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Mitochondrial networks are defined as a continuous matrix lumen, but the

morphological feature of neuronal mitochondrial networks is not clear due to the

lack of suitable analysis techniques. The aim of the present study is to develop

a framework to capture and analyze the neuronal mitochondrial networks by

using 4-step process composed of 2D and 3D observation, primary and secondary

virtual reality (VR) analysis, with the help of artificial intelligence (AI)-powered Aivia

segmentation an classifiers. In order to fulfill this purpose, we first generated the PCs-

Mito-GFP mice, in which green fluorescence protein (GFP) could be expressed on

the outer mitochondrial membrane specifically on the cerebellar Purkinje cells (PCs),

thus all mitochondria in the giant neuronal soma, complex dendritic arborization

trees and long projection axons of Purkinje cells could be easily detected under a

laser scanning confocal microscope. The 4-step process resolved the complicated

neuronal mitochondrial networks into discrete neuronal mitochondrial meshes.

Second, we measured the two parameters of the neuronal mitochondrial meshes,

and the results showed that the surface area (µm2) of mitochondrial meshes was

the biggest in dendritic trees (45.30 ± 53.21), the smallest in granular-like axons

(3.99± 1.82), and moderate in soma (27.81± 22.22) and silk-like axons (17.50± 15.19).

These values showed statistically different among different subcellular locations.

The volume (µm3) of mitochondrial meshes was the biggest in dendritic trees

(9.97 ± 12.34), the smallest in granular-like axons (0.43 ± 0.25), and moderate

in soma (6.26 ± 6.46) and silk-like axons (3.52 ± 4.29). These values showed

significantly different among different subcellular locations. Finally, we found both

the surface area and the volume of mitochondrial meshes in dendritic trees and

soma within the Purkinje cells in PCs-Mito-GFP mice after receiving the training

with the simulating long-term pilot flight concentrating increased significantly. The

precise reconstruction of neuronal mitochondrial networks is extremely laborious,

the present 4-step workflow powered by artificial intelligence and virtual reality

reconstruction could successfully address these challenges.
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GRAPHICAL ABSTRACT

Neuronal mitochondrial meshes are the elementary units for neuronal mitochondrial networks (MNs). In the present study, it is the first time to measure
two important parameters of the surface area and the volume of neuronal mitochondrial meshes by using artificial intelligence (AI)—powered classifiers
and immersive virtual reality (VR) reconstruction. The results show that the surface area (µm2) of mitochondrial meshes is the biggest in dendritic trees
(45.30 ± 53.21), the smallest in granular-like axons (3.99 ± 1.82), and moderate in soma (27.81 ± 22.22) and silk-like axons (17.50 ± 15.19). And these
values show statistically different among different subcellular locations. At the same time, the volume (µm3) of mitochondrial meshes is the biggest in
dendritic trees (9.97 ± 12.34), the smallest in granular-like axons (0.43 ± 0.25), and moderate in soma (6.26 ± 6.46) and silk-like axons (3.52 ± 4.29). And
these values show significantly different among different subcellular locations.

Highlights

– In this report, we developed a framework to capture and analyze
the neuronal mitochondrial networks by using 4-step composed of
2D and 3D observation, primary and secondary virtual reality (VR)
analysis, with the help of artificial intelligence (AI)-powered Aivia
segmentation an classifiers.

– The 4-step process allowed us to propose that the neuronal
mitochondrial networks might be composed by regular
mitochondrial meshes, and more importantly, provide the
detailed quantitative measurement about the two important
parameters of the surface area and the volume about neuronal
mitochondrial meshes, by using the generated PCs-Mito-GFP
mice in which the mitochondria specific within the cerebellar
Purkinje cells are labeled by green fluorescence protein (GFP).

– The results showed that both the surface area and the volume
of mitochondrial meshes in Purkinje cells were the biggest in
dendritic trees, the smallest in granular-like axons, and moderate
in soma and silk-like axons.

– Moreover, both the surface area and the volume of mitochondrial
meshes in dendritic trees and soma within the Purkinje cells in
PCs-Mito-GFP mice, who were trained by the simulating long-
term pilot flight concentrating, showed significantly increased.

– Hence we propose that the AI-powered segmentation and
classifiers, combined with the immersive VR reconstruction
could resolve the complicated neuronal mitochondrial networks
into discrete and quantifiable mitochondrial meshes, so as
to achieve the detailed morphological analysis of neuronal
mitochondrial networks.

1. Introduction

Mitochondria were discovered in the late nineteenth century
and were described as a collection of granules forming threads
inside the cell (Benda, 1898). In specimens of non-neuronal cells
such as endothelium, mesenchyme, giant cells, ectoderm, heart
muscle, smooth muscle, and endoderm, mitochondria were present
in multiple forms of granules, rods, threads, loops, and networks,
and further arranged in a continuous series (Lewis and Lewis, 1914).
This view was confirmed by electron-microscopic observations of
tissue, cultured cells, and rat diaphragm muscle that revealed the
existence of a mitochondrial networks (Lewis and Lewis, 1914).
A mitochondrial network is defined as a continuous matrix lumen
whose boundaries limit molecular diffusion (Twig et al., 2006;
Burté et al., 2015; Moore et al., 2016). Mitochondria do not exist
as isolated organelles; instead, they form a highly interconnected
tubular network throughout the cell (Burté et al., 2015). However,
investigation into the morphological properties of mitochondrial
networks has not yielded consistent conclusions.

Observation of individual networks has proven challenging in
neuronal cells that possess dense populations of mitochondria.
Neurons (Harris et al., 2012) are morphologically complex,

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; AI, artificial
intelligence; DenseNet, dense convolutional network; GFP, green fluorescent
protein; LM, light microscope; MiNA, mitochondrial network analysis;
MNs, mitochondrial networks; OMM, outer mitochondrial membrane; PBS,
phosphate buffered saline; PCs, purkinje cells; VDAC, voltage-dependent
anion channel; VR, virtual reality.
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long-lived, and energetically expensive. Thus, neurons have to
maintain mitochondrial networks that are at once stable and tunable,
capable of supplying energy to distant synapses for tens of years while
also adapting to fluctuating energy demands. A properly organized,
healthy mitochondrial network is critical for preserving neuronal
form and function (Barnhart, 2016). Large, elaborately branched
neuronal morphologies, energetic demands that fluctuate in time
and space, and long neuronal lifespans make the distribution of
mitochondria in neurons a particularly complex problem (Nunnari
and Suomalainen, 2012; Youle and van der Bliek, 2012; Anzell
et al., 2018). Studies typically utilize a qualitative or semi-quantitative
approach by developing a scoring system of fission/fusion profiles
or qualitatively evaluating mitochondria into categories of “fused,”
“fragmented,” and “intermediate” morphologies, both of which lack
precise assessment of mitochondrial network morphologies (Kumar
et al., 2016; Prieto et al., 2016; Tang et al., 2016). Machine learning
is a statistical and computational technique that may be used to
derive a classification scheme from classified training data (Leonard
et al., 2015). Every individual mitochondrion can be classified with
the ctree method from a published computational toolbox for
conditional inference recursive partitioning1 in R version 3.0.1 (64-
bit) (Leonard et al., 2015). The Mitochondrial Network Analysis
(MiNA) toolset is a relatively simple pair of macros making use
of existing ImageJ plug-ins, allowing for semi-automated analysis
of mitochondrial networks on two-dimensional (2D) images (Song
et al., 2008). Three-dimensional (3D) imaging and quantification
are crucial for proper understanding of mitochondrial shape and
topology in think neuronal cells (Mitra and Lippincott-Schwartz,
2010; Chevrollier et al., 2012; Lihavainen et al., 2012; Nikolaisen et al.,
2014; Tronstad et al., 2014). Integrative 3D analysis of mitochondrial
network properties has been found to provide new insight into
important aspects of mitochondrial dynamics and neuronal function.
This paper discusses a technology that makes light microscope data
oriented manual reconstruction more efficient and reliable than
existing approaches. This work was motivated by three purposes
detailed below: (1) hierarchical streaming of teravoxel-scale images
of adjacent and intertwined mitochondrial structures, (2) immersive
and collaborative 3D visualization, and (3) interaction.

Whole-cerebellar Purkinje cells reconstruction of mitochondrial
network is such challenging as it involves processing tens of
teravoxels of imaging data. The large and uniform Purkinje cells are
named after the Czech physiologist Purkinje who described them in
a paper on the histology of the nervous system presented in Prague
in 1837 (Herndon, 1963). Purkinje cells are the sole output neuron in
the cerebellar circuit and they arborize highly intricate dendrites that
receive thousands of synaptic inputs on their fanshaped dendrites
from parallel fibers and climbing fibers (Napper and Harvey, 1988).
Purkinje cells thus strategically distribute abundant mitochondria
throughout their dendrites, somatic bodies and axons (Fukumitsu
et al., 2016). The mitochondria in somatic bodies of Purkinje cells
are commonly between 0.75 and 3 µm2 in area, similar to those
seen in other neurons (Dempsey, 1956; Hartmann, 1956). They are
generally sausage-shaped and in most instances the cristae run at
right angles to the long axis. Occasional irregular and branched
forms are seen. Tubular mitochondria also occupy the primary

1 http://cran.r-project.org/web/packages/party/

dendrites, whereas focal clusters of smaller mitochondria appear
in the secondary and tertiary dendrites (Pham et al., 2012). The
mitochondria in the smaller dendritic branches, on the other hand,
tend to be more elongated and their cristae usually run parallel to
the long axis of the mitochondrion. These elongated mitochondria
are often helpful in identifying the smaller dendritic branches of
the Purkinje cells. It is hard to track thin Purkinje cells axons,
which makes it more difficult to capture the internal mitochondrial
tracks.

