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Cocaine’s addictive properties stem from its capacity to increase tonic extracellular

dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is

a principal source of NAc dopamine. To investigate how high frequency stimulation

(HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute

effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic

square wave voltammetry (M-CSWV) was used. VTA HFS alone decreased NAcc

tonic dopamine levels by 42%. NAcc HFS alone resulted in an initial decrease in

tonic dopamine levels followed by a return to baseline. VTA or NAcc HFS following

cocaine administration prevented the cocaine-induced increase in NAcc tonic

dopamine. The present results suggest a possible underlying mechanism of NAc

deep brain stimulation (DBS) in the treatment of substance use disorders (SUDs) and

the possibility of treating SUD by abolishing dopamine release elicited by cocaine

and other drugs of abuse by DBS in VTA, although further studies with chronic

addiction models are required to confirm that. Furthermore, we demonstrated the

use of M-CSWV can reliably measure tonic dopamine levels in vivo with both drug

administration and DBS with minimal artifacts.

KEYWORDS

substance use disorder, deep brain stimulation, nucleus accumbens, ventral tegmental area,
cocaine, tonic dopamine

1. Introduction

Despite the increasing interest and resources devoted to addiction research, there has
been little improvement in the clinical care and prevalence of substance use disorder (SUD)
(Substance Abuse and Mental Health Services Administration [SAMHSA], 2020). In the USA
alone, management and treatment of SUD costs the healthcare, welfare, and justice systems
hundreds of billion dollars annually (United States Department of Health and Human Services
[USDHHS], 2016; Peacock et al., 2018). Despite the development of a variety of behavioral and
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pharmacological therapeutic options, most SUDs patients do not get
treatment, response rates are low, and relapse rates as high as 75–98%
have been reported (Brandon et al., 2007; Saloner and Karthikeyan,
2015). To better manage these “treatment-refractory” patients, it is
important to further our understanding in the pathophysiology of
SUD. One such approach is to study the neurochemical dynamics
in the central nervous system associated with drug administration,
which has the potential to identify treatment targets.

Dopamine is an important neurotransmitter for neuropsychiatric
diseases such as SUD, obsessive compulsive disorder, and Tourette’s
syndrome (Denys et al., 2004; Oliva and Wanat, 2016; Maia and
Conceicao, 2018). Therefore, controlling the release of dopamine
via neuromodulation, as has been done for neurological diseases
such as Parkinson’s disease, is potentially an effective strategy for
the treatment of these pathologies. Indeed, previous attempts have
been made to stimulate targets within the mesolimbic dopaminergic
pathway as a means to rectify dysfunctional dopamine dynamics
(Holtzheimer and Mayberg, 2011).

The ventral tegmental area (VTA) and substantia nigra pars
compacta are major producers of dopamine in the mesolimbic
dopaminergic pathway (Bjorklund and Dunnett, 2007). A major
VTA projection target is the nucleus accumbens (NAc), which
has been implicated in mediating important cognitive functions,
such as reward and learning (see Figure 1A; Salgado and Kaplitt,
2015). In addition, over- and under-release of dopamine in the NAc
are important pathophysiological conditions of neuropsychiatric
diseases, such as SUD (Di Chiara, 2002). The NAc is one of the most
studied deep brain stimulation (DBS) targets to modulate dopamine
release in SUD in both preclinical models and human trials (Liu et al.,
2008; Knapp et al., 2009; Henderson et al., 2010; Guo et al., 2013;
Vassoler et al., 2013; Hamilton et al., 2015; Müller et al., 2016; Batra
et al., 2017; Chen et al., 2019; Sildatke et al., 2020).

Nevertheless, the dimensions and resolution of contemporary
in vivo measuring methods such as the use of microdialysis have
limited the continuous measurement of dopamine as a useful
biomarker for interventive therapy, until recently (Watson et al.,
2006; Gu et al., 2015). Despite having the ability to unequivocally
distinguish between different types of analytes, microdialysis probes
have a relatively large dimension (∼200 µm in diameter) and the
temporal resolution is of the order of ≥ 1 min (Morelli et al., 1992;
Di Chiara et al., 1993; Blaha et al., 1996; Chefer et al., 2009; Oh et al.,
2018; Rusheen et al., 2020). In addition, microdialysis measurements
cannot be made in situ, requiring drawing samples from the brain for
subsequent laboratory identification. The trauma caused by the probe
size and the relatively low temporal resolution means this method is
likely to be inadequate to detect the rapid changes in dopamine levels
involved in psychopathologies in the neural structures of interest
(Blaha et al., 1996; Bungay et al., 2003; Borland et al., 2005). The
requirement to extract brain dialysate samples makes microdialysis
unsuitable as a technique for human therapy.

