
TYPE Original Research

PUBLISHED 06 April 2023

DOI 10.3389/fnins.2023.1047008

OPEN ACCESS

EDITED BY

Yiran Chen,

Duke University, United States

REVIEWED BY

Fangxin Liu,

Shanghai Jiao Tong University, China

Guoqi Li,

Tsinghua University, China

*CORRESPONDENCE

Khaled Nabil Salama

khaled.salama@kaust.edu.sa

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 17 September 2022

ACCEPTED 20 March 2023

PUBLISHED 06 April 2023

CITATION

Guo W, Fouda ME, Eltawil AM and Salama KN

(2023) E�cient training of spiking neural

networks with temporally-truncated local

backpropagation through time.

Front. Neurosci. 17:1047008.

doi: 10.3389/fnins.2023.1047008

COPYRIGHT

© 2023 Guo, Fouda, Eltawil and Salama. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

E�cient training of spiking neural
networks with
temporally-truncated local
backpropagation through time

Wenzhe Guo1,2, Mohammed E. Fouda3, Ahmed M. Eltawil2,3 and

Khaled Nabil Salama1*

1Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and

Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and

Technology, Thuwal, Saudi Arabia, 2Communication and Computing Systems Lab, Computer, Electrical

and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and

Technology, Thuwal, Saudi Arabia, 3Center for Embedded & Cyber-Physical Systems, University of

California, Irvine, Irvine, CA, United States

Directly training spiking neural networks (SNNs) has remained challenging due to

complex neural dynamics and intrinsic non-di�erentiability in firing functions. The

well-known backpropagation through time (BPTT) algorithm proposed to train

SNNs su�ers from large memory footprint and prohibits backward and update

unlocking, making it impossible to exploit the potential of locally-supervised

training methods. This work proposes an e�cient and direct training algorithm

for SNNs that integrates a locally-supervised training method with a temporally-

truncated BPTT algorithm. The proposed algorithm explores both temporal and

spatial locality in BPTT and contributes to significant reduction in computational

cost including GPU memory utilization, main memory access and arithmetic

operations. We thoroughly explore the design space concerning temporal

truncation length and local training block size and benchmark their impact on

classification accuracy of di�erent networks running di�erent types of tasks. The

results reveal that temporal truncation has a negative e�ect on the accuracy of

classifying frame-based datasets, but leads to improvement in accuracy on event-

based datasets. In spite of resulting information loss, local training is capable

of alleviating overfitting. The combined e�ect of temporal truncation and local

training can lead to the slowdown of accuracy drop and even improvement in

accuracy. In addition, training deep SNNs’ models such as AlexNet classifying

CIFAR10-DVS dataset leads to 7.26% increase in accuracy, 89.94% reduction in

GPU memory, 10.79% reduction in memory access, and 99.64% reduction in

MAC operations compared to the standard end-to-end BPTT. Thus, the proposed

method has shown high potential to enable fast and energy-e�cient on-chip

training for real-time learning at the edge.

KEYWORDS

backpropagation through time, deep learning, energy-e�cient training, local learning,

neuromorphic computing, spiking neural networks

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1047008
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1047008&domain=pdf&date_stamp=2023-04-06
mailto:khaled.salama@kaust.edu.sa
https://doi.org/10.3389/fnins.2023.1047008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1047008/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

1. Introduction

In recent years, deep learning surged as a method for solving

various complex tasks, such as visual processing (Li Z. et al.,

2021), language processing (Young et al., 2018), object detection

(Zhao et al., 2019), and medical diagnostics (Mahmud et al.,

2018), making it the most promising and dominant approach.

The remarkable performance of deep learning comes at the

expense of substantial energy consumption resulting from intensive

full-precision matrix multiply-accumulate (MAC) operations in

artificial neural networks (ANNs). This drawback holds back deep

learning algorithms from being deployed in resource-constrained

platforms, such as edge devices. Inspired by the biological nervous

system, spiking neural networks (SNNs) have attracted ever-

growing attention from research communities for their superior

energy efficiency to ANNs. Information in SNNs is transmitted and

processed on the occurrence of a spike or an event. The large spike

sparsity and simple synaptic operations in SNNs give rise to low

energy consumption. SNNs have been explored in a broad range

of applications, such as pattern recognition (Guo et al., 2021; Yu

et al., 2021), object detection (Kim et al., 2020), navigation (Beyeler

et al., 2015), and motor control (Naveros et al., 2020). Based on

SNNs, neuromorphic computing systems have been proposed as an

alternative computing paradigm to the traditional Von Neumann

systems (Davies et al., 2018; Abderrahmane et al., 2020; Höppner

et al., 2021).