The aim of the present study is to develop a framework to capture
and analyze the neuronal mitochondrial networks by using 4-step
process composed of 2D observation, 3D observation, and followed
by primary and secondary artificial intelligence (AI)-powered virtual
reality (VR) reconstruction. In order to fulfill this purpose, we
first generated the PCs-Mito-GFP mice, in which GFP could be
expressed on the outer mitochondrial membrane specifically on
the cerebellar Purkinje cells (PCs), thus all mitochondria in the
giant neuronal soma, complex dendritic arborization trees and long
projection axons of Purkinje cells could be easily detected under
a laser scanning confocal microscope. The 4-step process allowed
us to resolve the complicated neuronal mitochondrial networks
into discrete neuronal mitochondrial meshes. More importantly,
we measured the two important parameters of the neuronal
mitochondrial meshes. The results showed that the surface area
of mitochondrial meshes was the biggest in dendritic trees, the
smallest in granular-like axons, and moderate in soma and silk-
like axons. And these values show statistically different among
different subcellular locations. At the same time, the volume
of mitochondrial meshes is the biggest in dendritic trees, the
smallest in granular-like axons, and moderate in soma and silk-
like axons. And these values show significantly different among
different subcellular locations. Finally, we compared both the
surface area and the volume of mitochondrial meshes in dendritic
trees and soma within the Purkinje cells in PCs-Mito-GFP mice
with or without receiving the training with the simulating long-
term pilot flight concentrating model. The results showed that
the surface area and volume of mitochondrial mesh in dendritic
trees or soma of Purkinje cells in PCs-Mito-GFP mice with
the training increased significantly, compared with that in mice
without the training, by approximately 27 and 38%, respectively.
The precise reconstruction of neuronal mitochondrial networks is
extremely laborious, the present 4-step workflow powered by artificial
intelligence and virtual reality reconstruction could successfully
address these challenges.

2. Materials and methods

2.1. Construction of the PCs-Mito-GFP
mouse line

We first generated the PCs-Mito-GFP mice, in which GFP could
be expressed on the outer mitochondrial membrane specifically
on the cerebellar Purkinje cells (PCs). As shown in Figure 1A,
Pcp2-ires-Cre mice express Cre recombinase under the control
of the mouse Purkinje cell protein (Pcp2) and Cre recombinase
expression is detected in Purkinje cells (PCs) of the cerebellar folia.
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MitoTag (Rosa26-CAG-LSL-GFP-OMM) is a Gt(ROSA)26S or
knock-in allele that has a loxP-flanked STOP cassette preventing
transcription of an outer mitochondrial membrane-targeted
enhanced green fluorescent protein (GFP). When crossing the two
mice lines, we could obtain the mice with robust GFP fluorescence
localizing to mitochondria of PCs faithfully. Pcp2-Cre mice
were hybridized with Mito-GFP mice to generate PCs-Mito-
GFP mice (Zhang et al., 2004). The offspring mice with both
Cre recombinase and Mito-GFP sequences were identified by
PCR.

2.2. Confirmation of the PCs-Mito-GFP
mouse line

To genotype the PCs-Mito-GFP allele and PCs-
Mito-GFP by PCR, the set of primers of Cre were
used with F3: 5′-ATTCTCGTGGAACTGGATGG-3′,5′-
GGACAGGTAATGGTTGTCTGG-3′, resulted with 567 bp
product, under the procedures of 94◦C 3 min, 94◦C 30 s/62◦C
35 s/72◦C 35 s with 35 cycles, and 72◦C 5 min. To genotype the
wild-type allele and GFP-Mito tagfloxed allele, the set of primers were
used with wildtype F1: 5′-CCCAAAGTCGCTCTGAGTTGTTA-
3′, wildtype R1: 5′-TGGCGTTACTATGGGAACATACGTC-3′

and insert F2: 5′-CCCAAAGTCGCTCTGAGTTGTTA-3′, insert
F2: 5′-TCGGGTGAGCATGTCTTTAATCT-3′, resulted with
two products of 479 bp and 375 bp, under the procedures of
95◦C 5 min, 98◦C 30 s/65◦C 30 s (–0.5◦C/cycle)/72◦C 45 s/98◦C
30 s/55◦C 30 s/72◦C 45 s with 20 cycles, and 72◦C 5 min. As
shown in Figure 1B, so the wild-type allele yields a 479 bp band,
the Pcp2-cre allele yields two bands of both 567 and 479 bp,
the GFP-Mito tagfloxed allele yields two bands of both 479 and
375 bp, and the target PCs-Mito-GFP allele yields three bands
of 567, 479, and 375 bp. As shown in Figures 1C–F, in PCs-
Mito-GFP mice, only PCs in the cerebellar cortex exhibited bright
mito-GFP fluorescence localized specifically to the mitochondrial
compartment.

2.3. The framework of 4-step process

As shown in Figure 2, there were four steps in the present study.

2.3.1. Step 1: 2D images of MNs
The first step was to acquire two-dimensional (2D) images.

Firstly, we acquired the two-dimensional images, which were
prepared under confocal microscopy (LSM900, Zeiss, Germany).
Aged 7 weeks PCs-Mito-GFP mice were perfused transcardially with
phosphate buffered saline (PBS) followed by 4% fresh formulated
paraformaldehyde (Sigma). Tissues were embedded overnight at
4◦C in 30% sucrose solution. The cerebellum were isolated and
frozen in OCT for sagittal sectioning by a cryostat (CM 1950,
Leica, Germany) with 15 µm thickness, which as incubated with
DAPI (28718-90-3; Solarbio Co., Ltd., China) for 5 min after
washing in PBS. The raw z-stack images of PCs-Mito-GFP were
acquired on a Zeiss LSM900 laser scanning confocal microscope
equipped with Airyscan 2 system, and a 63 × 1.4 NA Oil DIC
M27 objective (Zeiss). We have identified anatomical structures

according to Allen map.2 For super-resolution microscopic images
of Purkinje cells, Z-stack of axons, soma and dendritic trees were
141 slices (18.2 µm) at 0.13 µm interval, 93 slices (13.8 µm) at
0.15 µm interval and 89 slices (11.44 µm) at 0.13 µm interval,
respectively.

2.3.2. Step 2: 3D images of MNs
The step 2 was to construct 3D structure based on the multiple 2D

images. Three dimensional (3D) images of mitochondrial networks
of cerebellar Purkinje cells were composed of all continuous 2D
images of Z-stack by Aivia (version 10.5.1, LeiCa, Germany) (Harada
et al., 2012; Hintiryan et al., 2021). Aivia uses artificial intelligence
technology to register images according to fluorescence intensity and
sample size. And each 2D image of Z-stack was reconstructed in
spatial order to simulate the actual spatial location of mitochondria
in Purkinje cells. Through the 3D view, we can accurately observe
the spatial distribution of mitochondria in Purkinje cells, avoiding the
visual difference caused by different focal in 2D view.

2.3.3. Step 3: Primary immersive VR observation
We used virtual reality (VR) technology for immersive

observation of a continuous matrix lumen shaped mitochondria
networks in Purkinje cells. The VR environment was installed the,
VIVE from https://www.vive.com/cn/setup/pc-vr/, Steam from
https://store.steampowered.com/about/ and SteamVR. The VR
was achieved on the support of Aivia software (version 10.5.1,
LeiCa, Germany) from https://www.leica-microsystems.com.cn/cn/
products/microscope-software/p/aivia/. ziviaVR was implemented
and evaluated on computers with Intel(R) Core(TM) i9-10980XE
CPU@3.00GHz, 256 GB RAM, 8TB ROM, NVIDIA Quadro RTX
6,000 GPU, Windows 10 64-bit edition, and Aivia Pro as the VR
device. And this AiviaVR helped the controller to control the
observation view at will and observe mitochondrial networks in an
immersive and all-round way.

Before the 4th step, the segmentation and classifiers were
performed by using Aivia, and then the continuous matrix lumen
shaped mitochondria networks could be converted to discrete
neuronal mitochondrial meshes. It should be indicated that Aivia
uses an artificial intelligence (AI)-based software architecture to build
a complete platform for two-dimensional to five-dimensional image
visualization, analysis and data interpretation that reliably processes
and reconstructs highly complex images in just a few minutes. AI-
powered segmentation is based on different convolutional neural
network architectures (DenseNet, UNet, 3D-Unet) to process images.
And AI-powered classification, employing object classifier, is in
terms of random forest. The Aivia’s AI is characterized by enabling
complex, difficult and time-consuming image processing to be
completed quickly, objectively and repeatably and efficiently, even
when the analyst does not have the relevant expertise. AI is able
to reliably process and reconstruct highly complex images in just
a few minutes. Thus, reliable and repeatable segmentation results
are generated to effectively and quickly realize 2D and 3D image
visualization and analysis.

To achieve image visualization rapidly and analyze it accurately
and repeatably, we used AI-powered Aivia software to view and
analyze our mitochondrial networks. In the present procedures, to
quantify the mitochondria, AI-powered segmentation, the module of

2 http://mouse.brain-map.org/static/atlas
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FIGURE 1

Construction of GFP-Mito tagfloxed and PCs-Mito-GFP mouse lines. (A) Design and generation of PCs-Mito-GFP mice by using CRISPR/Cas9 system.
Homologous recombination of the targeting construct in embryonic stem cells results in insertion of the Cre-dependent mito-GFP cassette into the
Rosa26 locus. Then targeting of mito-GFP into the Rosa26 locus. In targeted allele mice, removal of the neomycin selection marker by Flp recombinase
results in the PCs-Mito-GFP line, which can be mated to a Cre driver line to obtain cell-specific labeling of mitochondria. Germline excision of the
termination signal produces the PCs-Mito-GFP line. Yellow arrowheads, loxP sites; stop symbol, termination cassette; gray diamonds, frt sites; half
arrows, PCR primers for genotyping; short horizontal line, probe for Southern blot. (B) PCR genotyping of the wildtype, Pcp2-Cre, Pcp2-Mito-GFP and
GFP-Mito tagfloxed strain using the three primers in schematic. (C–E) The internal image at lateral 3.25 mm (C), 2.28 mm (D), and 0.96 mm (E) according
to Allen map (http://mouse.brain-map.org/static/atlas). All mitochondria within the PCs in Crus 1, Crus 2, apmf, prf, psf, ppf, as well as 2∼10 Cb of
cerebellar cortex expressed bright green fluorescence under a Zeiss confocal microscope equipped with Airyscan 2 system, while all other mitochondria
all over the brain and cerebellum had no fluorescence. 2∼10 Cb; the 2nd∼10th cerebellar lobule; apmf, ansoparamedian fissure; Cop, copula of the
pyramis; CPu, caudate putamen (striatum); Crus 1/2, crus 1/2 of the ansiform lobule; DC, dorsal cochlear nucleus; DCN, deep cerebellar nucleus; DG,
dentate gyrus; mcp, middle cerebellar peduncle; PM, paramedian lobule; ppf, prepyramidal fissure; prf, primary fissure; psf, posterior superior fissure;
Sim, simple lobule. Bars in panels (C–E) = 1 mm. (F) Enlarged version of image d within the cerebellum. Bar = 500 µm.
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FIGURE 2

