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Objective: We explored whether radiomics features extracted from diffusion-

weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images can

predict the clinical outcome of patients with acute ischaemic stroke. This study was

conducted to investigate and validate a radiomics nomogram for predicting acute

ischaemic stroke prognosis.

Methods: A total of 257 patients with acute ischaemic stroke from three clinical

centres were retrospectively assessed from February 2019 to July 2022. According

to the modified Rankin scale (mRS) at 3 months, the patients were divided into

a favourable outcome group (mRS of 0–2) and an unfavourable outcome group

(mRS of 3−6). The high-throughput features from the regions of interest (ROIs)

within the radiologist-drawn contour by AK software were extracted. We used two

feature selection methods, minimum redundancy and maximum (mRMR) and the

least absolute shrinkage and selection operator algorithm (LASSO), to select the

features. Three radiomics models (DWI, FLAIR, and DWI-FLAIR) were established.

A radiomics nomogram with patient characteristics and radiomics signature was built

using a multivariate logistic regression model. The performance of the nomogram

was evaluated in the test and validation sets. Ultimately, decision curve analysis was

implemented to assess the clinical value of the nomogram.

Results: The FLAIR, DWI, and DWI-FLAIR radiomics model exhibited good

prediction performance, with area under the curve (AUCs) of 0.922 (95% CI:

0.876−0.968), 0.875 (95% CI: 0.815−0.935), and 0.895 (95% CI: 0.840−0.950). The

radiomics nomogram with clinical characteristics including the overall cerebral

small vessel disease (CSVD) burden score, hemorrhagic transformation (HT) and

admission National Institutes of Health Stroke Scale score (NIHSS) score and

the FLAIR Radscore presented good discriminatory potential in the training set

(AUC = 0.94; 95% CI: 0.90−0.98) and test set (AUC = 0.94; 95% CI: 0.87−1),

which was validated in the validation set 1 (AUC = 0.95; 95% CI: 0.88−1) and
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validation set 2 (AUC = 0.90; 95% CI: 0.768−1). In addition, it demonstrated

good calibration, and decision curve analysis confirmed the clinical value

of this nomogram.

Conclusion: This non-invasive clinical-FLIAR radiomics nomogram shows good

performance in predicting ischaemic stroke prognosis after thrombolysis.
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acute ischaemic stroke, diffusion-weighted imaging, outcome, radiomics, nomogram

1. Introduction

Stroke is the second leading cause of death and disability
worldwide and the leading cause of death in China (GBD 2019
Stroke Collaborators., 2021). Ischaemic stroke (IS) accounts for
60−80% of all strokes and places a great burden on society
due to its high mortality and disability rate (Cao et al., 2021).
Recombinant tissue plasminogen activator alteplase (RT-PA) is the
most effective drug for the treatment of acute ischaemic stroke.
Although the majority of patients experience remission within
the next 24 to 72 h, a significant number of patients continue
to have dysfunction after thrombolytic therapy. Acute ischaemic
stroke has a certain probability of hemorrhagic transformation
(HT). Patients receiving intravenous thrombolytic therapy have an
increased risk of hemorrhagic transformation, which may reduce or
offset the benefit of thrombolytic therapy. Therefore, it is necessary
to evaluate the basic clinical data of patients after they enter the
emergency department to ensure the safety and effectiveness of
intravenous thrombolysis. Cerebral small vessel disease (CSVD)
refers to a series of pathological, imaging and clinical syndromes
caused by various causes of cerebral arterioles, arterioles, venules,
and capillaries (Wardlaw et al., 2013). In China, AIS caused by
CSVD accounts for 25−50% (Huang, 2015). Most CSVD patients
have an insidious onset and varied clinical manifestations. The
presence and severity of symptoms depend on the location, degree
and number of lesions. MRI findings can be used as a means to
identify CSVD, mainly including residual small subcortical infarct
(RSSI), cerebral microbleeds (CMB), white matter hyperintensities
(WMH), perivascular spaces (PVS) and brain atrophy. This study
retrospectively included the general clinical data and MRI findings
of CSVD in patients with acute cerebral infarction undergoing
intravenous thrombolysis who were followed up for 90 days. The
purpose of this study was to analyse the correlation between the
overall CSVD burden and the long-term prognosis of acute ischaemic
stroke patients undergoing intravenous thrombolysis. Radiomics
is a novel developed data analysis technique that can transform
medical images into high-throughput quantitative features, assess
the heterogeneity of diseased tissue, and reflect the physiological
and pathological status and has been applied to the prediction of
clinical outcomes. At present, radiomics has a promising application
prospect in stroke, including the diagnosis of stroke (Peter et al.,
2017),early prediction of clinical outcome (Wen et al., 2020) and
evaluation of medium and long term prognosis (Tang et al., 2020;
Quan et al., 2021; Wang et al., 2021; Zhou et al., 2022). Wen
et al. (2020) developed a model based on radiological features
extracted from computed tomography non-contrast computed