Training SNNs has been a significant challenge in exploiting

the full potential of SNNs due to complex neural dynamics and

discontinuous spikes (Tavanaei et al., 2019). The lack of efficient

and effective training algorithm limits the use of SNNs in complex

real-world tasks. Existing training algorithms can be categorized

into two general approaches: indirect training and direct training.

The indirect training relies on the conversion from a well-trained

ANN model to an architecturally equivalent SNN model. The

learned parameters in the DNN are directly transferred to the

SNN, while the activations in the DNN corresponds to the firing

rates of SNN neurons (Diehl et al., 2015; Sengupta et al., 2019;

Wu et al., 2021). The conversion-based method generally requires

a high inference latency to reach comparable accuracy to the

equivalent ANNs. Although recent efforts managed to reduce the

inference latency by tens to hundreds of times, the inference is still

slower than direct training methods (Ding et al., 2021; Liu et al.,

2022; Meng et al., 2022). Since the conversion is based on ANNs,

the converted SNNs cannot directly process neuromorphic data.

Moreover, only the inference phase is performed in SNNs, so this

method is not able to effectively exploit the rich temporal dynamics

of SNNs and provides little insight into the underlying training

mechanism of biological brains. Direct training methods can be

categorized into unsupervised and supervised approaches. The

unsupervised training methods, such as spike-timing-dependent

plasticity (STDP), are inspired by the biological nervous systems,

modifying weights in terms of local synaptic activities (Bi and

Poo, 1998). Without supervision signals, these methods exhibit

inferior performance (Diehl and Cook, 2015; Kheradpisheh et al.,

2018; Srinivasan et al., 2018). The supervised training methods are

mainly based on gradient descent optimization, such as SpikeProp

(Bohté et al., 2000) and Tempotron (Gütig and Sompolinsky, 2006).

STDP was also incorporated in gradient-descent-based methods

for different purposes, such as pre-training (Lee et al., 2018), fine

tuning (Furuya and Ohkubo, 2021), and efficient local weight

updates (Tavanaei and Maida, 2019; Liu et al., 2021). Different

supervised training mechanisms were derived from different neural

coding schemes, such as rate coding and time-to-first-spike coding.

The temporal-coding based methods consider the exact firing time

of the first spike as the essential information and compute a

loss between the exact time and the desired time (Kheradpisheh

and Masquelier, 2020; Mirsadeghi et al., 2021; Park and Yoon,

2021). Whereas, rate-coding based training performs optimization

based on firing rates. One type of such methods derives a transfer

function that formularizes the accumulated effect of spikes, like

firing activity or rate, from the event-based update of membrane

potential (Lee et al., 2016, 2020; Jin et al., 2018). Due to the

similarity between SNNs and recurrent neural networks (RNNs),

it is not surprising that the training algorithm, backpropagation

through time (BPTT), used in RNNs can be borrowed for SNNs (He

et al., 2020). The training process is depicted in Figure 1A. During

the forward process, neural states in SNNs are iteratively updated

with both spatial and temporal inputs throughout the whole time

window. The backward process starts at the end of the training

window when the loss function is computed. BPTT has been

demonstrated to be very effective in training SNNs by considering

the spatio-temporal dynamics (Shrestha and Orchard, 2018; Wu

et al., 2018, 2019; Deng et al., 2020; Kim and Panda, 2021; Zheng

et al., 2021). SNNs trained with BPTT closely approach ANNs in

classification performance on various datasets. More importantly,

BPTT allows SNNs to be scaled to very deep networks (50 layers)

and hence empowers SNNs to solvemore complex tasks. Compared

with the conversion-based methods, direct training methods can

also achieve comparable accuracy to ANNs on various frame-

based datasets and even better accuracy on neuromorphic datasets.

The simulation latency can be effectively reduced to a few time

steps while competitive accuracy is retained. Direct training can

be applied under different neural coding methods in SNNs, such

as time-to-first-spike coding, to realize very efficient training and

inference. Additionally, it provides a way for real-time on-chip

learning at the edge.

Typically, in the standard BP algorithm, errors are propagated

backward in a layer-by-layer fashion to update training parameters.

The activation values need to be saved during the forward pass

and read out for parameter updates during the backward pass.

Despite the effectiveness of the standard BP algorithm, the network

suffers from frequent memory access, computational inefficiency,

and long training time. Thus, various local BP (LBP) algorithms

were proposed to tackle the aforementioned issues (Marquez et al.,

2018; Mostafa et al., 2018; Nøkland and Eidnes, 2019; Wang et al.,

2021). An example of the block-wise LBP training is illustrated in

Figure 1B. The LBP algorithms attach a classifier to a block of layers

(or a single layer) in the network and train each block separately

and simultaneously. Since training happens locally, intermediate

states can be saved in buffers temporally before parameter updates,

eliminating the need for memory storage and access (Mostafa et al.,

2018). Moreover, LBP divides the whole network into gradient-

isolated modules, making the hardware design scalable because the

network can be built by cascading the same local training module.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 1

(A) Training SNNs with backpropagation through time. Training processes are unfolded in time. (B) Training SNNs with local backpropagation. Each

node represents a spiking neuron layer where l is the layer index, i is the neuron index, u is the membrane potential, and s is the spike. W is weights

between layers in the main network and G is the weights between a network layer and a local classifier. L is a loss function.