Four step process composed of 2D and 3D observation as well as primary and secondary AI-powered VR were used for detection of the MNs in PCs
under light-microscopy (LM). The 1st step was to acquire 2D image of MNs in PCs of PCs-Mito-GFP mice under LM. In the 1st step, although the images
of axons, or soma, or dendritic trees were all clear, the MNs within axons, or soma, or dendritic trees could not be indicated stereoscopically and
precisely. Then after Z stacked processing in depth of approximately 20 µm for total more than 80 2D images in STEP 1, 3D reconstruction for MNs in
PCs of PCs-Mito-GFP mice were made. In the 2nd step, the MNs within axons, or soma, or dendritic trees could be indicated close to stereoscopically.
Then after advanced processing according to Depth Coding of 3D, in the Step 3 of primary immersive VR, MNs within axons, or soma, or dendritic trees
could be indicated close to stereoscopically and precisely. Finally after Aivia’s AI-powered segmentation and classifiers for 3D images obtained in Step 3,
we have stepped into the 4th step, in which we have for the first time found that neuronal MNs were composed by regular meshes. The surface area
(µm2) of mitochondrial meshes was the biggest in dendritic trees (45.30 ± 53.21), the smallest in axons (17.50 ± 15.19), and in the middle in soma
(27.81 ± 22.22). In addition, the volume (µm3) of mitochondrial meshes was the biggest in dendrits (9.97 ± 12.34), the smallest in axons (3.52 ± 4.29), and
in the middle in soma (6.26 ± 6.46).
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Recipe Analysis, was used to mesh it, of which the steps followed
Aivia’s specification of the recipes analysis module. The whole
segmentation process includes two parts: detection and partition.
In order to make the data reproducible, we unified the parameters
of detection and partition. When detecting mitochondria, the
average object radius and minimum edge fluorescence intensity were
controlled within 0.7 microns and 5. And in the mitochondrial
partition stage, the object radius ranged from 0.2 microns to 50
microns. The minimum distance from the center of an object to
the edge that is touching its closet neighboring object was set as
20 microns. With the accurate pinpointing capability in AiviaVR
(Supplementary Figures 2–4), in real time a user can precisely and
efficiently load the data of a desired high-resolution ROI to see
detailed 3D morphological structures (Supplementary Figures 2–4).
The data handling of AiviaVR has been engineered to be scalable so
that the large amount of volumetric data is no longer a barrier. After
AI-powered segmentation, the continuous mitochondria networks
within the purkinje cells were converted to discrete neuronal
mitochondrial meshes by AI-segmentation.

Next, Aivia AI learning was used to classify the discrete neuronal
mitochondrial meshes according to the locations of soma, dendritic
trees, axons. And axons were further divided into granular-like
axons and silk-like axons. The meshes keeping the same position
coordinates and morphological characteristics, including superficial
area, volume and immunofluorescence intensity, were marked as
soma “Class” through the function of AI teaching of Aivia. The
module of “AI-classifier,” an object classifier, was run, of which the
operation procedures were conformed to the instruction of Aivia. In
our study, meshes were regarded as the object of classification. For
example, we selected some meshes from the soma of Purkinje cells
and incorporated them into the soma “Class,” which was a process
of training. So did the meshes from dendrites and axons of Purkinje
cells. Finally, the different colors are used to label meshes in different
parts of Purkinje cells.

2.3.4. Step 4: Secondary immersive VR observation
Next the meshed mitochondrial networks achieved by Aivia’s AI-

powered segmentation and classifiers were observed by the secondary
immersive VR, specially paying attention to the locations of meshes.
The secondary VR was achieved successfully by AiviaVR, and the
procedures were strictly performed and complied with the instruction
of Aivia. The highly complex meshes could be effectively and
immersively observed using AiviaVR. We can use the VR controller
to control the observation view at will, so as to observe meshes in an
immersive and all-round way.

2.4. Centrifuge simulating long-term pilot
flight

To simulate the condition of a pilot with 1-year-flight, the
small animal overweight simulated centrifuge machine (designed
by the Fourth Military Medical University; produced by Hunan
Kecheng Instrument and Equipment Co., Ltd., Hunan, China, FXCZ-
Y1) was used in our experiment, as shown in Supplementary
Figure 1. Supplementary Figures 1A–E have shown the main
technical parameters: a, containing four mice cabins with 20 cm
of centrifugation radius; b, 1∼10 s duration for centrifugal gravity
acceleration from 0 to 2∼20 g; c, the centrifuge can be kept stable

to 1 g before and after starting the speed up; d, the vacuum
pressure value ranged from 0 to 100 Kpa to simulate the plateau
environment; e, oxygen concentration in the cavity can be detected
and adjusted. Supplementary Figure 1F has shown the centrifuge
protocol provided by Professor Da-Yun Feng and Professor Si-Wei
Wang, who are all from the Fourth Military Medical University,
Xi’an, China. On the first day, the mice were placed in the overweight
centrifuge machine. In the first step, the centrifugal force increased
from 0 to 1 g in 3 s and lasted for 10 min at 1 g. In the second step,
the centrifugal force increased from 1 to 12 g in 4 s and lasted for
10 s at 12 g. In the third step, the centrifugal force decreased from
12 to 1 g in 5 s and lasted for 10 min at 1 g. Step 2 and Step 3
were repeated continuously five times. And, on the second day, the
experiment was performed according to the procedures of the first
day. In the following 5 days, we performed the experiment in 3 steps
every day and the first step was similar to the first 2 days. However,
in the second step, the centrifugal force increased from 1 to 14 g in
4 s and lasted for 10 s at 14 g. In the third step, the centrifugal force
decreased from 14 to 1 g in 5 s and lasted for 10 min at 1 g. Likewise,
steps 2 and 3 were repeated continuously five times without interval.
The whole experiment lasted 1 week.

2.5. Statistical analysis

The data were expressed as mean ± standard deviation. First,
all data were tested for normality and homogeneity of variance
test. One-way ANOVA was used to evaluate the differences between
the three groups for comparison, and LSD post-hoc test was used
for multiple comparison between groups. The two samples were
compared using the two-tailed Student’s t-test. The Kruskal-Wallis
test or Mann-Whitney U-test were used to analyze the data that did
not conform to the test of normality and homogeneity of variance.
Graphpad was used for statistical analysis. P < 0.05 was considered
statistically significant. All scatter graphs and line graphs were created
and synthesized by Graphpad software.

3. Results

3.1. Construction of GFP-Mito tagfloxed

and PCs-Mito-GFP mouse lines

As shown in Figure 1A, we have designed and generated Rosa26-
CAG-LSL-GFP-Mito tag (GFP-Mito tagfloxed) mouse line (Number:
PO-GJS2020062243-01; GemPharmatech Co., Ltd., Nanjing, China),
in which a mitochondrial localized version of the enhanced
green-fluorescence-protein EGFP (mito-GFP) was targeted to the
ubiquitously expressed Rosa26 locus, along with an upstream loxP-
flanked termination signal, by CRISPR/Cas9 strategy. We have
bought B6.129-Tg(Pcp2−cre)2Mpin/J transgenic mice (named PCs-Cre;
Strain number: 004146; RRID:IMSR_JAX:004146 Info; Common
Name: L7Cre-2; The Jackson Laboratory), who express a cre gene
inserted into exon 4 of a Pcp2 gene. Recombinase activity is observed
in most Purkinje cells (PCs) and some retinal bipolar neurons and
is first observed around postnatal day 6 and is fully established
2–3 weeks after birth. Pcp2-Cre mice from Jackson Laboratory
(America, Stock No: 004146). Then we crossed the Mito-GFP mice
with PCs-Cre mice, PCs-Mito-GFP mice were built in which the
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FIGURE 3

Two and three dimensional (2D and 3D) images acquisition of mitochondrial network within Purkinje cells from PCs-Mito-GFP mice. (A,D,G) A typical
two dimensional (2D) image under light microscope (LM) for mitochondrial network within dentritic trees (A), soma (D) and axons (G) of cerebellar
Purkinje cells (PCs) from a PCs-Mito-GFP mouse. The navigation diagram in the bottom left corner indicates the exact position of image. Soma of PCs
are indicated by asterisk (∗) and one long axon indicated by a series of arrows. (B,E,H) A three dimensional (3D) image with z stack of 11,440 nm (B),
13,800 nm (E) and 18,200 nm (H) is set up from 2D images of panels (A,D,G), respectively. We find an unknown debris (d) in panel (H). (C,F,I) A 3D image
is set up under Depth Coding mode from 3D image in panels (B,E,H). The Depth Coding diagram on the bottom indicates that the red dots lie on the
superficial layer and the blue dots on the deep layer. The same debris (d) appearing in panel (H) is yellow color which suggests its location as bottom in
the depth. Bars = 5 µm in panels (A,G), and Bars = 10 µm in panel (D).

targeted LoxP allele can be mated to a Cre driver line to obtain cell-
specific labeling of mitochondria. Figure 1A showed the germline
excision of the termination signal produces the PCs-Mito-GFP line.

Figure 1B showed the PCR genotyping of the wildtype (on the
left), Pcp2-Cre (the second line on the left), Pcp2-Mito-GFP (the
second line on the right), and GFP-Mito tagfloxed strain (on the right),
by using the three primers in schematic. From the results, we found
that number 4 and 5 are the target mice, which were used in our
research.

Figures 1C–F have indicated that in the cerebellum of PCs-Mito-
GFP mice, all mitochondria within Purkinje cells expressed bright
green fluorescence under a Zeiss confocal microscope equipped with
Airyscan 2 system, while all other mitochondria all over the brain and
cerebellum had no fluorescence.

The above results indicate that the present transgenic mice could
be used for further observation.

3.2. Step 1: 2D images of MNs

According to 4-step process (Figure 2), we firstly observed the
morphology of mitochondrial networks (MNs) in three subcellular
units of Purkinje cells of axons, soma and dendrites.