We recently reported a new technique known as multiple-
cyclic square wave voltammetry (M-CSWV). This method is able
to measure tonic extracellular dopamine levels with unprecedented
temporal resolution (10 s) and minimal trauma to the neural
tissue when used in combination with carbon fiber microelectrodes
(CFM) (Oh et al., 2018). This technique uses dynamic background
subtraction and capacitive background current modeling to eliminate
large capacitive background currents generated by the applied
voltammetric waveform. This allows tonic dopamine concentrations

to be measured every 10 s, something not possible with conventional
fast-scan cyclic voltammetry (FSCV). Our group has previously
demonstrated that M-CSWV is able to record changes in tonic
dopamine levels in response to cocaine administration (Yuen et al.,
2021a).

NAc DBS has shown promising results for the treatment of SUD
(Liu et al., 2008; Knapp et al., 2009; Henderson et al., 2010; Guo
et al., 2013; Ma et al., 2013; Batra et al., 2017; Schippers et al., 2017;
Yuen et al., 2022b). Here we hypothesized that the therapeutic effects
of NAc DBS may be due to its ability to rapidly modulate tonic
dopamine concentrations. DBS of the VTA, the main dopaminergic
afferent to the NAc, may also achieve a similar effect. In the present
study, M-CSWV was utilized to elucidate the effects of high frequency
stimulation (HFS) of both the VTA and the NAc on tonic dopamine
levels in the nucleus accumbens core (NAcc) with or without acute
cocaine administration (Yuen et al., 2021a).

2. Materials and methods

2.1. Animal subjects

Male Sprague-Dawley rats (250–300 g; Envigo, IN, USA) were
used for this study. Rats were kept in social housing in an
association for assessment and accreditation of laboratory animal
care international (AAALAC) accredited vivarium following a
standard 12-h light/dark cycle at constant temperature (21◦C) and
humidity (45%) with ad libitum food and water. The present studies
were approved by the Institutional Animal Care and Use Committee
(IACUC), Mayo Clinic, Rochester. The NIH Guide for the care and
use of laboratory animals guidelines (Department of Health and
Human Services, NIH publication No. 86-23, revised 1985) were
followed for all aspects of animal care.

2.2. Electrode fabrication

Carbon fiber microelectrodes were fabricated using an
established standardized CFM design at Mayo Clinic (Chang
et al., 2013; Oh et al., 2016). Each microelectrode involved isolating
and inserting a single carbon fiber (AS4, diameter = 7 µm; Hexcel,
Stamford, CT, USA) into a silica tubing (20 µm ID, 90 µm OD,
10 µm coat with polyimide; Polymicro Technologies, Phoenix, AZ,
USA). The connection between the carbon fiber and the silica tubing
was covered with epoxy resin. The silica tubing was then attached to
a nitinol extension wire (Nitinol #1, an alloy of nickel and titanium;
Fort Wayne Metals, IN, USA) by a silver-based conductive paste
(Chang et al., 2013). The carbon fiber attached nitinol wire was
insulated with polyimide tubing (0.0089′′ ID, 0.0134′′ OD, 0.00225′′

WT; Vention Medical, Salem, NH, USA) up to the carbon fiber
sensing segment. The exposed carbon fiber was trimmed under a
dissecting microscope to a length of ∼50 µm. Teflon-coated silver
(Ag) wire (A-M systems, Inc., Sequim, WA, USA) was prepared as an
Ag/AgCl counter-reference electrode by chlorinating the exposed tip
in saline with a 9 V dry cell battery. CFMs were pretested in a flow
cell prior to coating deposition with a PEDOT:Nafion deposition
solution (Vreeland et al., 2015), which minimized the effect of
biofouling in vivo.
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2.3. Implantation of recording and
stimulating electrodes