FIGURE 2

Training process of an SNN with temporally-truncated local BPTT unfolded in time. In this illustration, the length of the truncation interval and local

block are both 2. The forward and backward update flows are indicated by the blue and red arrows, respectively. The update flows in time (dashed

arrows) are only depicted for the top layer for clarity. W represents the weights between layers in the main network, and G is the weights between

local blocks and classifiers.

However, LBP suffers from inferior performance compared to the

standard BP because of information loss (Wang et al., 2021). Few

works have considered LBP in SNNs. Kaiser et al. demonstrated

the effectiveness of LBP in SNNs (Kaiser et al., 2020). In his work,

a classifier with random weights was attached to each layer. The

networks were trained by approximate BP with a surrogate gradient

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

for the firing function at each time step. Temporal dependency in

the backward update was completely ignored because of intractable

gradient computation in the algorithm. Although competitive

classification performance was achieved on one dataset against the

state-of-the-art works, the method required to learn each input

image in a very long time window, 500 time steps. This work

failed to provide a fair comparison against the BPTT algorithm

and generalize the effectiveness of the proposed training algorithm

to deeper networks and complex datasets. Ma et al. experimented

layerwise local training in spike-based BPTT to train SNNs (Ma

et al., 2021). Good performance was achieved in various tasks

but at the expense of high computational cost. Different from the

discussed LBP, other forms of local training were also reported

in SNNs (Kheradpisheh et al., 2018; Srinivasan et al., 2018;

Tavanaei and Maida, 2019; Liu et al., 2021; Mirsadeghi et al.,

2021). STDP performs weight updates based on the correlation

between presynaptic spikes and postsynaptic spikes without the

need for global signals. It is a simple and hardware-friendly

training algorithm. In Kheradpisheh et al. (2018) and Srinivasan

et al. (2018), the unsupervised STDP learning rule was applied

in convolutional networks and achieved good accuracy on simple

tasks, such as MNIST. However, it was limited to shallow networks.

The work in Mirsadeghi et al. (2021) proposed a gradient descent

algorithm that utilized the time-to-first-spike coding and trained

neurons at each layer to fire at desired times. Weights were updated

by using a local gradient descent formula by computing a local

loss function between the actual firing times and the desired firing

times. However, the desired firing times at each layer needed

to be computed through a global error backpropagation process.

Thus, overall, this method cannot achieve fully local updates.

In contrast, the LBP used in our work utilized rate coding and

trained the neurons at each layer to reach desired firing rates. The

loss function was computed between local predictions and labels.

There was no error backpropagation between layers. Following

the same temporal-coding-based training algorithm, Liu et al.

(2021) applied the STDP local learning mechanism to approximate

the gradients of firing times with respect to the weights, i.e.,

∂tl/∂wl, and the BPmechanism for error propagation. This training

algorithm benefited from the STDP for local feature extraction

and efficient weight updates. With global feedback enabled by the

BP process, it achieved comparable accuracy to the state-of-the-

art methods on different datasets. However, the complete gradients

still relied on the errors backpropagated from the subsequent

layers. It cannot solve the aforementioned issues of the end-to-end

BP. Tavanaei and Maida (2019) proposed a temporally local and

efficient STDP-based training algorithm. By comparing IF neurons

to ReLU neurons, this method applied the BP mechanism to enable

gradient descent optimization. It also incorporated STDP and

anti-STDP learning mechanisms for weight update computation.

However, in the spatial dimension, it still followed the end-to-end

BP process to propagate the errors. Since the LBP method utilizes

only local information without any global feedback and has been

proven to be efficient and scalable in training, this work conducts

detailed investigations into the performance of the LBP with the

BPTT algorithm.

The BPTT algorithm dictates that the backward pass can

only happen after the network moves forward throughout the

whole time window. It requires the network to store the time

evolutions of neural states, as the backward pass needs them

to compute gradients at each step, which incurs a substantial

memory footprint. The accumulation of gradients in a long time

window can cause gradient exploding issues (Pascanu et al., 2013).