tomography (NCCT) and computed tomography angiography (CTA)
to predict the development of malignant acute middle cerebral Artery
Infarction (mMCAi) in patients with cerebral infarction. Several
recent studies have shown that the clinical-radiomics model extracted
from diffusion-weighted imaging (DWI), fluid attenuated inversion
recovery (FLAIR) or apparent diffusion coefficient (ADC) achieved
satisfactory performance in predicting AIS outcomes (Tang et al.,
2020; Quan et al., 2021; Wang et al., 2021; Zhou et al., 2022).
Most patients with ischaemic stroke receive only routine sequences,
including DWI, ADC and FLAIR. DWI can accurately describe the
tissue spread and reflect the microstructure of the lesions, and the
FLAIR sequence has a higher resolution and can provide more useful
information. However, ADC represents the mean value of infarcts.
Currently, no studies to date have combined radiomics and the CSVD
burden score to predict the prognosis of AIS patients. Therefore, the
purpose of this study was to explore the predictive value of DWI
and FLAIR-based radiomics combined with the CSVD burden score
in ischaemic stroke and to create a method that can be used in the
management strategy of ischaemic stroke. Finally, an independent
external validation set was used to validate the performance of the
radiomics nomogram.

2. Subjects and methods

2.1. Subjects

A total of 257 patients from three clinical centres with acute
infarction diagnosed by DWI after thrombolysis from February
2019 to July 2022 were retrospectively enrolled. Then, 166 patients
from our hospital with a Siemens MR scanner were assigned to
the training and test sets, and 41 patients from our hospital with
a Philips MR scanner were assigned to the external validation set1
and 50 patients from other two clinical centres were assigned to
external validation set 2. Distribution diagram of enrolled subjects
in training set, test set, and external validation sets was showed in
Figure 1. The inclusion criteria were as follows: (1) the time interval
from onset to MR examination was ≤72 h; and (2) the patient
had no old cerebral infarction and could live independently before
the infarction. The exclusion criteria were as follows: (1) previous
intracerebral haemorrhage, brain trauma, previous neurological
disease, and severe artefacts on DWI or FLAIR images. (2) Lacunar
cerebral infarct (≤ 10 mm). (3) Acute infarction of the posterior
circulation. This study was a retrospective study and was approved
by the ethics committee of our hospital. The requirement for
informed consent was waived. Authors confirm that all methods
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FIGURE 1

Distribution diagram of enrolled subjects in training set, test set and external validation sets.

FIGURE 2

Workflow of radiomics analysis of the experiment.

were carried out in accordance with institutional guidelines and
regulations.

2.2. Methods

2.2.1. DWI and FLAIR examination
A total of 166 acute ischaemic stroke patients underwent

MRI examination with a 3.0T MR scanner (Siemens, Verio,

Germany). The MRI protocol included axial FLAIR and DWI.
The imaging protocol parameters were as follows: FLAIR [TR
9000 ms, TE 100 ms, inversion time (TI) 2500 ms], visual field
(FOV) 220 × 220, matrix 256 × 256, DWI (TR 6700 ms,
TE 100 ms), FOV 220 × 220, matrix 192 × 192, B value
1000 s/mm2. Forty-one patients underwent MRI examination with
a 3.0T MR scanner (Philips, Ingenia 3.0cx, Netherlands). The
MRI protocol included the imaging protocol parameters were as
follows: FLAIR (TR 9000 ms, TE 137 ms, TI 2500 ms), visual
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TABLE 1 Patient features in the training sets and test sets.

Variable The training sets The test sets

Level The favourable
outcome group

(n = 73)

The unfavourable
outcome group

(n = 45)

P-value The favourable
outcome group

(n = 30)

The unfavourable
outcome group

(n = 18)

P-value

The overall CSVD
burden score

0 5 (6.8) 0 (0) 0.068 3 (10) 0 (0)

1 31 (42.5) 12 (26.7) 10 (33.3) 3 (16.7)

2 28 (38.4) 23 (51.1) 13 (43.3) 9 (50)

3 9 (12.3) 9 (20.0) 4 (13.3) 5 (27.8)

4 0 (0.0) 1 (2.2) 0 (0) 1 (5.6) 0.200

HT No 67 (91.8) 27 (60.0) <1e−04 27 (90) 13 (72.2)

