parameters were
not significantly different in most of the measurements between
OCM5 and Nissl, including the area (p = 0.36), the length (p = 0.62),
and the width (p = 0.18) of layer 2, and the area (p = 0.12) and
the length (p = 0.49) of layer 3. The only parameter that showed
a significant difference was the width (p = 0.03) of layer 3. The
discrepancy between OCM5 and Nissl on neuronal morphological
quantification mainly reflects a systematic difference between the
two methods as detailed in the discussion.

Tables 3, 4 summarized the morphological parameters (area,
length and width) across the seven slices with respect to the layer
obtained for OCM and Nissl, respectively.

4. Discussion

The recent development of OCT and OCM in human brain
imaging has shown great promise in studying the cytoarchitecture,
myeloarchitecture, as well as individual neurons and fiber
tracts in normal and diseased brains. Our previous study has
established an ultrahigh resolution OCM method in identifying
and segmenting individual neurons in human entorhinal cortex
(Magnain et al., 2015), an important brain region that is affected
in early pathological development of neurodegeneration such as
Alzheimer’s disease. In this study, we advanced the quantitative
OCM technique by enabling a morphological analysis of individual
neurons in human entorhinal cortex, which was validated against
the traditional histological method of Nissl staining. OCM
morphological analysis enabled characterizations of neuron size,
shape, as well as their orientation. Those morphological parameters
be visualized as high-resolution maps to examine the spatial
distribution pattern, local heterogeneity, and abnormality in the
cortex. In addition, the pixel-wise morphological parameters can
be grouped by specific cortical layers and therefore support a
quantitative comparison among the layers.

We found that among the morphological parameters
characterizing neuronal size and shape images, width and
area are two sensitive metrics to distinguish layer II and III of EC
on OCM images, whereas length of neuron showed less variance
across the different layers. Previous histological studies have well
characterized the anisotropic shape of pyramidal neurons and
discovered that the pyramidal neurons appearing island-clustering
patterns in layer II of EC are larger than those of layer III (Beall and
Lewis, 1992; Insausti et al., 1995; Krimer et al., 1997; Bernstein et al.,
1998). Our quantitative morphological parameters based on OCM
images showed agreement with the earlier findings, and further
revealed that the neuronal width is the most important factor
differentiating the pyramidal neurons across the cortical layers in
EC. The Kruskal–Wallis tests revealed a significant difference in
all of the imaged slices across the 3 samples. OCM morphology
showed a slight shorter neuron length in layer II compared to III,
which may be explained by the type of neurons found in each layer.
Layer II is composed of both pyramidal cells (more anisotopic) and
stellate cells (rounder) whereas layer III only contains pyramidal
cells. The results in this study indicate that OCM morphological
parameters may be useful to assess the pathological conditions
of neurodegeneration in neurological diseases (Vereecken et al.,
1994; Bundgaard et al., 2001; Zarow et al., 2005). Although the
current study focuses on the methodology development and uses a
small number of samples, with an increased sample size, a future
direction is to quantify the morphological alterations to better
understand the impact and the functional implications of these
diseases.

Neuron orientation, represented by the angle of the major axis
obtained from an elliptical fit of a neuron, is another interesting
parameter quantifying layer specific characteristic. We found that
the orientation of neurons is more coherent in layer III of EC
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FIGURE 5

Kruskal–Wallis test comparing the neuron morphological parameters (area, length and width) between layers (blue: layer II, red: layer III) for each of
the 7 slices. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6

Paired-sample t-test comparing OCM5 and Nissl on mean morphological parameters across all the slices (N = 7). ∗p < 0.05.

TABLE 3 Morphological parameters (area, length and width) obtained
for OCM across the seven slices with respect to the layer.

Morphological Parameters

Area Length Width

µm2 µm µm

Layers

Layer II 345.5 ± 107.9 28.1 ± 5.3 16.4 ± 2.4

Layer III 314.7 ± 114.0 27.7 ± 6.7 15.2 ± 2.5

compared to layer II, although the mean orientation of those two
layers is close with each other. The early work of Cajal followed
by Lorente de Nó have described the mixture of layer II neurons

TABLE 4 Morphological parameters (area, length and width) obtained
for Nissl across the seven slices with respect to the layer.