Each rat was anesthetized with urethane (1.5 g/kg i.p.; Sigma-
Aldrich, St Louis, MO, USA) and administered buprenorphine (0.05–
0.1 mg/kg s.c., Par Pharmaceutical, Chestnut Ridge, NY, USA) for
analgesia. Following anesthesia, they were placed in a stereotaxic
frame (David Kopf Instruments, Tujunga, CA, USA). Respiratory rate
(RespiRAT, Intuitive Measurement Systems, AZ, USA) and hind-paw
and tail pinch were used to monitor the physiological state and depth
of anesthesia, respectively. Using a standard rat brain atlas (Paxinos
and Watson, 2007), three trephine holes were drilled, the first for
placement of a CFM into the NAcc (all coordinates from bregma:
AP 1.2 mm, ML 2.0 mm, DV 6.5–7.5 mm from dura), the second
for a stimulating electrode into the VTA (twisted bipolar stimulating
electrode–Plastics One, MS 303/2, Roanoke, VA, USA, with the tips
separated by ∼1 mm; AP −5.3 mm, ML 0.9 mm, DV 7.5–9 mm
from dura), and a third for an Ag/AgCl into the contralateral cortex
(Figure 1; Clark et al., 2010). For NAcc stimulation experiments, a
bipolar concentric simulating electrode (MicroProbes, Gaithersburg,
MD, USA) was implanted immediately posterior and medial to the
CFM in the NAcc (∼0.3 mm apart).

2.4. Recordings and stimulation
parameters

The depths of the stimulating electrode in the VTA and CFM
in the NAcc were first adjusted to obtain a robust stimulation-
evoked dopamine signal as measured by FSCV (−0.4 to 1.3 V sweep;
10 Hz; see Supplementary Figure A1). Stimulation parameters were
biphasic pulses at 60 Hz, 0.2 ms pulse width, 0.2 mA, and 2 s
duration. Stimulation and FSCV were both performed using the
WINCS Harmoni system (Lee et al., 2017), a wireless stimulation and
neurochemical sensing system.

Once the optimal electrode depths were identified, the system
was switched to the M-CSWV sensing technique (see Figure 1B).
After 60 min of stabilization, either VTA or NAc biphasic pulse
stimulation was applied at 130 Hz (0.2 ms, 0.2 mA) continuously. The
delivered stimulation was interleaved with the M-CSWV recording to
minimize artifacts. Once the signal was restabilized to a new plateau
(≥ 30 min), i.v. saline (1 ml/kg) was administered as a negative
control while stimulation and recording continued. After 30 min, i.v.
cocaine (2 mg/kg) was administered (infused over 1 min via cannula
at tail vein; dissolved in 0.5 ml of normal saline). After another 30 min
of observation, the stimulation was turned off. Post-stimulation, the
animal was observed for another 30 min before being sacrificed using
Fatal-Plus injection (pentobarbital 390 mg/ml; 10 ml).

2.5. Pharmacological confirmation

In a separate group of animals (N = 5), alpha-methyl-p-tyrosine
(AMPT; 250 mg/kg, i.p.), a tyrosine hydroxylase inhibitor, was
given to further confirm the recording of dopamine by M-CSWV.
Tyrosine hydroxylase is the rate limiting enzyme of catecholamine
biosynthesis, converting tyrosine into L-DOPA, the precursor to
dopamine. Thus, AMPT administration, acting as a negative control,

was expected to decrease the voltammetric signal if the signal indeed
arose from dopamine.

2.6. Calibration of electrodes

After experimentation, changes in dopamine release in individual
CFMs were calibrated in vitro with dopamine solutions of different
known concentrations. This is in a similar fashion to previously
described procedures in the literature (Oh et al., 2018).

2.7. Histological analysis

CFM and stimulation electrode trajectories were confirmed by
histological analysis. Brains were removed from euthanized animals
and immersed in 4% paraformaldehyde overnight for fixation. After
fixation, 60 µm coronal sections were cut on a freezing microtome.
The sections were stained with cresyl violet. The location of the
stimulating and CFMs were identified under light microscopy
(Supplementary Material B) based on (Paxinos and Watson, 2007).

2.8. Statistical analysis

Statistical analysis was performed using repeated measures one-
way ANOVA and two-tailed paired t-tests in relevant post hoc
analyses (PRISM 8, GraphPad). For comparison, the levels were all
measured by averaging over 10 data points, i.e., 10 s. In cases where
i.v. drug was administered, the 10 data points centered at peak within
10 min of injection.

After ANOVA tests were performed among the positive control,
negative control, VTA stimulation and NAcc stimulation groups,
paired t-tests were used to demonstrate sequential changes in the
post hoc analysis. In the control experiments, pre-injection baseline
tonic dopamine concentrations were compared to the post-saline
levels, and the post-saline levels were compared with the post-cocaine
peak levels. In the NAcc stimulation experiments (see Figure 4),
the initial stabilized baseline levels before injection were compared
with the trough levels (not seen during VTA experiments) during
stimulation. Then, similarly, the new baselines were compared with
the post-saline levels, and the post-saline levels were compared with
the post-cocaine peak levels. In VTA stimulation experiments (see
Figure 5), the initial baselines were compared with the new baselines
during stimulation. The new baselines were compared with the post-
saline levels, and these post-saline levels were compared with the
post-cocaine levels. All error bars and shaded areas are represented
as S.E.M. statistical significance was set at p < 0.05. Bonferroni
correction was applied in cases with multiple comparisons.