Yes 6 (8.2) 18 (40.0) 3 (10) 5 (27.8) 0.230

Sex Female 27 (37.0) 13 (28.9) 14 (46.7) 8 (44.4)

Male 46 (63.0) 32 (71.1) 0.482 16 (53.3) 10 (55.6) 1.00

Hypertension No 21 (28.8) 14 (31.1) 0.787 6 (20) 5 (27.8) 0.535

Yes 52 (71.2) 31 (68.9) 24 (80) 13 (72.2)

Diabetes No 56 (76.7) 35 (77.8) 0.894 23 (76.7) 13 (16.2) 0.731

Yes 17 (23.3) 10 (22.2) 7 (23.3) 5 (83.8)

Hyperlipemia No 62 (84.9) 41 (91.1) 0.487 28 (93.3) 17 (94.4) 1.000

Yes 11 (15.1) 4 (8.9) 2 (6.7) 1 (5.6)

Coronary heart disease No 67 (91.8) 41 (91.1) 1.000 27 (90) 17 (94.4) 1.000

Yes 6 (8.2) 4 (8.9) 3 (10) 1 (5.6)

Atrial fibrillation No 56 (76.7) 31 (68.9) 0.348 26 (86.7) 11 (61.1) 0.092

Yes 17 (23.3) 14 (31.1) 4 (13.3) 7 (38.9)

Smoking No 59 (80.8) 36 (80) 0.913 24 (80) 15 (83.3) 1.000

Yes 14 (19.2) 9 (20) 6 (20) 3 (16.7)

Drink No 68 (89) 42 (93.3) 1.000 30 (100) 17 (94.4) 0.375

Yes 5 (11) 3 (6.7) 0 (0) 1 (5.6)

Age, mean (SD) 64.6 (12.6) 66.1 (11.3) 0.529 66.7 (13) 67.5 (14.5) 0.843

DP, mean (SD) 148 (21.6) 147.2 (15.4) 0.847 150 (20.2) 155.1 (19.2) 0.391

SP, mean (SD) 85.2 (13.4) 87 (11.1) 0.431 84 (13.4) 87.4 (12.7) 0.382

Admission NIHSS, mean
(SD)

8.1 (3.7) 15.8 (6) <1e−04 8.2 (3.4) 17.3 (6.4) <1e-04

Radscore, median (IQR) −1.6 (−3.0, −0.7) 0.5 (−0.1, 1.7) <1e−04
−1.9 (−2.6, −0.8) −0.7 (−3.0, 2.0) <1e−04

DP, diastolic blood pressure; SP, systolic pressure; IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; HT, hemorrhagic transformation.

field (FOV) 230 × 186 × 125, matrix 328 × 174 × 21, DWI
(TR 2585 ms, TE 81 ms), FOV 220 × 220 × 125, matrix
136 × 110 × 21, B value 1000 s/mm2. Thirty-six patients
underwent MRI examination with a 3.0T MR scanner (Philips,
Achieva Tx3.0, Netherlands). The imaging protocol parameters
were as follows: FLAIR (TR 11000 ms, TE 125 ms, TI 2800 ms),
visual field (FOV) 210 × 210 × 118, matrix 140 × 109, DWI
(TR 2245 ms, TE 90 ms), FOV 220 × 220 × 125, matrix
136 × 110 × 21, B value 1000 s/mm2. Fourteen patients
underwent MRI examination with a 3.0T MR scanner (Philips,
Ingenia 3.0cx, Netherlands). The MRI protocol included FLAIR
axial, DWI axial scans. The imaging protocol parameters were
as follows: FLAIR (TR 9000 ms, TE 120 ms, TI 2600 ms),
visual field (FOV) 230 × 230, matrix 356 × 151, DWI (TR

2501 ms, TE 98 ms), FOV 230 × 230, matrix 152 × 122, B value
1000 s/mm2.

2.2.2. Clinical data
The demographic and clinical data included sex, age, systolic

blood pressure (SP), diastolic blood pressure (DP), MRI CSVD
burden score, HT, baseline NIHSS score on admission and mRS score
at 90 days. The MRI CSVD burden score was performed according
to the scale established by Staals, with a total score of 0–4, and the
brain damage caused by CSVD was greater if the score was higher
(Staals et al., 2014). One point was recorded for each of the following:
(1) any lacune; (2) periventricular WMHs (Fazekas score 2 or 3); (3)
any CMB; and (4) moderate to severe (grade 2–4) PVS in the basal
ganglia. We calculated an overall CSVD burden score ranging from
0 to 4 with the above 4 imaging markers, and all the scores were
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TABLE 2 Population characteristics of patients with AIS in the training and test sets.