Morphological Parameters

Area Length Width

µm2 µm µm

Layers

Layer II 342.4 ± 73.5 29.0 ± 4.0 16.0 ± 1.7

Layer III 289.7 ± 63.5 29.1 ± 4.4 13.9 ± 1.2

in EC, which are organized into clusters, and the layer II neurons
lack the typical orientation observed in isocortex. Solodkin and
Van Hoesen described an atypical modular organization in layer
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FIGURE 7

Outlier rates found in Nissl, OCM, and OCM5 segmentations.

II of EC, in which cell islands present themselves in a mosaic-
like structure surrounded by myelinated fibers (Solodkin and Van
Hoesen, 1996). The great divergence of neuron orientation we
found in this study appears to be another feature of the atypical
module in layer II of EC. In contrast, EC layer III resembles
the more typical arrangement that the neurons are aligned in a
consistent direction. It is also noted that the mixed neuron types in
EC layer II may contribute to the great orientation dispersion due
to their shape variation. While the pyramidal neurons are elongated
with a primary axis, the stellate, fan, and spiny neurons lack a
distinctive orientation (Tahvildari and Alonso, 2005; Reifenstein
et al., 2016; Donato et al., 2017).

Integrating serial sectioning after OCM imaging of the tissue
block-face allows the same slices to be stained and validated by
standard histology. Our morphological analysis on corresponding
Nissl images consolidated the same features as revealed by OCM
that the width and area of neurons in layer II of EC were greater
than those in layer III and the distribution of neuron orientation
held greater divergence in layer II. One advantage of analyzing
neuronal morphology on OCM images with a 10-µm depth range
instead of integrating the 50-µm thickness of whole slice is that
it minimizes the likelihood of mistakenly treating two or more
overlapping neurons as one big neuron. Since most of the neurons
were much smaller than 50 µm, overlapping neurons were more
likely to occur by projecting over 50-µm thickness, which could not
be separated by the current segmentation method. To demonstrate
the merit of using smaller depth integration, we calculated the
outlier rate of the morphological values in OCM images of 10-
µm depth range, OCM5 images integrating 5 focus depths, and
Nissl images, based on the Matlab function (isoutlier). We found a
significantly smaller outlier rate while comparing individual OCM
images against OCM5 or Nissl images (Figure 7). OCM5 and Nissl
images had greater number of outlier values toward the higher end
of the distribution.

It is worth noticing that the current study bears a few
limitations that request further technical advancement and future
investigations. Despite the similar patterns of neuronal morphology
revealed by both OCM and Nissl images, discrepancies of
quantification were found at the individual level between the
two methods. The main observation is the higher variance

of the morphological parameters acquired with OCM. Several
factors could contribute to this observation. OCM images were
contaminated by high-contrast speckle noise that could undermine
neuronal identification and the boundary of segmentation
(Magnain et al., 2016). Although we applied denoising algorithm
to improve the contrast-to-noise-ratio of the OCM images,
segmentation errors could remain and need to be carefully
evaluated. In addition, OCM relying on intrinsic tissue scattering
not only visualizes neurons but also abundant structures in the
surrounding medium such as vessels and fibers in the cortex. As
a result, manual editing after the automatic segmentation was
required. It is still possible that those non-neuronal components
interfere with the neuron segmentation. Future studies employing
advanced denoising and segmentation tools such as deep learning
based methods may improve the accuracy of the morphological
analysis in OCM images (Devalla et al., 2019, 2020; Pekala et al.,
2019; Chen et al., 2020; Stefan and Lee, 2020; Guo et al., 2021;
Maloca et al., 2021; Mehdizadeh et al., 2021). We also acknowledge
that OCM images of 10-µm depth range may identify some of
the neurons partially, leading to an underestimation of neuron
size. Therefore, we excluded the very small segmentations in the
study. Future analysis based on 3D reconstruction of neurons,
which takes the advantage of volumetric OCM imaging is desired.
On the other hand, Nissl stain images suffer from bias caused
during histological processes, such as the dye load, as well as
variations during digitization. For example, there could be a
segmentation bias of pyramidal cell on Nissl where defining the
boundary between the soma and the axon may be challenging
depending on the staining, both for the automation segmentation
and the manual editing. As Nissl-stained slice bears substantial
distortions, imperfect registration between OCM and Nissl images
could be another factor resulting in mismatched neurons and hence
unagreed morphological results.

Despite the above-mentioned challenges, the morphological
study enabled by OCM techniques has opened new insights
in quantitative characterization of the cytoarchitecture and
detailed neuron typing across different regions of human brains.
The quantitative assessment from a single neuron level to
an extent covering centimeters of cortical areas provide great
potentials in pathological detection, evaluation, and staging for
neurodegenerative diseases.
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