3. Results and discussion

3.1. Control experiments

In the positive control experiments, after implanting the CFM
at the optimal position within NAcc (see section “Materials and
methods”), we elicited cocaine-induced dopamine changes by first
administering i.v. saline and then i.v. cocaine, while tonic dopamine
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FIGURE 1

(A) Simplified diagram demonstrating some of the major dopaminergic projections from the VTA. (B) The optimal depths of electrodes in the VTA and
nucleus accumbens core (NAcc) were first identified using FSCV (maximum dopamine evoked release; 60 Hz, 2 ms, 0.2 mA, 2 s duration;
Supplementary Figure A1). The system was then switched to M-CSWV to record tonic dopamine levels in the NAcc. (C) Experimental set-up of tonic
dopamine measurements. With the control and AMPT groups, no stimulation was given. Waiting time for AMPT group (250 mg/kg) was increased
compared to the control group due to the different route of administration, with the expectation that i.p. injections would result in a slower onset of
action than i.v. injections. The stimulation group consisted of the continuous high-frequency stimulation (130 Hz, 200 micro-sec, 0.2 mA), while saline
(1 ml/kg) and cocaine (2 mg/kg) were given intravenously. Partly created with BioRender.com. N = 5/group (20 in total). AMPT, alpha-methyl-p-tyrosine;
CFM, carbon fiber microelectrode; DA, dopamine; FSCV, fast-scan cyclic voltammetry; i.p., intraperitoneal; i.v., intravenous; stim., stimulation; M-CSWV,
multiple-cyclic square wave voltammetry; MFB, medial forebrain bundle; NAc, nucleus accumbens; VTA, ventral tegmental area.

levels were recorded using M-CSWV. One-way ANOVA test
among the three levels (baseline, saline, cocaine) showed significant
differences (F = 17.95, p = 0.0047). In the post hoc analysis, as
expected, saline administration did not evoke a statistically significant
change in peak tonic dopamine concentration compared to pre-saline
levels (N = 7 rats; paired t-test, p = 0.054; Figures 2A, B, blue).
The dopamine levels were then observed to rapidly increase after
acute i.v. cocaine administration [N = 7 rats; paired t-test, p = 0.022;
change = +62.9 ± 14.9 nM (59%); time to peak = 6.8 ± 0.8 min;
Figures 2A, B, red]. The pseudocolor plots of the peak dopamine
concentration after saline administration (Figure 2C) and after
cocaine administration (Figure 2D) showed clear differences in the
magnitude of the dopamine oxidation current, indicating a much
higher concentration present.

In the negative control experiments, AMPT, a tyrosine
hydroxylase inhibitor, was applied intraperitoneally (i.p.) to
reduce dopamine production. This was compared against i.p.
saline. One-way ANOVA test among the three levels showed
significant differences (F = 35.45, p = 0.0007). In the post hoc
analysis, i.p. AMPT administration (250 mg/kg) did acutely reduce
tonic NAcc dopamine concentrations over 30 min [N = 5; paired
t-test, p = 0.004; change = −34.5 ± 5.7 nM (−27%); time to stable
baseline = 25.3 ± 2.2 min; Figures 3A, B, red] but this was not
observed in i.p. saline (N = 5; paired t-test, p = 0.513; Figures 3A,
B, blue). This is further visualized by the pseudocolor plots,
demonstrating a sharp decrease in dopamine oxidation current after
30 min of AMPT (Figure 3D), compared to after 30 min of saline
(Figure 3C).

3.2. NAcc HFS reduces tonic NAcc
dopamine levels and attenuates the
effects of cocaine

Here, saline and cocaine administration was repeated on
the background of NAcc stimulation (starting at least 30 min
before saline administration and continued until 30 min after
cocaine administration). With one-way ANOVA test, there
were significant differences among the six different levels
(control, trough during stimulation, new baseline during
stimulation, level-post-saline, level-post-cocaine, post-stimulation)
(F = 11.31, p = 0.010). With further post hoc analysis, NAcc
HFS elicited an initial decrease in tonic dopamine concentration
[N = 5; paired t-test, p = 0.011; change = −28.3 ± 6.3 nM
(−20%); Figures 4A, C], followed by a relatively rapid return
to baseline. Pseudocolor plots demonstrate a significant
marked decrease in dopamine oxidation current during
NAcc HFS (Figure 4E) compared to pre-stimulation baseline
(Figure 4D).