Figure 3A showed there were 89 layers of typical 2D image under
light microscope for MNs within the dendritic trees of Purkinje cells
from a PCs-Mito-GFP mouse. We noticed that Purkinje cells’ soma
were easy to be distinguished, however, it was hard to outline the
complicated dendritic trees by using the green fluorescence of MNs.
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Moreover, the MNs in the dendritic trees appeared so complicated
that: some of them looked like broken-line-shape with about 5–
20 µm long (indicated by arrows), some of them shaped as bifurcated
type (indicated by the dovetail arrows), and some of them shaped as
short linear type (indicated by triangles).

Figure 3D showed there were 93 layers of typical 2D image
under light microscope for MNs within the soma of Purkinje cells
from a PCs-Mito-GFP mouse. The area of every somatic body was
approximately 347.44 µm2, as well as their projecting thin axons
and flourish incoming dendrites could be easily distinguished and
outlined. The MNs in soma could not be depicted stereoscopically.

Figure 3G showed there were 141 layers of typical 2D image
under light microscope for MNs within the axons of Purkinje cells
from a PCs-Mito-GFP mouse. Less than 10 axons with the length of
up to 30 µm could be distinguished (marked by white arrowheads).
The MNs in axons could not be depicted stereoscopically.

3.3. Step 2: 3D images of MNs

Then after Z stacked processing in depth of approximately 20 µm
for total more than 80 2D images in STEP 1, 3D reconstruction for
MNs in Purkinje cells of PCs-Mito-GFP mice were made.

Figures 3B, E, H showed, in the second step, we acquired 3D
images after Z stacked processing, in depth of 11.44 µm for total 89
images of MNs within the dendritic trees (Figure 3B), in depth of
13.8 µm for total 93 images of MNs within the soma (Figure 3E), as
well as in depth of 18.2 µm for total 141 images of MNs within the
axons (Figure 3H).

Figures 3C, F, I showed we further performed advanced
processing according to Depth Coding of 3D within the dendritic
trees (Figure 3C), the soma (Figure 3F), as well as the axons
(Figure 3I). Red represented the bottom layer, and blue represented
the top layer. At least we could distinguish the mitochondrial
networks either in the superficial layer or in the deeper layer.

Thereafter the MNs within three subcellular units could be shown
close to stereoscopically. Unfortunately, it was impossible to measure
or compare MNs precisely.

3.4. Step 3: Primary immersive VR
observation

Supplementary Movie 1 showed that, after advanced
processing, we could freely track and observe MNs in Purkinje
cells stereoscopically and precisely by using primary immersive VR.
The girl postgraduate student on the left of the movie was the first
author of the present manuscript, Hui Liu, who was wearing glasses
on the eyes and a handle on two hands. On the right side of the
screen, the merged 141 layers of light microscope images focusing
on axons of Purkinje cells of PCs-Mito-GFP mice were generated.
We could track and detect the green MNs which outlined liner
axons and interwound with each other by using immersive primary
VR technique. Dense green dots formed two kinds of structures,
one was round soma located in the Purkinje cells layer (PCL), and
another was liner axons located in the granular cells layer (GCL) of
cerebellar cortex.

Supplementary Movie 2 showed the MNs in dendritic trees and
all 89 images were corresponding to Figure 3A, Figure 4C. From the
1′′ to 11′′ of the movie, we could see dense green MNs in dendritic

trees within the molecular layer (ML) of cerebellar cortex. From 12′′

to 18′′, or from 19′′ to 23′′, or from 24′′ to 28′′ of the movie, the
dashed line outlined the somatic bodies of one Purkinje cell within
PCL. We could see the full view of MNs of dendritic trees in ML.
The bright green slender MNs connected each other and formed
numberless irregular and shorter linear structures in a way similar to
that in axons. But different from that in axons, the MNs in dendritic
trees did not look like a string of knots one by one, but rather
continuous. From 41′′ to 58′′, or 59′′ ∼ 1′04′′, or 1′10′′ ∼ 1′12′′, or
1′36′′ ∼ 1′42′′, or 1′43′′ ∼ 1′48′′, or 2′11′′ ∼ 2′17′′ of the movie, the
dashed line outlined the short MNs of dendritic trees in ML. It should
be indicated there were many MNs distributed in the dendrite shaft
which were shown from 2′55′′ to 3′05′′ or from 3′08′′ to 3′15′′ of the
movie.

Supplementary Movie 3 showed the MNs in Purkinje cells’ soma
and all 93 images were corresponding to Figures 3D–F. From the
1′′ to 6′′ of the movie, we could see white line-outlined hexagonal-
shaped MNs in soma within the PCL of cerebellar cortex and
every unit of MNs shaped as pentagon. Every pentagon-shaped
mitochondrial unit seemed to be in a 2D plane. By handling and
rotating the VR, we further could find the hexagonal-shaped MNs
in soma seemed to be in a 2D plane. At the 50′′ of the movie,
we could see 4 white line-outlined hexagonal-shaped MNs in soma
within the PCL of cerebellar cortex, and every unit of MNs shaped as
pentagon again. By handling and rotating the VR, we could find the
hexagonal-shaped MNs in soma seemed to be in a 2D plane. In this
movie, we could number no less than 20 such hexagonal-shaped MNs,
which although located in different directions, surrounded around
the empty core which should be nuclei of Purkinje cells.

Supplementary Movie 4 showed the MNs in axons and all 141
images were corresponding to Figures 3G–I (in which the 4 axons
were marked as a1 – 4). From the 1′′ to 22′′ of the movie, the dashed
line outlined axon 3. The appeared handle in the picture indicated the
liner axons originating from the bottom of soma and sending through
to the GCL layer. The total length was about 15 µm. From the 23′′

to 33′′ of the movie, the dashed line outlined axon 4. The appeared
handle in the picture indicated the liner axons branched from the
shaft of axon 3 and sending through to the GCL layer. From the 34′′ to
46′′ of the movie, the picture was dragged even closer to enlarge axons
3 and 4. From the 47′′ to 1′05′′ of the movie, we could see the axon
3 contained bright green mitochondria-like slender structures (i.e.,
mitochondrial mesh described in the following parts), in addition,
these structures connected up and down, which made the MNs in
axons of PCs look like a string of knots one by one. From the 1′06′′

to 1′25′′ of the movie, we could see the axon 1 outlined by dashed
white line. The appeared handle in the picture retrogradely indicated
the liner axons sending through to the GCL layer and originated from
the bottom of the Purkinje cells’ soma. The bright green slender MNs
connected up and down and formed a string of green knots. From the
1′26′′ to the end of the movie, we could see the shorter axon 2 outlined
by dashed white line. The bright green slender MNs connected up and
down and formed a string of green knots.

3.5. Aivia’s AI-powered segmentation and
classifiers in front of step 4

Then by use of Aivia’s AI-powered segmentation, we for the first
time found that neuronal MNs were composed of the fundamental
units, named mitochondrial meshes.
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Figure 4A showed that, after Aivia’s AI-powered segmentation,
the MNs in the dendritic trees of Purkinje cells were transformed to
colorful meshes. These images were corresponding to Figures 3A–
C. The difference of colors did not indicate the difference of size,
but only represented the segmentation of different meshes. The
total number of mitochondrial meshes was 598. Accordingly, after
Aivia’s AI-powered segmentation, the MNs in the soma of PCs were
transformed to colorful meshes.

Figure 4C showed that, after Aivia’s AI-powered segmentation,
the MNs in the soma of Purkinje cells were transformed to colorful
meshes. These images were corresponding to Figures 3D–F. The total
number of mitochondrial meshes was 201.

Figure 4E showed that, after Aivia’s AI-powered segmentation,
the MNs in the axons of PCs were transformed to colorful meshes.
These images were corresponding to Figures 3G–I. It should be
indicated that the MNs in the axons could be divided into two types:
one type was named as silk-like axons because the mitochondrial
meshes connected to each other and formed a long liner line going
through the GCL; another type was named as granular-like axons
because the mitochondrial meshes distributed as an isolated island
and they did not connect each other. The total number of silk-like
mitochondrial meshes in axons was 236, while the total number of
granular-like mitochondrial meshes in axons was 710.

Then by use of Aivia’s AI-powered classifiers, we for the first
time calculated the parameters of surface area and volume of every
mitochondrial mesh. Table 1 showed the results of analysis of
mitochondrial meshes in different subcellular units of Purkinje cells
in PCs-Mito-GFP mice.

Figure 4B showed that after treatment by Aivia’s AI-powered
classifiers, all 598 mitochondrial meshes in the dendritic trees of
Purkinje cells were given a dark green pseudo-color. At the same
time, the mitochondrial meshes in the soma of Purkinje cells were
given a lake blue pseudo-color.

Figure 4D showed that after treatment by Aivia’s AI-powered
classifiers, all 201 mitochondrial meshes in the soma of were given
orange, or dark green, or lake color pseudo-color.

Figure 4F showed that after treatment by Aivia’s AI-powered
classifiers, all 236 silk-like mitochondrial meshes in the axons were
given green pseudo-color, while all 710 granular-like mitochondrial
meshes in the axons were given yellow pseudo-color.

Figure 4G showed the distribution trend of surface area and
volume of all 1,745 mitochondrial meshes. It could be found that the
meshes in granular-silk axons (pink) were concentrated within the
lower left corner of the statistical graph, which meant they had the
smallest size (Figure 4H). On the contrary, the meshes in dendritic
trees (blue) were concentrated within the upper right corner of the
statistical graph which meant they had the biggest size (Figure 4I).
And the meshes in soma (red) and silk-like axons (green) were
distributed in the middle of the graph.

Figure 4H showed when we calculated the smaller meshes with
the volume less than 2 µm3, most of these meshes were pink
mitochondrial meshes within the granular-silk axons. Figure 4I
showed when we calculated the biggest meshes with the volume more
than 2 µm3, most of these meshes were blue mitochondrial meshes
within the dendritic trees.

Figure 4J showed the surface area (µm2) was the biggest in
dendritic trees (45.30 ± 53.21), the smallest in granular-like axons
(3.99± 1.82), and in the middle in soma (27.81± 22.22) and silk-like
axons (17.50 ± 15.19). The values of mitochondrial meshes in four
groups showed statistically significantly (P < 0.001).