Variable Level Training (n = 118) Test (n = 48) P-value

The overall CSVD burden score 0 5 (4.2) 3 (6.2) 0.752

1 43 (36.4) 13 (27.1)

2 51 (43.2) 22 (45.8)

3 18 (15.3) 9 (18.8)

4 1 (0.8) 1 (2.1)

HT No 94 (79.7) 40 (83.3) 0.744

Yes 24 (20.3) 8 (16.7)

Sex Female 40 (33.9) 22 (45.8)

Male 78 (66.1) 26 (54.2) 0.206

Hypertension No 35 (29.7) 11 (22.9) 0.379

Yes 83 (70.3) 37 (77.1)

Diabetes No 91 (77.1) 36 (75) 0.770

Yes 27 (22.9) 12 (25)

Hyperlipemia No 103 (87.2) 45 (93.8) 0.348

Yes 15 (12.8) 3 (6.2)

Coronary heart disease No 108 (91.5) 44 (91.7) 1.000

Yes 10 (8.5) 4 (8.3)

Atrial fibrillation No 87 (73.7) 37 (77.1) 0.652

Yes 31 (26.3) 11 (22.9)

Smoking No 95 (80.5) 39 (81.2) 0.913

Yes 23 (19.5) 9 (18.8)

Drink No 110 (93.2) 47 (97.9) 0.405

Yes 8 (6.8) 1 (2.1)

Age, mean (SD) 65.2 (12.1) 67 (13.4) 0.393

DP, mean (SD) 147.7 (19.4) 151.9 (19.8) 0.203

SP, mean (SD) 85.9 (12.6) 85.2 (13.1) 0.772

Admission NIHSS, mean (SD) 11 (6) 11.6 (6.4) 0.592

Radscore, median (IQR) −0.7 (−2.2, 0.4) −0.9 (−2.2, 0.3) 0.842

DP, diastolic blood pressure; SP, systolic pressure; IQR: interquartile range; NIHSS, National Institutes of Health Stroke Scale; HT, hemorrhagic transformation.

assessed by 2 experienced neuroradiologists. The Fazekas scale was
used to evaluate the sum of perivascular WMHs and deep WMHs,
and the score ranged from 0 to 6. The PVS score was selected from
the basal ganglia and central semioval region, and a 4-point scale was
used to grade the severity of PVS (Wenli et al., 2021).

2.2.3. Image segmentation and data analysis
2.2.3.1. ROI segmentation and high-throughput feature
extraction

Two experienced radiologists (Dr. A, Dr. B) manually segmented
lesions on DWI using ITK-SNAP1 software and then duplicated
the region of interest (ROI) on DWI to the corresponding FLAIR
sequence. Fifty patients were randomly selected and segmented by
doctors with 5 years and 10 years of experience in neuroimaging
diagnosis. The doctors with 5 years of experience segmented the data
twice with an interval of 2 weeks between segmentations. A physician
with 10 years of experience segmented the data once. The correlation

1 www.itksnap.org

coefficient (ICC) was used to test the intraobserver and intergroup
ROI consistency (ICC > 0.75 indicates good agreement). High-
throughput features were extracted according to the ROI of each case,
including first-order features, shape features, and texture features.

2.2.3.2. Establishment and evaluation of the models

In this study, a feature variable dataset was composed of 166
cases segmented by physicians with 5 years of experience, and the
dataset was randomly divided into a training set and a test set at
a ratio of 6:4. The data of the training set were used for feature
screening and constructing the prediction model, and the data of
the test set were used to verify the effect of the model internally.
The area under the curve (AUC), sensitivity, specificity and accuracy
of the receiver operating characteristic (ROC) curve were used to
evaluate the validity and reliability of the prediction model for acute
ischaemic stroke after thrombolysis. Features with good repeatability
and stability were used to establish the Radscore. The Radscore was
calculated by linear fusion of selected features. The calibration curve
was used to evaluate the prediction effect of the model. The decision
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FIGURE 3

Feature coefficients (A) and radiomics scores (B).

TABLE 3 The clinical model of multivariate regression results.

Variable OR CI.95 P-value

The overall CSVD burden
score

1.96 (0.99; 3.86) 0.053

Admission NIHSS 1.37 (1.21; 1.56) <1e−04

HT 2.87 (0.77; 10.72) 0.118

curve was used to evaluate the potential clinical net benefit of the
prediction model.