Next, i.v. saline was administered (1 ml/kg) with continuous
HFS, and, as before, did not significantly affect NAcc tonic dopamine
concentrations over 30 min (N = 5; paired t-test, p = 0.131;
Figures 4B, F). Thereafter, surprisingly, with continuous HFS
of the NAcc, the cocaine-induced increases in tonic dopamine
concentrations seen before were eliminated when i.v. cocaine was
given, no longer leading to an increase compared to pre-cocaine levels
(N = 5; paired t-test, p = 0.739; Figures 4B, F).
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FIGURE 2

Changes in nucleus accumbens core (NAcc) tonic dopamine concentrations after saline and cocaine. (A) Rapid increase in dopamine was seen after i.v.
cocaine administration (2 mg/kg) compared to i.v. saline (1 ml/kg). Arrow denotes time of drug administration. (B) Saline did not significantly alter tonic
dopamine levels (–8.0 ± 3.4 nM, N = 7 rats, p = 0.054), whereas cocaine rapidly increased dopamine levels (+62.9 ± 14.9 nM, +62%, N = 7 rats,
p = 0.006). Two out of seven of the sample had a stimulating electrode (turned off) adjacent to the recording electrode; both showed brisk increase in
tonic dopamine levels with cocaine administration. ∗Denotes p < 0.025 (0.05/2, with Bonferroni correction, given there are two t-tests here). (C,D)
Representative color plots and voltammograms after saline and cocaine administration, respectively.

3.3. VTA HFS reduces tonic NAcc
dopamine levels and attenuates the
effects of cocaine

Here, saline and cocaine administration was repeated on the
background of VTA stimulation (starting at least 30 min before
saline administration and continued until 30 min after cocaine
administration). With one-way ANOVA test, there were significant
differences among the five different levels (control, new baseline
during stimulation, level post-saline, level-post-cocaine, post-
stimulation) (F = 11.28, p = 0.011). With further post hoc analysis,
VTA HFS elicited a decrease in tonic dopamine concentration
which persisted over the 30 min [N = 5; paired t-test, p = 0.002;
change =−47.3± 7.0 nM (−42%); Figures 5A, C]. Pseudocolor plots
demonstrate a significant decrease in dopamine oxidation current
during VTA HFS (Figure 5E) compared to pre-stimulation baseline
(Figure 5D).

Next, i.v. saline was administered (1 ml/kg) with continuous
HFS, and, as before, did not significantly affect NAcc tonic dopamine
concentrations over 30 min (N = 5; paired t-test, p = 0.943;

Figures 5B, F). Thereafter, with continuous HFS of the VTA,
the cocaine-induced increases in tonic dopamine concentrations
seen without stimulation were eliminated, no longer leading to a
statistically significant increase compared to pre-cocaine (N = 5;
paired t-test, p = 0.091; Figures 5B, F).

3.4. Interpretation

The present study demonstrated that cocaine-induced increases
in tonic dopamine levels in the NAcc can be attenuated by HFS of the
NAcc or of the VTA. In addition, VTA HFS resulted in a persistent
suppression of NAcc tonic dopamine levels.

Interestingly, there was an initial trough in the dopamine levels
at the start of NAcc HFS (Figure 4 and Supplementary Figure A3),
followed by a return to baseline. Previous ex vivo voltammetry studies
have shown that both electrical and optogenetic brief stimulation
of dopaminergic terminals in the NAc can lead to local phasic
release of dopamine (Melchior et al., 2015). Importantly, these studies
have also shown that longer duration stimulations lead to lower
magnitude stimulation-induced phasic release. Phasic dopamine
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FIGURE 3

Changes in nucleus accumbens core (NAcc) tonic dopamine concentrations after saline and alpha-methyl-p-tyrosine (AMPT). (A) Gradual reduction in
dopamine tonic levels was seen after i.p. AMPT administration (250 mg/kg) compared to i.v. saline (1 ml/kg). Arrow denotes time of drug administration.
(B) Saline did not significantly alter tonic dopamine levels (–2.2 ± 3.1 nM, N = 5 rats, p = 0.513), whereas AMPT reduced dopamine levels (–34.5 ± 5.7 nM,
–27%, N = 5 rats; p = 0.004). ∗Denotes p < 0.025 (0.05/2, with Bonferroni correction, given there are two t-tests here). (C,D) Representative color plots
and voltammograms, after saline and AMPT administration, respectively.