When the local training method is applied together with BPTT in

SNNs, the backward pass does not need the spatial gradients to

be backpropagated from the next block, but it needs the temporal

gradients to be backpropagated in time. So the backward pass

has to wait for the forward pass to finish. Except for the last

time step, the intermediate states cannot be saved in the buffer

on chip, because it would not be used immediately. They have

to be saved in the external memory and accessed during the

backward pass. As a result, LBP loses its advantage over standard

BP. Inspired from the idea in truncated BPTT (TBPTT) applied in

RNNs (Williams and Zipser, 1995; Sutskever, 2013), we introduce

temporal truncation in spiking BPTT to resolve the incompatibility

issue between LBP and BPTT for training SNNs. TBPTT divides

the training time window into many temporal chunks and runs

BPTT for each chunk. It breaks the temporal restriction imposed

on the backward pass, allowing for the advantages of LBP to

be considerable. The smaller the chunk, the more significant

contribution LBP can make. Additionally, temporal truncation

is able to cut short computational graphs built for backward

updates proportionally, leading to significant reduction in

memory footprint.

In this work, we propose an efficient training method for SNNs

by integrating local training methods with BPTT by introducing

temporal truncation. The proposed method can significantly

reduce memory footprint and access, and arithmetic operations

with negligible performance loss. The training process can benefit

from the proposedmethod both temporally and spatially. However,

both LBP and TBPTT could suffer from inferior performance

depending on the size of truncated chunks and the length of

local blocks. Thus, we will investigate the impact of temporal

truncation and spatial locality applied in BPTT on classification

performance and computational cost in SNNs. With the proposed

method, we aim to resolve the challenge that an effective on-

chip training algorithm for SNNs is still not available for real-

time applications. Our motivation is based on the following facts.

BPTT is a promising training approach that can empower SNNs

to be competitive with ANNs in large-scale implementations. Local

BP-based training methods show great advantages of significantly

reducing computational costs while retaining good algorithmic

performance and scalability. They can potentially reduce the

hardware complexity of the BPTT algorithm without incurring

significant performance degradation, which provides a chance for

us to develop an effective and efficient online-learning solution

for SNNs that could be practically deployable. This is very

meaningful for resource-constrained or latency-sensitive or power-

limited computing platforms, such as edge devices and autonomous

driving vehicles.

The main contributions are summarized as follows.

1) We introduce temporal truncation in BPTT to resolve the

incompatibility issue between LBP and BPTT, and thus

propose an efficient training algorithm for SNNs with

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

significantly reduced memory footprint and access, and

arithmetic operations.

2) We thoroughly explore the design space regarding the

temporal truncation length and local training size and

analyze their impact on classification performance and

computational cost of different SNNs for various datasets.

3) We provide analytical models for predicting and estimating

memory footprint and access, arithmetic operations on

different hardware platforms.

4) We compare trainable classifiers and random classifiers

applied in LBP and demonstrate that random classifiers do

not provide considerable advantages while suffering from

severe performance drop.

The rest of this article is organized as follows. Section 2

introduces neural models and the proposed training algorithm.

Section 3 describes the details of experiments and presents

classification results. Section 4 analyzes computational cost of

the proposed algorithm and presents corresponding results.

Section 5 summarizes our work and discusses limitations and

future perspectives.

2. Methods

2.1. Neural models

Leaky integrate-and-fire neuron (LIF) model is widely used to

model spiking neurons because it can accurately capture neural

dynamics and has excellent computational efficiency. It consists

of a linear equation and a threshold condition. The model can be

written as

ut+1,ni = τut,ni +
∑

j
Wn

ij s
t+1,n−1
j − θst,nj (1)

st+1,ni = 2

(

ut+1,ni − uth

)

(2)

where ut,ni and st,ni are the membrane potential and output spike of

the neuron i in the layer n at time t, respectively,Wn
ij is the synaptic

weight between the neuron i in the layer n and the neuron j in

the layer n − 1, τ is the leaky time constant, uth is the threshold

potential, θ is the reset constant, and 2 (·) is a unit step function. A

soft reset mechanism is used to reset membrane potential once an

output spike is generated.

2.2. Temporally-truncated local BPTT

We introduce temporal truncation in the BPTT algorithm

together with local classifiers to jointly train SNNs. Figure 2

illustrates the proposed training method, where temporal

truncation with a step size of 2 and two-layer local blocks are

applied in BPTT. During forward pass, neuron states of the

main network and local classifiers are updated iteratively in

space and time, as indicated by blue arrows. Backward pass

happens after every truncation interval. A loss is computed at

each local classifier during the backward pass, and errors are

propagated backward from classifiers spatially to local blocks

and temporally to their previous states, as indicated by the red

arrows. Inside a local block, errors are propagated in the same

fashion. But the error flow stops between blocks, removing the

backward dependency between blocks. This way eliminates the

need to store intermediate states of the current block in external

memory and makes it possible to execute forward pass and

backward pass in parallel. The error flow is also discontinued

between truncation intervals, which eliminates the need to

store all the neural states updated in the previous intervals. The

training process benefits from both temporal truncation and

local learning in reducing the computational cost. However,

both methods could also affect network performance, since

temporal truncation removes the temporal dependency between

truncated intervals during the backward pass and local training

could potentially cause information loss. Accordingly, we define

a variable pair (k, n), as the length of a temporal interval and

the number of layers in a local block, respectively. We explore

the design space of these two factors and analyze the impact on

network performance.