2.2.4. Statistical methods
SPSS 20.0 was used for statistical analysis, the independent

sample t test was used for the ages of patients in the two groups,
and the χ2 test was used for sex distribution differences. A P
value < 0.05 was considered as a statistically significant difference.

All statistical analyses were performed with R software, version 3.4.0.
The “DescTools” package was used for ICC calculation, and the
“Caret” package was used for data grouping, Spearman correlation
analysis and calibration analysis. The “glmnet” package was used
for LASSO regression analysis and to construct the Radscore. The
“pROC” package was used to plot ROC curves and calculate the
characteristics and sensitivity of the models.

3. Results

3.1. General patient information

The study flowchart included image segmentation, feature
extraction, model establishment, and nomogram (Figure 2). A total
of 166 patients from our hospital with acute ischaemic stroke were

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1063391
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1063391 February 16, 2023 Time: 13:59 # 7

Xu et al. 10.3389/fnins.2023.1063391

TABLE 4 The nomogrammodel of multivariate regression results.

Variable OR CI.95 P-value

The overall CSVD burden
score

2.70 (1.11; 6.60) 0.029

Admission NIHSS 1.23 (1.05; 1.44) 0.008

HT 2.24 (0.45; 11.01) 0.322

Radscore 3.13 (1.73; 5.67) 0.000

divided into two groups. The favourable outcome group comprised
103 cases (62 males and 41 females) and 63 cases (42 males and
21 females) in the unfavourable outcome group. The clinical data
(the overall CSVD burden score, HT, age, sex, SP, DP, admission
NIHSS score) and imaging characteristics of the training set and the
test set were analysed by the chi-square test, and logistic regression
analysis was performed with P < 0.1 as the inclusion criterion.
In the training set, the overall CSVD burden score, HT, admission
NIHSS score and Radscore were statistically significant (Table 1),
while in the test set, the NIHSS score and Radscore were significantly
different (P< 0.1), and there was no significant difference in outcome
distribution between the two sets (Table 2).

3.2. Extraction and selection of radiomic
features and establishment of radiomic
signatures

The intraobserver and interobserver ICC values were 0.89 and
0.81, respectively, suggesting good consistency. The segmentation
dataset of all images for subsequent feature extraction and screening
and the model establishment was composed of the data after the first
segmentation by the doctor with 5 years of experience. The AUC
value of the FLAIR radiomics model in evaluating the prognosis of
thrombolysis in acute ischaemic stroke was 0.922 (95% CI: 0.876–
0.968), which was higher than that of the DWI radiomics model

(AUC = 0.875, 95% CI: 0.815–0.935) and DWI-FLAIR radiomics
model (AUC = 0.895, 95% CI: 0.840–0.950), although there was
no significant difference between the three models. Based on the
FLAIR radiomics model, we first performed mRMR to remove
redundant and irrelevant features and retained 30 features and then
performed LASSO dimensionality reduction processing to finally
screen 11 features with non-zero coefficients, including 1 shape
feature and 10 texture features. The parameters and coefficients of
each feature are shown in Figure 3A. Subsequently, the radiomics
label radiomics score (RAD-score) (Figure 3B) was established
to reflect the distribution of the good prognosis group and poor
prognosis group in the training group and the test group.

Figure 3A shows the feature parameters of the FLAIR radiomics
model. Figure 3B shows the Radscore of the FLAIR radiomics
model for the training group and test group. The blue bar below
baseline 0 indicates patients with poor prognosis prediction, while
the yellow bar above baseline 0 indicates patients with good prognosis
prediction. The cross part represents the model prediction error, and
the overall prediction effect is good.

3.3. Development of the radiomics
nomogram

Multivariate logistic regression analysis showed that the overall
CSVD burden score (OR = 1.96, 95% CI: 0.99∼3.86), HT (OR = 1.37,
95% CI: 1.21∼1.56) and NIHSS score (OR = 2.87, 95% CI:
0.77∼10.72) were independent predictors of prognosis in patients
with acute ischaemic stroke after thrombolysis (Table 3). Finally,
the overall CSVD burden score (OR = 2.7, 95% CI: 1.11∼6.60),
HT (OR = 2.24, 95% CI: 0.45∼11.01), NIHSS score (OR = 1.23,
95% CI: 1.05∼1.44) and Radscore (OR = 3.13, 95% CI: 1.73∼5.67)
were selected in the training set to create a radiomics nomogram
(Table 4 and Figure 4). The prognosis of the training and test
sets after thrombolytic therapy for predicting AIS was evaluated
by calibration curves (Figure 5). Hosmer-Lemeshow test showed

FIGURE 4

Radiomics nomogram for predicting the clinical functional outcome of ischaemic stroke.
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FIGURE 5

Calibration curves of the three groups of models in the training set (A), test set (B), validation set 1 (C), and validation set 2 (D).