release is measured on the order of seconds, whereas in the current
study, the time resolution of M-CSWV was every 10 s. Therefore,
it is possible that there may have been an initial phasic release of
dopamine which was not detected by M-CSWV. This increase in
dopamine may have then led to the activation of D2 autoreceptors in
the VTA and NAcc, which reduced both the release of dopamine and
excitability of dopamine neurons (Wieczorek and Kruk, 1995; Ford,
2014). Together with a depletion of presynaptic dopamine vesicular
stores, this may have contributed to a decrease in the tonic levels of
dopamine in the NAcc. One possibility is that as the D2 autoreceptor
feedback became weaker, the tonic dopamine levels stabilized to an
equilibrium. However, previous studies have shown the activation
time of D2 autoreceptors is of the order of subseconds to seconds
(Kennedy et al., 1992; Benoit-Marand et al., 2001); whereas in the
present study, the troughs took ∼10 min to reach full reduction,
implying there are likely other factors at play. Another possibility is
back propagation of signals from NAc to VTA but this is yet to be
confirmed.

Norepinephrine is a potential electroactive interferent that could
affect dopamine measurements given their similarities in reduction-
oxidation characteristics. However, previous microdialysis studies
show that the NAcc, which we targeted, has a relatively low

concentration of norepinephrine (McKittrick and Abercrombie,
2007).

Inhibition and activation of other local neurons (e.g.,
glutamatergic and GABAergic) are also possible, but it is difficult
to ascertain how this may interact with the dopaminergic neurons
in this case. A recent voltammetry study has shown that electrical
stimulation leads to multi-synaptic modulation of dopamine release,
as a gamma-aminobutyric acid (GABA) antagonist increased
electrical stimulation-evoked release of dopamine, compared
to optogenetic stimulation, which only targeted dopaminergic
terminals (Melchior et al., 2015). In contrast, microdialysis studies
have shown conflicting results. In naïve rodents, HFS of the NAc
did not affect dopamine and glutamate levels but increased GABA
levels (Varatharajan et al., 2015). Another study which specifically
stimulated the NAcc also showed no changes in dopamine levels
(Van Dijk et al., 2011). However, in rats treated with morphine,
NAcc HFS reduced glutamate levels (Yan et al., 2013). In a depressed
rat model, there were no changes in GABA or dopamine with NAc
shell stimulation (Schumacher et al., 2020). Although microdialysis
can measure multiple neurochemicals, most of these studies
sampled at 30-min intervals, which would not capture the trough
observed here.
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FIGURE 4

Tonic dopamine concentrations during nucleus accumbens core (NAcc) high frequency stimulation (HFS) and after cocaine administration. (A,C)
Stimulation suppressed tonic dopamine levels (–28.3 ± 6.3 nM, –20%; N = 5 rats, p = 0.011). (B,F) Cocaine-induced increases in tonic dopamine levels
were attenuated by stimulation to non-significant levels (new baseline vs. saline, –4.9 ± 2.6 nM, N = 5 rats, p = 0.131; saline vs. cocaine peak,
1.3 ± 3.5 nM, p = 0.739). Black bars represent stimulation period. Arrow denotes drug administration. ∗Denotes p < 0.017 (0.05/3, with Bonferroni
correction, given there are three t-tests here); ns, non-statistically significant. (D,E) Representative color plots and voltammograms, corresponding to the
time points marked by black and red dotted lines in panel (A), respectively. Further trend in tonic dopamine levels after local HFS was stopped
demonstrated no marked changes in levels (Supplementary Figure A2).

Both the NAcc (Liu et al., 2008; Knapp et al., 2009; Guo et al.,
2013; Schippers et al., 2017) and shell (Knapp et al., 2009; Henderson
et al., 2010; Ma et al., 2013; Batra et al., 2017) have been shown to
be promising DBS targets for SUD for substances such as morphine,
alcohol, heroin, and methamphetamine. The underlying treatment
mechanism has not been fully understood. The present results suggest
that one possibility is that accumbal dopamine extracellular levels are
modulated by the local HFS, leading to suppression of the reward
effect associated with cocaine-induced elevations in tonic dopamine
levels (Schultz, 2016). Given its role as a monoamine reuptake
inhibitor, cocaine normally increases dopaminergic concentration
in the synapses (Sora et al., 2001). It is possible that local DBS
may either alter cocaine activity at the local dopamine reuptake
transporters and/or dopamine reserve, or it may reduce the ability
of cocaine molecules to diffuse to these transporters due to factors
such as vasoconstriction or tissue damage. Two out of seven of our
control group were performed with a stimulating electrode adjacent
to the recording electrode and both showed a brisk increase in tonic
dopamine levels after cocaine administration, which makes tissue

damage an unlikely explanation. The possibility that DBS can modify
dopamine transporter (DAT) availability has been raised previously
in Parkinson’s disease patients (Lokkegaard et al., 2007; Loser et al.,
2021).