Moreover, in local training methods, applying trainable

local classifiers can retain high performance but add

additional weight parameters to be trained, incurring

training overhead. Using random weights in local classifiers

was proposed to reduce the overhead but proven to be

less effective in training networks (Mostafa et al., 2018).

Thus, we provide a detailed analysis of the effect of

trainable and random local classifiers in our proposed

training algorithm.

Following the theoretic framework in Wu et al. (2018), we

derive the essential equations used in the training algorithm as

follows. Firstly, we define the loss function as the mean squared

error between the time average firing rates of classifier neurons and

target firing rates, expressed by

L = 1
Nc

∑

i

(

yi −
1
k

∑

t
sc, i (t)

)2

(3)

where yi and sc,i(t) is the target firing rate of classifier neuron i and

the actual firing rate at time t, respectively, and Nc is the number

of classes. The average firing rate is calculated over each truncation

interval. In this work, the target firing rate vector for the classifier

is determined as a one-hot vector based on the target class. Then,

we define the spike error, δ
t,n
i = ∂L

∂st,ni
, and the potential error,

γ
t,n
i =

∂L

∂ut,ni
. Based on the two errors, the iterative backward update

equations are given as,

δ
t,n
i =

∑

m
γ t,n+1
m Wn

mi + γ
t+1,n
i (−θ) (4)

γ
t,n
i = δ

t,n
i 2

′ (

ut,ni − uth
)

+ γ
t+1,n
i τ (5)

where the first component on the right side of the equations

is contributed by the errors propagated spatially from the

upper layer, and the second component is due to the temporal

error backpropagation. Clearly, the potential error needs to be

propagated backward in space and time. Different surrogate

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

gradient functions were proposed to solve the discontinuity issue

with the firing function in Equation (2) (Wu et al., 2018). A

rectangular function is proven to be effective and simple, and thus

the gradient function can be approximated by

2
′

(u) ≈ 1
a sign

(

|u− uth| <
a
2

)

(6)

where sign (·) is the sign function, and a is the width of the non-

zero region. In TBPTT, weight gradients are accumulated over the

truncation interval by summing up all the gradients computed at

each time step, expressed as

∂L
∂wn

ij
=

∑

t
γ
t,n
i st,n−1j (7)

where the summation goes over the truncation interval. With the

computed gradients, weight parameters can be updated by an

optimization method, such as stochastic gradient descent (SGD)

and Adam (Sutskever et al., 2013; Kingma and Ba, 2015). The

implementation details of the training algorithm are explained in

Algorithm 1.

3. Experiments

3.1. Experiment setup

We evaluated the proposed training algorithm on four different

spiking convolutional neural networks (SCNNs) adapted from

LeNet, AlexNet, VGG11, and ResNet18 architectures (Lecun et al.,

1998; Karen Simonyan, 2014; Krizhevsky et al., 2017; Amir et al.,

2021). The networks were tested on two different types of datasets:

static frame-based datasets and dynamic event-based datasets.

LeNet was used to classify extended MNIST (EMNIST) dataset

(Cohen et al., 2017) and DvsGesture dataset (Amir et al., 2017),

while AlexNet was used to classify CIFAR10 dataset (Krizhevsky,

2009) and CIFAR10-DVS dataset (Li et al., 2017). In particular,

to verify the scalability of the proposed method, deep networks

such as VGG11 and ResNet18 were used to perform more complex

tasks, classifying N-Caltech101 (Orchard et al., 2015) and a tiny

version of the Es-ImageNet (Lin et al., 2021), respectively. The

Tiny-Es-ImageNet contains 100K samples of a resolution of 64 ×

64 with 200 classes. Simulations were performed using PyTorch

framework (Paszke, 2019). The mean squared error (MSE) loss

function and SGD optimization method with momentum were

used for training LeNet and AlexNet (Sutskever et al., 2013). The

CrossEntropy loss function and Adam optimizer were applied to

train VGG11 and ResNet18 because of the task complexity. As for

regularization, a dropout layer was added after each convolutional

or fully-connected layer (Srivastava et al., 2014). Accuracy results

were recorded after 100 training epochs for all the simulations. A

step-decay scheduling method was used to reduce learning rate by

a factor of 2 every 20 epochs. The other hyper-parameters used in all

the experiments are listed in Table 1. We varied the values of (k, n)

and obtained corresponding classification accuracy on each dataset.