FIGURE 6

Decision curves.

good calibration in the training data set (P = 0.17) and the test
set (P = 0.62), indicating high accuracy of the prediction model.
Decision curves (Figure 6) were used to evaluate the clinical

utility of the combined clinical-radiomics prediction model. DCA
demonstrated that if the threshold probability was greater than
0.4 in clinical decision making, the nomogram is superior to the
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TABLE 5 The prediction results of the three models in the training and test sets.

Model Accuracy Accuracy
lower

Accuracy upper Sensitivity Specificity Pos. pred. value Neg. pred. value

FLAIR radiomics
(Train)

0.822 0.741 0.886 0.933 0.753 0.700 0.948

FLAIR radiomics
(Test)

0.792 0.650 0.895 0.833 0.767 0.682 0.885

Clinics (Train) 0.847 0.770 0.907 0.733 0.918 0.846 0.848

Clinics (Test) 0.854 0.722 0.939 0.722 0.933 0.867 0.848

Nomogram (Train) 0.839 0.760 0.900 0.889 0.808 0.741 0.922

Nomogram (Test) 0.854 0.722 0.939 0.789 0.897 0.833 0.867

FIGURE 7

Receiver operating characteristic (ROC) curves of the three models in predicting the clinical functional outcomes of ischaemic stroke in the training set
(A), test set (B), validation set 1 (C), and validation set 2 (D).

FLAIR radiomics and the clinical model. The sensitivity, specificity,
accuracy, negative predictive value and positive predictive value of
FLAIR radiomics, clinical features and clinical-FLAIR radiomics in
predicting the prognosis of acute ischaemic stroke after thrombolytic
therapy in the training set and the test set are shown in Table 5.
ROC curves were used to evaluate the efficacy of the three models
(clinical, radiomics, and clinical-radiomics models) in predicting the
prognosis of AIS after thrombolysis in the training set and the test set.
Among them, the clinical-radiomics model (radiomics nomogram)
had the highest prediction efficacy, and the AUCs of the training

set and the test set were 0.94 (95% CI: 0.90–0.98) and 0.94 (95%
CI: 0.87–1), respectively, which was validated in the independent
validation set1 (AUC = 0.95; 95% CI 0.88–1) and validation set 2
(AUC = 0.90; 95% CI 0.768–1) (Figure 7). DeLong test was used
to compare the nomogram ROC curve with clinical model in both
training set (Z = 2.4278, P = 0.01519) and test set (Z = 1.4023,
P = 0.1608).

The overall CSVD burden score, Admission NIHSS, HT and
Radscore are vertically corresponding to the “points” in the first row.
Finally, these “points” are added together to obtain the “total points”
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in the last row as the poor prognosis risk score, and the probability of
poor prognosis of each stroke patient can be obtained.

Figures 5A–D shows the calibration curves of the three groups of
models in the training set, test set and validation set 1 and validation
set 2, reflecting the potential clinical net benefits of the models.
The horizontal axis shows the nomogram predicting the prognosis
of acute ischaemic stroke, and the vertical axis shows the actual
prognosis of acute ischaemic stroke. The prediction efficacy is better
if the solid line is closer to the grey line.

In Figure 6 decision curves show the decision curves of the
three groups of models in the training set, reflecting the prediction
efficiency of the models. The horizontal axis represents the threshold
probability, the vertical axis represents the net benefit, and the solid
lines represent the benefit curves of the models. DCA demonstrated
that if the threshold probability was greater than 0.4 in clinical
decision making, the nomogram is superior to the FLAIR radiomics
and the clinical model.

Figures 7A–D shows the ROC curves of FLAIR radiomics, the
clinical model, and the nomogram in the training set, test set, and
validation set 1 and validation set 2, reflecting the comprehensive
comparison of sensitivity and specificity among the three models. The
AUC values of the test group were 0.89, 0.89, and 0.94, respectively.