Other possibilities may include down regulation of active
dopaminergic transporters. The diminished response is consistent
with a preclinical study where DBS of the NAc (shell) increased
cocaine self-administration (Kallupi et al., 2021). This may be because
the cocaine-associated effect is less marked with DBS and hence
the animals would need to self-administer more to attain the same
elevations in tonic dopamine levels. However, more experiments are
required to confirm this hypothesis.

In contrast to NAc HFS, VTA HFS led to a decrease in
NAcc dopamine levels that did not recover over the course of the
experiment (Figures 5A, D and Supplementary Figure A4). There
are at least two possible explanations for this phenomenon. First,
continuous VTA HFS may have depleted presynaptic dopamine
vesicular stores in the NAcc, which may have accounted for the initial
peak observed immediately upon stimulation. In turn, this would lead
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FIGURE 5

Tonic dopamine concentrations during ventral tegmental area (VTA) high frequency stimulation (HFS) and after cocaine administration. (A,C) Stimulation
suppressed tonic dopamine levels (–47.3 ± 7.0 nM, –42%; p = 0.002). (B,F) Cocaine-induced increases in tonic dopamine levels were attenuated by
stimulation to non-significant levels compared to the new baseline (+11.2 ± 5.0 nM, +17%; p = 0.091). Black bars represent stimulation period. Arrow
denotes drug administration. ∗Denotes p < 0.017 (0.05/3, with Bonferroni correction, given there are three t-tests here); ns, non-statistically significant.
(D,E) Representative color plots and voltammograms, corresponding to the time points marked by black and red dotted lines in panel (A), respectively.
Further trend in tonic dopamine levels after local HFS was stopped demonstrated no continued suppression in levels (Supplementary Figure A5).
Representative color plot and voltammogram of new baseline after i.v. cocaine administration (2 mg/kg) during VTA stimulation is shown in
Supplementary Figure A6.

to a reduced tonic level until vesicular stores could be replenished
by dopamine synthesis. This is consistent with a previous study
showing medial forebrain bundle (MFB) stimulation could reduce
the dopamine level in the NAc to 70–80% of baseline during 2 h of
stimulation (Bregman et al., 2015). Amperometry studies also showed
that prolonged MFB stimulation can deplete presynaptic dopamine
vesicular stores in the NAc (Fielding et al., 2013). As the mesolimbic
dopaminergic pathway is contained within the MFB, it is likely that
MFB stimulation would involve stimulating the VTA-NAc pathway.
Second, dendritic release of dopamine in the VTA has been shown to
activate autoinhibitory D2 receptors (De Jong et al., 2015), resulting
in reduced terminal release of dopamine in the NAc. However,
this effect is expected to be short-lived, as continuous VTA HFS
would also be expected to deplete dopamine dendritic stores. One
other speculative cause is that VTA HFS induced a depolarization
block of dopaminergic axonal firing, which appeared sustained after
stimulation was discontinued. Given the tonic dopamine levels did
not recover, this suggests dopaminergic dynamics may be different
between the VTA and NAc, possibly from different neurochemical
and autoreceptor distribution and sensitivity.

Microdialysis studies have shown that extracellular dopamine
release in the NAc is regulated by GABA (inhibitory), dopamine
(inhibitory), glutamate (excitatory), and acetylcholine (facilitatory)
receptors in the VTA (Westerink et al., 1996; Lester et al., 2010). It
is possible that the electrical stimulation could lead to overfiring of
GABA neurons within the VTA as well as suppression of glutamate
neurons. Further pharmacological tests may potentially facilitate
confirmation of this hypothesis.

Functional magnetic resonance imaging (fMRI) in rodent and in
swine models have shown that electrical stimulation of the VTA not
only induced dopamine release in the NAc (phasic release as detected
by FSCV) but also led to increased blood-oxygen-level-dependent
(BOLD) responses (Helbing et al., 2016; Settell et al., 2017). However,
the latter appeared to be glutamate-dependent (Helbing et al., 2016).
This suggests that the clinical effects of VTA DBS is likely to be much
more complex and involves multiple other neurotransmitter systems
besides dopamine.