Figure 4K showed the volume (µm3) was also the biggest in
dendritic trees (9.97 ± 12.34), the smallest in granular-like axons
(0.43 ± 0.25), and in the middle in soma (6.26 ± 6.46) and silk-
like axons (3.52 ± 4.29). The values of mitochondrial meshes in four
groups showed statistically significantly.

Figure 4L showed the relationship between the number of
mitochondrial meshes and corresponding surface area. We could
find the most number of mitochondrial meshes whether in dendritic
trees (blue ball), or in soma (red square), or in silk-like axons (green
triangle) had the surface area of 20–30 µm2 (yellow part).

Figure 4M showed the relationship between the number of
mitochondrial meshes and corresponding volume. We could also
find the most number of mitochondrial meshes whether in dendritic
trees (blue ball), or in soma (red square), or in silk-like axons (green
triangle) had the volume of less than 10 µm3 (yellow part).

3.6. Step 4: Secondary immersive VR
observation

Supplementary Movie 5 showed the secondary immersive
VR with Aivia’s AI-powered segmentation but without classifiers
of meshed MNs in dendritic trees of PCs. All 89 images were
corresponding to Figures 2A–C. The left side of the movie showed
the primary VR; the right side showed the secondary VR after
Aivia’s AI-powered segmentation but without classifiers, which were
corresponding to Figure 4A. It could be achieved to drag, enlarge
and even step into the meshed MNs. We could see different colors
that did not indicate the size of mitochondrial meshes within the
dendritic trees of PCs, but represented the segmentation of meshes.
We observed the meshes connected head to end along the long axis,
so formed long chains.

Supplementary Movie 6 showed the secondary immersive VR
with both Aivia’s AI-powered segmentation and classifiers of meshed
MNs in dendritic trees of PCs, which were corresponding to
Supplementary Movie 5. All mitochondrial meshes in the dendritic
trees of PCs were given a dark green pseudo-color, and the
mitochondrial meshes in the soma of PCs were given a lake blue
pseudo-color. We further calculated the parameters of surface area
and volume of every mitochondrial mesh by using this data.

Supplementary Movie 7 showed the secondary immersive VR
with Aivia’s AI-powered segmentation but without classifiers of
meshed MNs in soma of PCs. All 93 images were corresponding to
Figures 3D–F. It showed the secondary VR after Aivia’s AI-powered
segmentation but without classifiers, which were corresponding
to Figure 4C. We observed the mitochondrial meshes within the
somatic bodies connected into pieces and formed a sponge-like
structure. It was interesting to find that these meshes looked like
a jigsaw puzzle due to their different colors and shapes. Each
mitochondrial mesh could be seen as a fundamental unit which
owned a main body and sent to no less than 5 short branches to
different directions for further connecting.

Supplementary Movie 8 showed the secondary immersive VR
with both Aivia’s AI-powered segmentation and classifiers of meshed
MNs in soma of PCs, which were corresponding to Supplementary
Movie 7. All mitochondrial meshes in the dendritic trees of PCs were
given a purple pseudo-color, and the mitochondrial meshes in the
soma of PCs were given a lake blue or deep red dark green pseudo-
color.
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FIGURE 4

Treatment of MNs by AI-powered segmentation and classifiers. (A) Showed after Aivia’s AI-powered segmentation but without classifiers, the MNs in the
dendritic trees of PCs were transformed to colorful meshes. These images were corresponding to Figures 3A–C. Difference of colors did not indicate
the difference of size, but only represented the segmentation of different meshed. The total number of mitochondrial meshes was 598. Bar = 10 µm. (B)
After treatment by Aivia’s AI-powered classifiers, all 598 mitochondrial meshes in the dendritic trees of PCs were given a dark green pseudo-color.
Bar = 10 µm. (C) After Aivia’s AI-powered segmentation but without classifiers, the MNs in the soma of PCs were transformed to colorful meshes. These
images were corresponding to Figures 2F, 3D. The total number of mitochondrial meshes was 201. Bar = 5 µm. (D) After treatment by Aivia’s AI-powered
classifiers, all 201 mitochondrial meshes in the soma of PCs were given orange, or dark green, or lake color pseudo-color. Bar = 5 µm. (E) After Aivia’s
AI-powered segmentation but without classifiers, the MNs in the axons of PCs were transformed to colorful meshes. These images were corresponding
to Figures 3G–I. It should be indicated that the MNs in the axons could be divided into two types: one type was named as silk-like axons because the
mitochondrial meshes connected to each other and formed a long liner line going through the GCL; another type was named as granular-like axons
because the mitochondrial meshes distributed as an isolated island and they did not connect each other. The total number of silk-like mitochondrial
meshes in axons was 236, while the total number of granular-like mitochondrial meshes in axons was 710. Bar = 10 µm. (F) After treatment by Aivia’s
AI-powered classifiers, all 236 silk-like mitochondrial meshes in the axons were given green pseudo-color, while all 710 granular-like mitochondrial
meshes in the axons were given yellow pseudo-color. Bar = 10 µm. (G) The relationship of surface area and volume of all 1,745 mitochondrial meshes,
including in granular-silk axons (pink), in dendritic trees (blue), in soma (red) and in silk-like axons (green), showed near-linear correlations. (H) The
relationship of surface area and volume of the smaller mitochondrial meshes with the volume less than 2 µm3. (I) The relationship of surface area and
volume of the bigger mitochondrial meshes with the volume more than 2 µm3. (J,K) The comparison of the surface area (µm2) (J) and volume (µm3) (K)
in dendritic trees (D), soma (S), silk-like axons (SA) and granular-like axons (GA). The values of mitochondrial meshes in four groups showed statistically
significantly. ∗Compared to the number in dendritic trees group; #compared to the number in soma group. &Compared to the number in silk-like axons
group. ∗Compared to the number in granular-like axons group. (L,M) The relationship between the number of mitochondrial meshes in dendritic trees
(blue ball), or in soma (red square), or in silk-like axons (green triangle), and corresponding surface area (L) or volume (M). Yellow part indicated the
distribution of the most number of mitochondrial meshes. Statistical analysis was performed by Kruskal-Wallis test. The data are shown as the mean ± SD.

Supplementary Movie 9 showed the secondary immersive VR
with Aivia’s AI-powered segmentation but without classifiers of
meshed MNs in axons of PCs. All 141 images were corresponding to
Figures 3E–H. It showed the secondary VR after Aivia’s AI-powered
segmentation but without classifiers, which were corresponding to
Figure 4E. It showed the mitochondrial meshes in the axons could be
divided into two types: one type was named as silk-like axons because
the mitochondrial meshes connected to each other just like them
in dendritic trees; another type was named as granular-like axons
because they were distributed as an isolated island.

Supplementary Movie 10 showed the secondary immersive VR
with both Aivia’s AI-powered segmentation and classifiers of meshed

MNs in axons of PCs, which were corresponding to Supplementary
Movie 9. All mitochondrial meshes in the soma of PCs were given a
deep red pseudo-color, and the silk-like mitochondrial meshes in the
axons were given a dark green pseudo-color, and the granular-like
mitochondrial meshes in the axons were given a yellow pseudo-color.

We also showed 50 pieces of VR images of mitochondrial meshes
within each group of dendritic trees (Supplementary Figure 2),
soma (Supplementary Figure 3) and axons (Supplementary
Figure 4), combined with the corresponding 3D ply files in
Supplementary Figures 2–4.

Based on these results, we put forward the hypothesis that
neuronal MNs were composed by regular meshes whose surface area
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and volume were the biggest in dendritic trees, the smallest in axons,
and moderate in soma.

3.7. Confirmation of the mitochondrial
mesh hypothesis by using the model of
simulating long-term pilot flight

It has been shown that after long-term professional training and
flight practice, pilots would acquire more skilled driving skills and
a much more precise sense of direction (Jillings et al., 2020). The
underlying mechanisms are closely related to neuroplasticity of the
adaptive structural and functional changes occurring in the brain,
especially in the cerebellum, which is able to deal with a microgravity
environment changes. However, this mechanism is still unclear. In
the present study, we designed the small animal overweight simulated
centrifuge machine and trained the PCs-Mito-GFP mice in these
machines. We compared the surface area and the volume of the
meshes of MNs in PCs in pre- and post-treatment group. Figures 5A–
F showed we used 4-step process described above composed of 2D
and 3D observation as well as primary and secondary AI-powered
VR to make the comparison. Table 2 showed the analysis results.
Figures 5G–M showed the surface area of mitochondrial meshes
within the dendritic tress increased significantly in the post-treatment
group (19.17 ± 12.48 µm2) when compared with that in the pre-
treatment group (14.93 ± 9.60 µm2) (P < 0.001); similarly, the
volume of mitochondrial meshes within the dendritic tress increased
significantly in the post-treatment group (5.41 ± 5.15 µm3) when
compared with that in the pre-treatment group (3.52 ± 3.30 µm3)
(P < 0.001). Figures 5N–T showed the surface area of mitochondrial
meshes within the soma increased significantly in the post-treatment
group (29.55 ± 24.39 µm2) when compared with that in the
pre-treatment group (23.20 ± 21.78 µm2) (P < 0.001); similarly,
the volume of mitochondrial meshes within the soma increased
significantly in the post-treatment group (9.86 ± 11.71 µm3) when
compared with that in the pre-treatment group (7.16 ± 9.91 µm3)
(P< 0.001). Thereafter we indicated the meshed neuronal MNs might
be the fundamental unit best for real-time fluctuated and complex
mitochondria function.

4. Discussion

In this report, we developed a framework to capture and analyze
the neuronal mitochondrial networks by using 4-step composed
of 2D and 3D observation, primary and secondary virtual reality
(VR) analysis, with the help of artificial intelligence (AI)-powered
Aivia segmentation and classifiers. The 4-step process allowed us
to propose that the neuronal mitochondrial networks might be
composed of regular mitochondrial meshes, and more importantly,
provide the detailed quantitative measurement of the two important
parameters of the surface area and the volume of neuronal
mitochondrial meshes, by using the generated PCs-Mito-GFP mice
in which the mitochondria specific within the cerebellar Purkinje cells
are labeled by GFP. The results showed that both the surface area and
the volume of mitochondrial meshes in Purkinje cells were the biggest
in dendritic trees, the smallest in granular-like axons, and moderate
in soma and silk-like axons. Moreover, both the surface area and the
volume of mitochondrial meshes in dendritic trees and soma within

the Purkinje cells in PCs-Mito-GFP mice, who were trained by the
simulating long-term pilot flight concentrating, showed significantly
increased. Hence we propose that the AI-powered segmentation
and classifiers, combined with the immersive VR reconstruction
could resolve the complicated neuronal mitochondrial networks into
discrete and quantifiable mitochondrial meshes, so as to achieve the
detailed morphological analysis of neuronal mitochondrial networks.