4. Discussion

Stroke is a serious threat to human health worldwide. Early
diagnosis and prognosis assessment are crucial for the management
of AIS. The prognosis of acute ischaemic stroke is different due to
differences in cerebrovascular reserve, collateral circulation and risk
factors (Yang et al., 2013). DWI shows lesions within a short time
(a few hours) after onset (Chalela et al., 2007), which represents
the core of ischaemic stroke. Many studies have shown that the
volume of stroke is correlated with clinical functional outcome (Jiang
et al., 2020). In addition, the boundary between the core area and
the penumbra is clear, which is easy to identify and delineate, and
the consistency is good. FLAIR images have high resolution, long
scanning time, and relatively more image information. Quan G
et al. showed that radiomics features extracted from FLAIR and
ADC can be used as biomarkers for predicting adverse clinical
outcomes of AIS and can also improve the predictive performance
when added to the combined model (Quan et al., 2021). The overall
CSVD burden score is independently related to the severity of
neurological deficits and the clinical outcome of AIS. Liu et al.
(2019) showed that the overall CVSD burden score is a reliable
predictor of poor prognosis of AIS after IV RT-PA treatment. In
this study, ROIs were collected three times for each patient, and
the correlation coefficient (ICC) was used to test the consistency
of ROIs within and between observer groups, which ensured the
reproducibility of extracted radiomics features. Radiomics has been
used to evaluate the prognosis and treatment of ischaemic stroke
(Wang et al., 2020). In this study, 201 patients with acute ischaemic
stroke were enrolled to explore the value of radiomics based on
DWI and FLAIR combined with the overall CSVD burden score in
predicting the prognosis of ischaemic stroke and to create a method
that can be used in the management strategy of ischaemic stroke. Our
study showed that the AUC value of the FLAIR model in estimating
clinical outcomes of acute ischaemic stroke after thrombolysis was
0.922, 95% CI: 0.876–0.968, which was higher than that of the

DWI model (AUC = 0.875, 95% CI: 0.815–0.935) and DWI-FLAIR
model (AUC = 0.895, 95% CI: 0.840–0.950). Tanriverdi et al. (2016)
found that the increase in FLAIR hyperintensity in ischaemic tissue
indicated a good prognosis of patients after intravenous thrombolytic
therapy. Tang et al. (2020) showed that radiomics features could be
used as prognostic biomarkers based on penumbral quantification
and developed a radiomics nomogram to predict the prognosis
of thrombolysis in patients with AIS, the AUC of the radiomics
nomogram predicting favourable clinical outcome reached 0.886
(95% CI 0.809–0.963) on day 7 and 0.777 (95% CI 0.666–0.888) at
3 months. However, their model was constructed from the radiomic
features extracted from PWI and DWI. In clinical practice, most
patients with ischaemic stroke receive only routine test sequences.
Wang et al. (2021) developed a clinical radiomics nomogram
based on DWI, which showed good performance in predicting the
prognosis of ischaemic stroke in the training cohort [AUC = 0.80;
95% confidence interval (CI) 0.75–0.86], which was validated in the
validation cohort (AUC = 0.73; 95% CI 0.63–0.82). However, their
study only included DWI sequences and studied all AIS patients,
while we only collected patients who could receive thrombolytic
therapy. Our model fitted well and the AUC value of FLAIR model
was higher than that of DWI and DWI-FLAIR model, although
there were no significant differences between the three models. We
finally select FLAIR model to establish Normogram to solve the
clinical problem, because radiomics is more dependent on image
resolution and heterogeneity, and FLAIR sequence resolution shows
more information than DWI sequence. However, the combination of
DWI and the FLAIR radiomics model did not improve the evaluation
performance, which may be caused by the mutual interference of the
extracted radiomics features.

In this study, a total of 11 features related to the prognosis
of ischaemic stroke after thrombolysis were screened by a FLAIR
radiomics model, including 1 shape feature and 10 texture features.
The small area low grey level emphasis (SALGLE), zone variance
(ZV), large area high grey level emphasis (LAHGLE), large area
emphasis (LAE), size zone non-uniformity (SZN), small dependence
low grey level emphasis (SDLGLE) and so on are of great significance
for the prognosis of patients with acute ischaemic stroke. SALGLE
measures the proportion of small and dark areas of the image.
LAHGLE measures the proportion of areas with brighter and larger
dimensions. ZV is the change in the measured volume. LAE measures
the distribution of large focal areas, and if the value is larger, the
texture is coarser. SZN measures changes in the volume of the size
region in the image. SDLGLE measures the strong correlation with
the dispersion of the darker parts of the image. Among the 11
features, SALGLE and LAHGLE had the greatest relative weights. All
of these features reflect the heterogeneity of infarcts and if the value
is higher and the prognosis of stroke is poor.