Inputs: Network inputs
{

Xt
}T

t=1
, class labels Y,

parameters and initial neural states of the main

network
{

W l ,Ut0 ,l , St0 ,l
}NL

l=1
, parameters and initial

neural states of local classifiers
{

W l
c,U

t0 ,l
c , S

t0 ,l
c

}Nc

l=1
,

training window T, training variables
(

k, n
)

,

other hyper-parameters.

Initialize all the parameters and neural states.

for interval i = 1 to T/k do

Forward pass:

for time τ = 1 to k do

t = τ + (i− 1)∗k

for layer l = 1 to NL do

Network state update:
{

Ut,l , St,l
}

←

Update
{

W l ,Ut−1,l , St,l−1, St−1,l
}

, Eq. (1), (2).

if l % n == 0,

Classifier state update:
{

Ut,l
c , St,lc

}

←

Update
{

W l
c,U

t−1,l
c , St,l−1c , St−1,lc

}

, Eq. (1), (2).

end if

end for

end for

for layer l = 1 to NL do

if l % n == 0,

Compute loss: L← Loss function
{

Y ,
∑

t S
t,l
c

}

,

Eq. (3)

end if

end for

Backward pass:

for time τ = k to 1 do

t = τ + (i− 1)∗k

for layer l = NL to 1 do

if l % n == 0,

Compute errors and gradients at classifiers.

Accumulate gradients.

end if

Backpropagate errors and compute gradients: Eq.

(4), (5), (7)

Accumulate gradients.

end for

end for

Update weights.

end for

Algorithm 1. Training algorithm for one batch iteration.

3.2. Spiking convolutional neural networks

The network structures used in the experiments are listed in

Table 2. The spiking LeNet is a five-layer spiking CNN adapted

from the original LeNet, consisting of three convolutional layers,

two average-pooling layers, and two fully-connected layer. A LIF

neuron layer is placed after each of these layers, so that each layer

outputs spikes. We used two network scales. The smaller network,

LeNet-1, with a smaller number of channels and neurons, was

tested on EMNIST, while the larger network, LeNet-2, was for

DvsGesture because of pattern complexity. We also constructed

a nine-layer spiking AlexNet with similar network settings to the

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

TABLE 1 Hyperparameter setting.

Hyperparameter EMNIST DvsGesture CIFAR10 CIFAR10-DVS N-Caltech101 Es-ImageNet

Batch size 1,024 32 128 128 128 512

Momentum 0.9 0.9 0.9 0.9 - -

Time steps, T 20 60 10 100 60 8

Gradient width, a 0.5 0.5 0.5 0.5 0.5 0.5

Dropout rate 0 0–0.2 0–0.15 0–0.2 0–0.3 0

Learning rate 0.2–0.5 0.005–0.2 0.1–0.2 0.1–0.5 0.0001–0.0005 0.0001–0.001

Leaky constant, τ 0.9 0.3 0.8 0.8 0.5 0.5

Threshold potential, uth 0.4–0.6 0.2–0.5 0.3–0.5 0.3–0.6 0.5 0.5–0.8

TABLE 2 Network architectures.

Network Architecture

LeNet-1 6C5-6AP2-16C5-16AP2-120C5-128FC-47FC

LeNet-2 64C5-64AP2-128C5-128AP2-128C5-256FC-11FC

AlexNet 96C3-256C3-256AP2-384C3-384AP2-512C3-384C3-256C3-4096FC-1024FC-10FC

VGG11 32C3-32AP2-64C3-64AP2-128C3× 2-128AP2-256C3× 2-256AP2-512C3× 2-512AP2-1024FC-1024FC-101FC

ResNet18 32C3-32RB× 2-64RB× 2-128RB× 2-256RB× 2-Adaptive AP-200FC, RB: C3× 2

C, AP, and FC represent a convolutional layer, an average pooling layer, and a fully-connected layer, respectively. RB is a ResNet block. For VGG11 and ResNet18, batch normalization is applied

after each convolutional layer and FC layer.

original AlexNet. It consists of six convolutional layers followed by

two average-pooling layers, and three fully-connected layers. The

spiking VGG11 is adapted from the original VGG11, consisting

of eight convolutional layers and three fully-connected layers.

The spiking ResNet18 adopts the spike-element-wise ResNet block

structure proposed in Fang et al. (2021), which guarantees the

identity mapping property. For both VGG11 and ResNet18, A

batch normalization layer is inserted after each trainable layer.