The morphology of mitochondrial networks (MNs), a term that
encompasses the branched, reticular structure of fused mitochondria
as well as the separate, punctate individual organelles within a
eukaryotic cell. Over the past decade, the significance of the
mitochondrial network has been increasingly appreciated, motivating
the development of various approaches to analyze it. Protocols
enabling imaging of mitochondrial morphological network are
currently available for both wide-field epifluorescence microscopy
and high-resolution laser scanning confocal microscopy (Mitra
and Lippincott-Schwartz, 2010; Chevrollier et al., 2012; Nikolaisen
et al., 2014; Ekanayake et al., 2015). A custom-built super-
resolution microscope has also been used to image submitochondrial
distribution of voltage-dependent anion channel isoforms, but only
in fixed cells (Neumann et al., 2010). Airyscan super-resolution
microscopy has been used for studying mitochondrial morphology
and dynamics in living tumor cells through analyzing mitochondrial
number and its volume (Kolossov et al., 2018). Valente et al.
(2017) have reported that the MiNA toolset, making use of existing
ImageJ plug-ins, allows for semi-automated analysis of mitochondrial
networks in cultured mammalian cells. MiNA converts the images
to binary and produces a morphological skeleton for calculating
nine parameters to quantitatively capture the morphology of
the mitochondrial network (Valente et al., 2017). Harwig et al.
(2018) have reported that the MitoGraph, an opensource image
analysis platform for measuring mitochondrial morphology based
on imageJ post-image processing, could successfully differentiate
between distinct mitochondrial morphologies that ranged from
entirely fragmented to hyper-elongated with use of confocal imaging.
Rohani et al. (2020) have reported a collection of independent
tools, Mito Hacker, which aims to process cellular mitochondrial
images at different levels of specificity; 2d Multi-cell RGB images,
2d single-cell RGB images, and 2d binary single-cell images. Mito
Hacker is developed in python 3.7 and uses 14 different python
libraries across different tools to analyze the images. Baptista and
De Bacco (2021) have proposed a principled optimization frame
model that outputs a network representing the topological structure
of mitochondrial network contained in the 2D confocal image.
Ilamathi et al. (2021) have developed Mitomate tracker, an algorithm
that takes advantage of mitochondrial network quantification tool
Momito, to which we combined two other tools: the ImageJ plugin,
Trackmate which allows nucleoid identification, and the R package,
spatstat which calculates point pattern distributions (Ouellet et al.,
2017; Tinevez et al., 2017). Fogo et al. (2021) have developed
a semi-automated image analysis pipeline for the quantitation
of mitochondrial morphology utilizing immunolabeling images as
well as serial block-face scanning electron microscopy. The above
methods are quantified by using Open Source software, imageJ or
manual operation. The main quantitative indicators are the number,
area, volume, and length of mitochondria. At the same time, the
observation of mitochondrial morphology by the above methods is
only limited to 2D plane, which makes the observation field limited.

Our research team has used VR technology for the first time
to observe mitochondria in PCs. The present AiviaVR offers
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TABLE 1 Analysis of mitochondrial meshes in different subcellular units of PC in PCs-Mito-GFP mice.

Location Number Surface area (µm2) Volume (µm3)

Max Min Average Max Min Average

Dendritic trees 598 742.98 0.00014 45.30± 53.21#&* 167.20 8.940e-005 9.97± 12.34#&*

Soma 201 136.50 3.53 27.81± 22.22*&* 47.95 0.42 6.26± 6.46*&*

Silk-like axons 236 130.20 4.57 17.50± 15.19*#* 32.77 0.53 3.52± 4.29*#*

Granular-like axons 710 11.89 1.70 3.99± 1.82*#& 1.63 0.11 0.43± 0.25*#&

*Significant comparison between the number in other three groups and the number in dendritic trees group.
#Significant comparison between the number in other three groups and the number in soma group.
&Significant comparison between the number in other three groups and the number in silk-like axons group.
*Significant comparison between the number in other three groups and the number in granular-like axons group.

FIGURE 5

Confirmation of the mitochondrial mesh hypothesis by using the model of simulating long-term pilot flight. (A) Panoramic view the whole brain of
PCs-Mito-GFP mice before or after the treatment of overweight centrifugal force. Bar = 1 mm. (B) Magnification of PCs from panel (A). Bar = 5 µm.
(C) 3D reconstruction view is observed by immersive VR. (D) The magnification showing the meshes in soma of PC. Bar = 20 µm. (E,F) The quantity of
mitochondria in dendritic trees and soma from PCs-Mito-GFP mice increases sharply after treatment with overweight centrifugal force. Bar = 5 µm.
(G) Scatter diagram of mitochondrial mesh in dendritic trees of PCs. (H,I) Scatter diagram of mitochondrial mesh, whose volume is smaller than 50 µm3

(H) or larger than 50 µm3 (I), in dendritic trees of PCs. (J,K) Frequent distribution showing the surface area (J) and volume (K) of mitochondrial mesh in
dendritic trees of PCs. (L,M) Quantification showing the surface area (L) and volume (M) of mitochondrial mesh in dendritic trees of PCs. The surface
area and volume of mitochondrial mesh in dendritic trees of PCs increased remarkably after treatment with overweight centrifugal force. (N) Scatter
diagram of mitochondrial mesh in soma of PCs. (O,P) Scatter diagram of mitochondrial mesh, whose volume is smaller than 50 µm3 (O) or larger than
50 µm3 (P), in soma of PCs. (Q,R) Frequent distribution showing the surface area (Q) and volume (R) of mitochondrial mesh in soma of PCs. (S,T)
Quantification showing the surface area (S) and volume (T) of mitochondrial mesh in soma of PCs. The surface area and volume of mitochondrial mesh
in soma of PCs increased remarkably after treatment with overweight centrifugal force. Mann-Whitney U-test was used for statistical analysis. The data
are shown as the mean ± SD.

an immersive, intuitive, and realistic experience for exploring
mitochondrial network imaging data, where real and virtual contents
were synthetically put together to demonstrate the user experience

of AiviaVR. While VR has not been widely used in neuroscience,
it is useful for biological problems, especially due to the intrinsic
multi-dimensional nature of many biological datasets, and has
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TABLE 2 Analysis of mitochondrial meshes in different subcellular units before or after simulated long-term pilot flight within PCs in PCs-Mito-GFP mice.

Pre-or post-treatment Location Number Surface area (µm2) Volume (µm3)

Max Min Average Max Min Average

Pre- Dendritic trees 2,544 90.91 3.13 14.93± 9.60* 42.51 0.20 3.52± 3.30*

Soma 789 163.30 3.43 23.20± 21.78* 72.62 0.33 7.16± 9.91*

Post- Dendritic trees 3,773 110.80 3.00 19.17± 12.48* 56.10 0.28 5.41± 5.15*

Soma 638 211.00 3.44 29.55± 24.39* 109.00 0.43 9.86± 11.71*

*Significant comparison between the number in pre- and post-simulated long-term pilot flight.

the potential to be integrated as the next standard protocol.
AiviaVR is among the first demonstration of such utility with
great potential. While immersive VR visualization of biological
surface objects and sometimes also imaging data were shown in
applications such as biological education and data analyses, there
is little existing work on developing open-source VR software
packages for very complicated and teravoxel-scale imaging datasets
such as the whole-brain imagery as we have introduced here. We
expect that AiviaVR can also be used to analyze other massive-
scale datasets, especially changes of mitochondrial network under
multiple stresses. We chose to focus on applying AiviaVR to
the single-neuron reconstruction of mitochondrial network for
two major reasons. First, currently no other alternative tools are
able to reconstruct the fine, complicated mitochondrial network
unambiguously in this way. Second, there has been little previous
work on streamlining the large-scale data production of the complete
mitochondrial network at single-neuron level at high precision
and scale. We have uploaded all of these AiviaVR databases on
our web of In order to provide an effective database for more
mitochondrial researchers.

It is the first time to make use of artificial intelligence
(AI)-powered Aivia segmentation an classifiers to study the
complicated neuronal mitochondrial networks. In front of step 4,
the segmentation and classifiers have been performed by using
Aivia, and then the continuous matrix lumen shaped mitochondria
networks could be converted to discrete neuronal mitochondrial
meshes. Aivia uses an artificial intelligence (AI)-based software
architecture to build a complete platform for two-dimensional to five-
dimensional image visualization, analysis, and data interpretation
that reliably processes and reconstructs highly complex images
in just a few minutes. AI-powered segmentation is based on
different convolutional neural network architectures to process
images. And AI-powered classification, employing object classifier,
is in terms of random forest. The Aivia’s AI is characterized by
enabling complex, difficult and time-consuming image processing
to be completed quickly, objectively and repeatably and efficiently,
even when the analyst does not have the relevant expertise. AI
is able to reliably process and reconstruct highly complex images
in just a few minutes. Thus, reliable and repeatable segmentation
results are generated to effectively and quickly realize 2D and 3D
image visualization and analysis. In the present research, Aivia’s
use of artificial intelligence will greatly improve our efficiency in
quantifying mitochondria.