The poor prognosis of stroke patients is related to many
factors, such as age, blood pressure, previous neurological disorder,
admission NIHSS score, collateral circulation, white matter
hyperintensity, cerebral microbleeds and so on. This study showed
that the overall CSVD burden score, HT, and admission NIHSS
score were associated with ischaemic stroke prognosis. CSVD is a
chronic disease of the whole brain, and the imaging findings are
often more severe than the clinical manifestations. CSVD imaging
markers include lacunes, WMHs, CMBs, and PVSs, which often
coexist. Overall, these imaging markers may reflect an overall status
of the distal small artery or arteriole bed, and a moderate-to-severe
overall CSVD burden may represent an overall more vulnerable
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cerebral microcirculation (Arba et al., 2016). Therefore, the overall
CSVD burden score may be more suitable for evaluating the overall
effect of CSVD on the brain. The benefits and risks of intravenous
thrombolysis in patients with CSVD should be individually evaluated
to reduce the incidence of cerebral haemorrhage and poor prognosis
after thrombolysis in ischaemic stroke. Tian et al. (2022) showed
that the status of CSVD and infarction number predicted recurrent
stroke in patients with acute minor stroke and TIA. Chen et al.
(2020) believe that CSVD is associated with more disability and
bleeding events, may represent different vascular lesions, and plays
different roles in the outcome of stroke. Studies have shown that
the overall CVSD score is a reliable predictor of adverse AIS
outcome after IV RT-PA treatment, and CSVD is associated with
endothelial dysfunction and blood−brain barrier leakage, which
may lead to a larger stroke volume and a worse prognosis after
intravenous thrombolytic therapy after stroke (Arba et al., 2019).
As a common imaging marker of CSVD, WMHs can affect the
prognosis of stroke through various mechanisms. In the hyperacute
phase of ischaemic stroke, WMH may affect the infarct volume
and is related to the increase in infarct area, thus affecting the
prognosis (Helenius et al., 2017). The clinical outcome of AIS
after thrombolysis is related not only to vascular recanalisation
and collateral circulation but also to the increase in vascular
bed resistance and the decrease in cerebral blood flow regulation
function after cerebral small vessel disease. In the acute phase
of IS, this regulatory dysfunction leads to further reduction of
cerebral perfusion and collateral circulation dysfunction, resulting
in the expansion of ischaemic penumbra and increased risk of
poor prognosis. Lacunes account for approximately a quarter of
the total number of ischaemic strokes. The overall CSVD burden
score in this study can correct the limitations of individual imaging
biomarkers, and the radiomics nomogram can predict the risk of
poor outcome after RT-PA treatment, especially in patients with
two or more severe CSVD imaging markers, and more accurately
predict the outcome of intravenous thrombolysis in ischaemic
stroke. Our study show the radiomics nomogram presented good
discriminatory potential in the training set (AUC = 0.94; 95%
CI: 0.90–0.98) and test set (AUC = 0.94; 95% CI: 0.87–1), which
was validated in the validation set 1 (AUC = 0.95; 95% CI
0.88–1) and validation set 2 (AUC = 0.90; 95% CI 0.768–1).
DeLong test was used to compare the nomogram ROC curve with
clinical model in both training set (Z = 2.4278, P = 0.01519) and
test set (Z = 1.4023, P = 0.1608), and the difference was not
statistically significant in the test set. However, it demonstrated
good calibration, and decision curve analysis confirmed the clinical
value of this nomogram. DCA demonstrated that if the threshold
probability was greater than 0.4 in clinical decision making, the
nomogram is superior to the FLAIR radiomics and the clinical
model.

There were also some limitations in this study. Firstly, the sample
size is relatively small, which may lead to overfitting. So, our study
also used patient data with different MRI scanners and other two
clinical centres as two external validation sets, and the repeatability
and consistency were good. Secondly, this study is a retrospective
study, therefore our results obtained from the consecutive AIS
patients to reduce the choice of selection bias. Finally, patients with
lacunar infarction and posterior circulation stroke were excluded
from our study. Lacunar infarction has a small lesion and a slight
neurological defect, and the prognosis is generally good. Posterior
circulation stroke accounts for about 20% of ischaemic stroke,

and is generally more serious than anterior circulation stroke,
with higher disability rate and mortality. In order to ensure strict
grouping and no bias in the radiomics results, lacunar infarction and
posterior circulation infarction were excluded from this experiment.
At present, we are following up the patients with posterior circulation
infarction, and we plan to further study them with radiomics.

In conclusion, this study shows that the FLAIR radiomics model
have a similar performance with the DWI radiomics model and
DWI-FLAIR radiomics model. Clinical combination with the FLAIR
radiomics nomogram shows good performance in predicting the
prognosis of ischaemic stroke after thrombolysis, this could help
clinicians plan rehabilitation for stroke patients.
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