3.3. Encoding methods

3.3.1. Frame-based datasets
Since the images from both EMNIST and CIFAR10 datasets

are comprised of integer-valued pixels, they are incompatible

with SNNs. The widely used conversion method is rate encoding,

which converts each pixel into a spike train with a frequency

proportional to the pixel intensity. This method suffers from high

training latency and precision loss. Many works proposed a direct

encoding method that uses the first layer as an encoding layer,

directly receiving intensity values and outputting spikes as inputs

to the next layer (Esser et al., 2016; Wu et al., 2019; Deng et al.,

2020). This method largely reduces training latency and retains

good performance. Although the first layer computes as an ANN

layer, under the fact that networks generally consist of tens or

hundreds of layers, this has little impact on the computational

efficiency of SNNs. Thus, we adopted the direct encoding method

in our experiments.

3.3.2. Event-based datasets
DVS cameras produce event streams encoded in timestamps,

xy coordinates, and polarity. SNNs cannot directly process the

raw data. We converted each encoded event streams into a time

series of event images with two channels and binary pixel intensity.

The two channels correspond to the polarity of events, and the

binary intensity indicates the occurrence of an event at the pixel

location. Due to long recording time and high resolution, we

accumulated all the event images in a defined time window 1t into

one new event image and took the first T new images as inputs

to SNNs. The values of (1t, T) are (20ms, 60) for DvsGesture

dataset, (5ms, 100) for CIFAR10-DVS dataset, and (5ms, 60) for

N-Caltech101 dataset, respectively. Different from DVS-recorded

datasets, ES-ImageNet was converted from the whole ILSVRC2012

ImageNet dataset by using the Omnidirectional Discrete Gradient

(ODG) algorithm similar to the DVS recording mechanism (Lin

et al., 2021). Since each event sample has only 8 time steps, no

conversion was needed.

3.4. Classification accuracy results

Temporal truncation ignores the temporal dependency

spanning across truncated intervals in the backward pass, which

introduces bias on short-term dependency. The local training

method utilizes local errors to learn features that only benefit

advantages, these two methods could have a negative impact on

classification performance. Thus, it is necessary to investigate

and analyze their roles. In Section 2.2, we defined a variable

pair (k, n), as the length of the truncated temporal interval

and the number of layers in a local block, respectively. The

case where k equals the total time step T refers to the standard

BPTT, whereas k = 1 suggests no temporal dependency in the

backward pass. In this section, we experiment with different sets

of (k, n) in each classification task and analyze the change of

classification accuracy.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 3

Classification accuracy for di�erent truncation intervals and local block size. Accuracy results are obtained for LeNet-1 on EMNIST dataset with (A)

trainable classifiers and (B) random classifiers. And accuracy results are obtained for AlexNet on CIFAR10 dataset with (C) trainable classifiers and (D)

random classifiers. In LBPn, n indicates the number of layers in a local block.

For classification on EMNIST dataset, k was chosen from the

set {20, 10, 5, 2, 1}, and n from the set, {4, 2, 1}. For classification

on CIFAR10 dataset, k was chosen from the set {10, 5, 2, 1}, and n

from the set, {8, 4, 2, 1}. The accuracy results on the two datasets

are shown in Figure 3, respectively. Since the spiking LeNet is of

four layers, n = 4 corresponds to the standard BP. And n = 8

in AlexNet also corresponds to the standard BP. We use LBPn to

indicate the local BP with n layers in each local block. From the

results, for both LeNet and AlexNet, accuracy tends to decrease

with the truncation interval in most cases, especially when the

interval is small. The same behavior is also observed in the case of

AlexNet classifying EMNIST. This reveals that temporal truncation

has a negative impact on the accuracy regardless of the network

size. In the classification experiment on EMNIST, local learning

methods are affected by temporal truncation more significantly

than standard BP. BP shows the best accuracy compared against

LBP2 and LBP1, which suggests that LBP causes the loss of

useful information. However, in the classification experiment on

CIFAR10, BP is more severely affected by temporal truncation

with a 6.30% accuracy drop compared with the maximum drop

of 3.35% for LBPs, as indicated in Figure 3C. LBP4 shows the

best results in most cases. This can be due to that LBP alleviates

the overfitting effect (Belilovsky et al., 2020). LBP divides the

network into smaller blocks and trains each block separately for

the same task. In some way, the actual number of parameters

required to learn features for the task is reduced, which leads to

less severe overfitting. The combined effect of temporal truncation

and local training can be observed in Figures 3C, D, where the

accuracy of BP is affected by temporal truncation more severely

than LBPs. LBP2 has lower accuracy at large intervals, but gets

closer to and even surpasses BP when the interval shrinks. In the

case of LBP1, the accuracy is improved all the way. Comparing the

results obtained from trainable classifiers and random classifiers,

we found that LBP with random classifiers results in a more

substantial accuracy drop, as shown in Figures 3B, D. For example,

in Figure 3B, at k = 20, applying random classifiers in LBP1

causes a 14.91% accuracy drop, whereas only 0.91% is incurred

for BP.