In addition to SUD, NAc DBS has been of great interest
for application to a number of neuropsychiatric diseases,
such as depression (Yuen et al., 2021b), Tourette’s syndrome
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(Baldermann et al., 2016), and obsessive-compulsive disorder
(Denys et al., 2010). It is unknown how DBS of the NAc and its
surrounding structures, such as the anterior limb of internal capsule,
may treat a range of diseases with such different clinical features.
Nevertheless, studies have shown that dopamine plays a role in all
these diseases. Thus, DBS may possibly modulate or even re-establish
the dysregulated dopaminergic signaling, leading to symptomatic
improvements and reversing neuroplasticity related changes (Denys
et al., 2004; Buse et al., 2013; Tye et al., 2013).

Although the VTA is vital in the expression of a number of
drug-related behaviors, such as behavioral sensitization (Oliva and
Wanat, 2016), VTA DBS currently has a limited role in clinical
practice. However, in a small case series, high-frequency VTA
DBS appeared to be an effective treatment for medically refractory
cluster headache (Akram et al., 2016). Given there is evidence
that dopamine levels are elevated in circulating platelets of cluster
headache (and migraine) patients (D’Andrea et al., 2006), it has
been suggested that cluster headache may be a consequence of
overactivity of the dopaminergic and autonomic systems (D’Andrea
et al., 2019). Evidence of dysfunction of dopaminergic systems is
further elucidated in a study where apomorphine, a non-selective
dopamine D2 receptor agonist, was given to cluster headache patients
that resulted in significantly lower evoked growth hormone release
compared to healthy volunteers (Lepper et al., 2013).

Optogenetic studies have provided insight into the possible
behavioral effects of VTA stimulation. One rodent study
demonstrated continuous (“tonic”) optogenetic stimulation of
VTA dopaminergic neurons can reduce ethanol self-administration
(Bass et al., 2013). In addition, other studies showed that optogenetic
excitation and inhibition of VTA dopaminergic neurons can both
inhibit and induce depression-like behavior, respectively (Tye
et al., 2013). Although optogenetic and electrical stimulations have
different underlying mechanisms of activation, one mouse study
demonstrated they activate similar brain regions under certain
conditions (Weidner et al., 2020).

Given the reduction in tonic dopamine levels and attenuation of
the cocaine-induced response, VTA DBS may be helpful in not only
treating SUD but also pathologies associated with hyperdopaminergic
states such as mania, schizophrenia, and dopamine dysregulation
syndrome, where excessive dopamine in the system may lead to
excessive risk-taking behavior (Berk et al., 2007; Grace, 2016; Ashok
et al., 2017). In addition, dopamine-containing cells in the VTA that
comprise the mesolimbic dopaminergic projection are highly critical
for the regulation of incentive motivation to natural and drug-related
rewards (Blaha and Phillips, 1996; Schultz et al., 1997; Horvitz, 2000).
In addition, by modifying the tonic level of dopamine here, it may
be possible to replicate changes induced by different pharmacological
agents and use it as a pathological model for other diseases such as
depression. Likewise, given dopamine is also associated with non-
drug reward, excessive depression of dopamine levels in a normal
dopaminergic state may theoretically lead to anhedonia, anorexia,
and/or depression. Therefore, one must be careful with implementing
this form of intervention at the level of dopaminergic cells.

It should be noted the current study utilized anesthetized
naïve rodent models with acute administration of cocaine. Larger
animals and chronic addiction models will be necessary to verify
the dopamine-attenuating effect of HFS. It would be useful to know
the effects of HFS on models of SUD of other substances, especially
those that are not psychostimulants, such as opioids, and alcohol.
Also, the effect on behaviors associated with SUD, such as craving

and withdrawal, needs to be explored. Further mechanistic studies
such as manipulation of dopamine transporter availability and other
biochemical essays are also warranted.

Previous literature also suggested there are persistent exposure of
drugs does not necessarily lead to addictive behavior and dopamine
is likely to be only one contributing factor to the behavioral
changes observed. Therefore, one must consider the impact of other
biological processes, such as changes in synaptic plasticity and other
neurochemicals (e.g., serotonin) (Pascoli et al., 2011; Li et al., 2021;
Yuen et al., 2022a).

4. Conclusion

In summary, this study elucidated the tonic dopaminergic
dynamics with NAc and VTA HFS with high spatiotemporal
resolution. HFS appeared to have an alleviating effect on the
elevations in tonic dopamine levels associated with cocaine
administration. This may explain how NAc DBS was found to be
therapeutic in both preclinical models and patients suffering from
SUD. Dopamine, measured by M-CSWV, may provide a useful
closed-loop biomarker for DBS, given the pivotal role of dopamine
in many neuropsychiatric pathologies.
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