Although mitochondria are often depicted as discrete organelles,
they actually form a highly dynamic and interconnected networks
that undergoes continuous remodeling through rounds of organelle
fusion and fission (Manfredi and Beal, 2007). Despite the mounting
evidence that mitochondrial networks or dynamic is necessary in

neurons, it has been unclear as to what exact shape they are. To
address such problem, previous researches have generated a set
of analysis systems allowing an unprecedented characterization of
the morphological phenotypes associated with the mitochondrial
network (Dempsey, 1956; Herndon, 1963; Landis, 1973; Martone
et al., 1993; Pham et al., 2012). Herndon (1963) has described
in 1963 that in the low power electron microscopic image of a
Purkinje cell, mitochondria can be seen scattered throughout the
cytoplasm along with numerous elements of granular endoplasmic
reticulum. Several mitochondria in close association with subsurface
cisterns are also seen (Herndon, 1963). Mitochondria in PCs
are generally sausage-shaped and in most instances the cristae
run at right angles to the long axis. Occasional irregular and
branched forms are seen. The mitochondria in the smaller dendritic
branches, on the other hand, tend to be more elongated and their
cristae usually run parallel to the long axis of the mitochondrion.
These elongated mitochondria are often helpful in identifying
the smaller dendritic branches of the PCs. Our present results
about the appearance of the profiles of mitochondrial networks
in the axons and dendritic trees of PCs are consistent with
previous report by Landis S C. that they are long and sinuous
cylinders (Landis, 1973). And the shapes of mitochondrial profiles
in the perikarya (soma) of normal PCs range from long and
ellipsoidal to small and circular with an average diameter of 0.42
µm. Landis (1973) has described the ultrastructural characteristic
of the mitochondria of cerebellar PCs. The interpretation most
consistent with the appearance of the profiles is that the
mitochondria are long, sinuous cylinders randomly oriented within
the cell body. Ten such mitochondria in the primary dendrite
of a 15-day normal mouse had an average length of 3.96 µm
and an average width of 0.50 µm. In the present immersive
AiviaVR study, the mitochondria in dendritic trees are cylinders,
each one has an approximate volume of 0.78 µm3. Pham
et al. (2012) have generated the mouse line of photo-activatable
mitochondria (PhAM). In the PhAMfloxed line, a mitochondrial
localized version of the photo-convertible fluorescent protein
Dendra2 (mito-Dendra2) is targeted to the ubiquitously expressed
Rosa26 locus, along with an upstream loxP-flanked termination
signal. Then they crossed PhAMfloxed mice with the Pcp2-Cre
line, which drives Cre expression in Purkinje cells (PCs) of the
cerebellum.

But there are some limitations here. One is the lack of
collaborative interaction, so in fact, the description is still
subjective and cannot be quantified. Second, light microscope
observation cannot avoid the false results due to light-induced
diffraction. Third, the combination of light microscope and electron
microscope should be more reliable to reveal the mitochondrial
network in the future.
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5. Conclusion

The present study created a four-step observational system of
2D/3D/primary VR/secondary VR to provide immersive evaluation
of mitochondrial networks. The results of knot-like connected
mitochondrial network within the axons and the dendritic trees,
as well as the hexagonal two-dimensional unit for mitochondrial
network within the soma, implies the further great effort should
be addressed to elucidate the mitochondrial network. Future issues
contain: 1. How does the mitochondrial network respond to multiple
stresses? 2. How are different shapes of mitochondrial network form?
3. How does the mitochondrial network change in the absence of
important mitochondrial dynamic factors, including fission factors
of Drp1, Fis1, and fusion factors of Mfn1, Mfn2...?

Data availability statement

The original contributions presented in this study are included in
the article/Supplementarymaterial, further inquiries can be directed
to the corresponding authors.

Ethics statement

The animal study was reviewed and approved by the Animal Care
and Use Committee of the Air Force Military Medical University.

Author contributions

Y-YW, Y-LY, FT, and LW designed the experiments. S-JL, HL,
and F-FW conducted the experiments. HL, D-YF, and SZ conducted
the part of AI-classification and VR-observation. S-JL, HL, and JZ
analyzed the data and drew the figures. Y-YW, S-JL, and HL wrote
the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (81870415) to Y-LY, the Xijing Hospital

Boosting Plan (XJZT19Z29) to Y-LY, the Military Medicine Upgrade
Program of Air Force Military Medical University (2020SWAQ04)
to Y-YW, the Health Services Project of Air Force Military
Medical University (21WQ023) to Y-YW, the Project of Science
and Technology to Improve the Combat Effectiveness of School
Flight Personnel (2019ZTC03), and the Open Project of State Key
Laboratory of Military Stomatology (2018KA01) to Y-YW.

Acknowledgments

This manuscript has not been published and is not under
consideration for publication elsewhere. Our manuscript has
been reviewed by Prof. Jia-Yong Fan who is devoted to the
Foreign Language Teaching and Research department of Air
Force Medical University and Sheng-Xi Wu who devoted
himself to the Department of Neurobiology of Air Force
Medical University.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.1059965/
full#supplementary-material

References

Anzell, A. R., Maizy, R., Przyklenk, K., and Sanderson, T. H. (2018). Mitochondrial
quality control and disease: Insights into ischemia-reperfusion injury. Mol. Neurobiol.
55, 2547–2564. doi: 10.1007/s12035-017-0503-9

Baptista, D., and De Bacco, C. (2021). Principled network extraction from images.
R. Soc. Open Sci. 8:210025. doi: 10.1098/rsos.210025

Barnhart, E. L. (2016). Mechanics of mitochondrial motility in neurons. Curr. Opin.
Cell Biol. 38, 90–99. doi: 10.1016/j.ceb.2016.02.022

Benda, C. (1898). Ueber die spermatogenese der vertebraten und höherer evertebraten,
II. theil: Die histiogenese der spermien. Arch. Anat. Physiol 73, 393–398.

Burté, F., Carelli, V., Chinnery, P. F., and Yu-Wai-Man, P. (2015). Disturbed
mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24.
doi: 10.1038/nrneurol.2014.228

Chevrollier, A., Cassereau, J., Ferré, M., Alban, J., Desquiret-Dumas, V., Gueguen, N.,
et al. (2012). Standardized mitochondrial analysis gives new insights into mitochondrial
dynamics and OPA1 function. Int. J. Biochem. Cell Biol. 44, 980–988. doi: 10.1016/j.biocel.
2012.03.006

Dempsey, E. W. (1956). Variations in the structure of mitochondria. J. Biophys.
Biochem. Cytol. 2(Suppl. 4), 305–312. doi: 10.1083/jcb.2.4.305

Ekanayake, S. B., El Zawily, A. M., Paszkiewicz, G., Rolland, A., and Logan, D. C.
(2015). Imaging and analysis of mitochondrial dynamics in living cells. Methods Mol.
Biol. 1305, 223–240. doi: 10.1007/978-1-4939-2639-8_16

Fogo, G. M., Anzell, A. R., Maheras, K. J., Raghunayakula, S., Wider, J. M., Emaus,
K. J., et al. (2021). Machine learning-based classification of mitochondrial morphology in
primary neurons and brain. Sci. Rep. 11:5133. doi: 10.1038/s41598-021-84528-8

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1059965
https://www.frontiersin.org/articles/10.3389/fnins.2023.1059965/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1059965/full#supplementary-material
https://doi.org/10.1007/s12035-017-0503-9
https://doi.org/10.1098/rsos.210025
https://doi.org/10.1016/j.ceb.2016.02.022
https://doi.org/10.1038/nrneurol.2014.228
https://doi.org/10.1016/j.biocel.2012.03.006
https://doi.org/10.1016/j.biocel.2012.03.006
https://doi.org/10.1083/jcb.2.4.305
https://doi.org/10.1007/978-1-4939-2639-8_16
https://doi.org/10.1038/s41598-021-84528-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1059965 January 28, 2023 Time: 14:42 # 16

Li et al. 10.3389/fnins.2023.1059965

Fukumitsu, K., Hatsukano, T., Yoshimura, A., Heuser, J., Fujishima, K., and Kengaku,
M. (2016). Mitochondrial fission protein Drp1 regulates mitochondrial transport and
dendritic arborization in cerebellar Purkinje cells. Mol. Cell. Neurosci. 71, 56–65. doi:
10.1016/j.mcn.2015.12.006

Harada, K., Nakato, K., Yarimizu, J., Yamazaki, M., Morita, M., Takahashi, S., et al.
(2012). A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-
phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in
animal models of cognitive impairment in schizophrenia and Alzheimer’s disease. Eur.
J. Pharmacol. 685, 59–69. doi: 10.1016/j.ejphar.2012.04.013

Harris, J. J., Jolivet, R., and Attwell, D. (2012). Synaptic energy use and supply. Neuron
75, 762–777. doi: 10.1016/j.neuron.2012.08.019

Hartmann, J. F. (1956). Electron microscopy of mitochondria in the central nervous
system. J. Biophys. Biochem. Cytol. 2(Suppl. 4), 375–378. doi: 10.1083/jcb.2.4.375

Harwig, M. C., Viana, M. P., Egner, J. M., Harwig, J. J., Widlansky, M. E., Rafelski, S. M.,
et al. (2018). Methods for imaging mammalian mitochondrial morphology: A prospective
on MitoGraph. Anal. Biochem. 552, 81–99. doi: 10.1016/j.ab.2018.02.022

Herndon, R. M. (1963). The fine structure of the Purkinje cell. J. Cell Biol. 18, 167–180.
doi: 10.1083/jcb.18.1.167

Hintiryan, H., Bowman, I., Johnson, D. L., Korobkova, L., Zhu, M., Khanjani, N., et al.
(2021). Connectivity characterization of the mouse basolateral amygdalar complex. Nat.
Commun. 12:2859. doi: 10.1038/s41467-021-22915-5

Ilamathi, H. S., Ouellet, M., Sabouny, R., Desrochers-Goyette, J., Lines, M. A., Pfeffer,
G., et al. (2021). A new automated tool to quantify nucleoid distribution within
mitochondrial networks. Sci. Rep. 11:22755. doi: 10.1038/s41598-021-01987-9

Jillings, S., Van Ombergen, A., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L.,
Nosikova, I., et al. (2020). Macro- and microstructural changes in cosmonauts’ brains
after long-duration spaceflight. Sci. Adv. 6:eaaz9488. doi: 10.1126/sciadv.aaz9488

Kolossov, V. L., Sivaguru, M., Huff, J., Luby, K., Kanakaraju, K., and Gaskins,
H. R. (2018). Airyscan super-resolution microscopy of mitochondrial morphology and
dynamics in living tumor cells. Microsc. Res. Tech. 81, 115–128. doi: 10.1002/jemt.22968

Kumar, R., Bukowski, M. J., Wider, J. M., Reynolds, C. A., Calo, L., Lepore, B., et al.
(2016). Mitochondrial dynamics following global cerebral ischemia. Mol. Cell. Neurosci.
76, 68–75. doi: 10.1016/j.mcn.2016.08.010

Landis, S. C. (1973). Ultrastructural changes in the mitochondria of cerebellar Purkinje
cells of nervous mutant mice. J. Cell Biol. 57, 782–797. doi: 10.1083/jcb.57.3.782

Leonard, A. P., Cameron, R. B., Speiser, J. L., Wolf, B. J., Peterson, Y. K.,
Schnellmann, R. G., et al. (2015). Quantitative analysis of mitochondrial morphology and
membrane potential in living cells using high-content imaging, machine learning, and
morphological binning. Biochim. Biophys. Acta 1853, 348–360. doi: 10.1016/j.bbamcr.
2014.11.002

Lewis, M. R., and Lewis, W. H. (1914). MITOCHONDRIA IN TISSUE CULTURE.
Science 39, 330–333. doi: 10.1126/science.39.1000.330

Lihavainen, E., Mäkelä, J., Spelbrink, J. N., and Ribeiro, A. S. (2012). Mytoe:
Automatic analysis of mitochondrial dynamics. Bioinformatics 28, 1050–1051. doi: 10.
1093/bioinformatics/bts073

Manfredi, G., and Beal, M. F. (2007). Merging mitochondria for neuronal survival. Nat.
Med. 13, 1140–1141. doi: 10.1038/nm1007-1140

Martone, M. E., Zhang, Y., Simpliciano, V. M., Carragher, B. O., and Ellisman,
M. H. (1993). Three-dimensional visualization of the smooth endoplasmic reticulum in
Purkinje cell dendrites. J. Neurosci. 13, 4636–4646. doi: 10.1523/jneurosci.13-11-04636.
1993

Mitra, K., and Lippincott-Schwartz, J. (2010). Analysis of mitochondrial dynamics
and functions using imaging approaches. Curr. Protoc. Cell Biol. Chapter 4:Unit–4.2521.
doi: 10.1002/0471143030.cb0425s46

Moore, A. S., Wong, Y. C., Simpson, C. L., and Holzbaur, E. L. (2016).
Dynamic actin cycling through mitochondrial subpopulations locally regulates the

fission-fusion balance within mitochondrial networks. Nat. Commun. 7:12886. doi: 10.
1038/ncomms12886

Napper, R. M., and Harvey, R. J. (1988). Quantitative study of the Purkinje cell
dendritic spines in the rat cerebellum. J. Comp. Neurol. 274, 158–167. doi: 10.1002/cne.
902740203

Neumann, D., Bückers, J., Kastrup, L., Hell, S. W., and Jakobs, S. (2010). Two-color
STED microscopy reveals different degrees of colocalization between hexokinase-I and
the three human VDAC isoforms. PMC Biophys. 3:4. doi: 10.1186/1757-5036-3-4

Nikolaisen, J., Nilsson, L. I., Pettersen, I. K., Willems, P. H., Lorens, J. B., Koopman,
W. J., et al. (2014). Automated quantification and integrative analysis of 2D and 3D
mitochondrial shape and network properties. PLoS One 9:e101365. doi: 10.1371/journal.
pone.0101365

Nunnari, J., and Suomalainen, A. (2012). Mitochondria: In sickness and in health. Cell
148, 1145–1159. doi: 10.1016/j.cell.2012.02.035

Ouellet, M., Guillebaud, G., Gervais, V., Lupien St-Pierre, D., and Germain, M. (2017).
A novel algorithm identifies stress-induced alterations in mitochondrial connectivity
and inner membrane structure from confocal images. PLoS Comput. Biol. 13:e1005612.
doi: 10.1371/journal.pcbi.1005612

Pham, A. H., McCaffery, J. M., and Chan, D. C. (2012). Mouse lines with photo-
activatable mitochondria to study mitochondrial dynamics. Genesis 50, 833–843. doi:
10.1002/dvg.22050

Prieto, J., León, M., Ponsoda, X., Sendra, R., Bort, R., Ferrer-Lorente, R., et al.
(2016). Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission
necessary for cell reprogramming. Nat. Commun. 7:11124. doi: 10.1038/ncomms
11124

Rohani, A., Kashatus, J. A., Sessions, D. T., Sharmin, S., and Kashatus, D. F.
(2020). Mito Hacker: A set of tools to enable high-throughput analysis of
mitochondrial network morphology. Sci. Rep. 10:18941. doi: 10.1038/s41598-020-7
5899-5

Song, W., Bossy, B., Martin, O. J., Hicks, A., Lubitz, S., Knott, A. B., et al.
(2008). Assessing mitochondrial morphology and dynamics using fluorescence wide-field
microscopy and 3D image processing. Methods 46, 295–303. doi: 10.1016/j.ymeth.2008.
10.003

Tang, J., Hu, Z., Tan, J., Yang, S., and Zeng, L. (2016). Parkin protects against oxygen-
glucose deprivation/reperfusion insult by promoting Drp1 Degradation. Oxid. Med. Cell.
Longev. 2016:8474303. doi: 10.1155/2016/8474303

Tinevez, J. Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E.,
et al. (2017). TrackMate: An open and extensible platform for single-particle tracking.
Methods 115, 80–90. doi: 10.1016/j.ymeth.2016.09.016

Tronstad, K. J., Nooteboom, M., Nilsson, L. I., Nikolaisen, J., Sokolewicz, M., Grefte,
S., et al. (2014). Regulation and quantification of cellular mitochondrial morphology
and content. Curr. Pharm. Des. 20, 5634–5652. doi: 10.2174/13816128206661403052
30546

Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., et al.
(2006). Tagging and tracking individual networks within a complex mitochondrial web
with photoactivatable GFP. Am. J. Physiol. Cell Physiol. 291, C176–C184. doi: 10.1152/
ajpcell.00348.2005

Valente, A. J., Maddalena, L. A., Robb, E. L., Moradi, F., and Stuart, J. A. (2017).
A simple ImageJ macro tool for analyzing mitochondrial network morphology in
mammalian cell culture. Acta Histochem. 119, 315–326. doi: 10.1016/j.acthis.2017.
03.001

Youle, R. J., and van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress.
Science 337, 1062–1065. doi: 10.1126/science.1219855

Zhang, X. M., Ng, A. H., Tanner, J. A., Wu, W. T., Copeland, N. G., Jenkins, N. A.,
et al. (2004). Highly restricted expression of Cre recombinase in cerebellar Purkinje cells.
Genesis 40, 45–51. doi: 10.1002/gene.20062

Frontiers in Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1059965
https://doi.org/10.1016/j.mcn.2015.12.006
https://doi.org/10.1016/j.mcn.2015.12.006
https://doi.org/10.1016/j.ejphar.2012.04.013
https://doi.org/10.1016/j.neuron.2012.08.019
https://doi.org/10.1083/jcb.2.4.375
https://doi.org/10.1016/j.ab.2018.02.022
https://doi.org/10.1083/jcb.18.1.167
https://doi.org/10.1038/s41467-021-22915-5
https://doi.org/10.1038/s41598-021-01987-9
https://doi.org/10.1126/sciadv.aaz9488
https://doi.org/10.1002/jemt.22968
https://doi.org/10.1016/j.mcn.2016.08.010
https://doi.org/10.1083/jcb.57.3.782
https://doi.org/10.1016/j.bbamcr.2014.11.002
https://doi.org/10.1016/j.bbamcr.2014.11.002
https://doi.org/10.1126/science.39.1000.330
https://doi.org/10.1093/bioinformatics/bts073
https://doi.org/10.1093/bioinformatics/bts073
https://doi.org/10.1038/nm1007-1140
https://doi.org/10.1523/jneurosci.13-11-04636.1993
https://doi.org/10.1523/jneurosci.13-11-04636.1993
https://doi.org/10.1002/0471143030.cb0425s46
https://doi.org/10.1038/ncomms12886
https://doi.org/10.1038/ncomms12886
https://doi.org/10.1002/cne.902740203
https://doi.org/10.1002/cne.902740203
https://doi.org/10.1186/1757-5036-3-4
https://doi.org/10.1371/journal.pone.0101365
https://doi.org/10.1371/journal.pone.0101365
https://doi.org/10.1016/j.cell.2012.02.035
https://doi.org/10.1371/journal.pcbi.1005612
https://doi.org/10.1002/dvg.22050
https://doi.org/10.1002/dvg.22050
https://doi.org/10.1038/ncomms11124
https://doi.org/10.1038/ncomms11124
https://doi.org/10.1038/s41598-020-75899-5
https://doi.org/10.1038/s41598-020-75899-5
https://doi.org/10.1016/j.ymeth.2008.10.003
https://doi.org/10.1016/j.ymeth.2008.10.003
https://doi.org/10.1155/2016/8474303
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.2174/1381612820666140305230546
https://doi.org/10.2174/1381612820666140305230546
https://doi.org/10.1152/ajpcell.00348.2005
https://doi.org/10.1152/ajpcell.00348.2005
https://doi.org/10.1016/j.acthis.2017.03.001
https://doi.org/10.1016/j.acthis.2017.03.001
https://doi.org/10.1126/science.1219855
https://doi.org/10.1002/gene.20062
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Meshed neuronal mitochondrial networks empowered by AI-powered classifiers and immersive VR reconstruction
	Highlights
	1. Introduction
	2. Materials and methods
	2.1. Construction of the PCs-Mito-GFP mouse line
	2.2. Confirmation of the PCs-Mito-GFP mouse line
	2.3. The framework of 4-step process
	2.3.1. Step 1: 2D images of MNs
	2.3.2. Step 2: 3D images of MNs
	2.3.3. Step 3: Primary immersive VR observation
	2.3.4. Step 4: Secondary immersive VR observation

	2.4. Centrifuge simulating long-term pilot flight
	2.5. Statistical analysis

	3. Results
	3.1. Construction of GFP-Mito tagfloxed and PCs-Mito-GFP mouse lines
	3.2. Step 1: 2D images of MNs
	3.3. Step 2: 3D images of MNs
	3.4. Step 3: Primary immersive VR observation
	3.5. Aivia's AI-powered segmentation and classifiers in front of step 4
	3.6. Step 4: Secondary immersive VR observation
	3.7. Confirmation of the mitochondrial mesh hypothesis by using the model of simulating long-term pilot flight

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