In the simulations on DvsGesture dataset, k was chosen from

the set, {60, 30, 20, 10, 5, 1}, and n from the set, {4, 2, 1}. In the

simulations on CIFAR10-DVS dataset, k was chosen from the set,

{100, 50, 20, 10, 1}, and n from the set, {8, 4, 2, 1}. The accuracy

results of the two datasets are shown in Figure 4. Different from

the frame-based datasets, the DVS-recorded datasets show different

changes of accuracy with temporal truncation. The accuracy tends

to increase while the truncation interval decreases and then

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 4

Classification accuracy for di�erent truncation intervals and local block sizes. Accuracy results are obtained for LeNet-2 on DvsGesture dataset with

(A) trainable classifiers and (B) random classifiers. And accuracy results are obtained for AlexNet on CIFAR10-DVS dataset with (C) trainable classifier

and (D) random classifier.

FIGURE 5

Classification accuracy for di�erent truncation intervals and local block size. (A) Accuracy results were obtained for VGG11 on the N-Caltech101

dataset. (B) Accuracy results were obtained for ResNet18 on the Tiny-Es-ImageNet dataset.

decreases when the interval becomes small. This phenomenon

could be because temporal truncation with a large k generally gives

better convergence at the cost of a long training time, while a small

k can cause the network not to converge, thus resulting in bad

performance (Aicher et al., 2019). Due to a long temporal update

window, the vanishing gradient problem could appear in the BPTT

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 6

GPU memory cost measured in Pytorch for training (A) LeNet-1 on EMNIST dataset and (B) LeNet-2 on DvsGesture dataset. Both SNNs were trained

with trainable classifiers. The batch size is 1,024 and 32 for EMNIST dataset and DvsGesture dataset, respectively.

FIGURE 7

GPU memory cost measured in Pytorch for training AlexNet on (A) CIFAR10 dataset and (B) CIFAR10-DVS dataset. Trainable classifiers are used. The

batch size is 128 for both cases.

algorithm. Based on the backward update formulas in Equations

(4) and (5), in the temporal dimension, the gradients decay by a

factor of
(

τ − θ2
′
)

for each time step. For example, if τ = 0.8

and θ = 0.3, after 10 steps, the rate lies in the range [6e−6, 0.1],

depending on the binary spike gradients 2
′
. This means that after

only 10 steps, the temporal gradients would become very small

and gradually disappear with more steps. A long update window

cannot make effective use of the temporal gradients. Truncating

the long window into small update intervals avoids the vanishing of

temporal gradients and makes better use of temporal connections,

hence improving network performance. However, a very small

truncation window cannot capture the temporal dependency that

spans a larger range in the input. Thus, there exists an optimal

truncation length that can lead to the best accuracy. This suggests

that trained on the datasets containing temporal information, SNNs

can benefit from temporal truncation in improving classification

performance. But the optimal truncation interval varies dependent

on datasets. Moreover, as shown in Figure 4A, on DvsGesture

dataset, LBP leads to better accuracy than BP in the case of

trainable classifiers. The same comparison can be observed in

the results of CIFAR10-DVS dataset, as shown in Figures 4C, D.

This further confirms that LBP could reduce overfitting effect

because both DVS-recorded datasets contain a small number of

training samples. The combining effect can be seen in Figures 4A,

C, D, where the improvement in LBPs is more significant than

in BP. Additionally, as shown in Figures 4B, D, applying random

classifiers in LBP1 incurs significant accuracy loss, namely, 10.99%

on DvsGesture and 13.86% on CIFAR10-DVS, when k is the total

time step.

To further verify the scalability, the proposed algorithm was

also investigated in deeper networks for more complex tasks,

namely, N-Caltech101 and Es-ImageNet. The accuracy results

are shown in Figure 5. The same phenomenon on the change

of accuracy with the truncation interval can be observed for

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 8

Memory tra�c of forward pass and backward pass in a local learning block during a truncation interval. (U, S)t,n represents the neural states in the

layer n of the main network at time t. Wn and dWn are the weights and gradients in the layer n. (δ, γ)t, n represents the spike error and potential error

in the layer n at time t. The parameters and states of the local classifier are indicated by the subscript c. tk is the end of the truncation interval.

FIGURE 9

Number of memory access estimated for training (A) LeNet-1 on EMNIST dataset and (B) LeNet-2 on DvsGesture dataset for one batch iteration.

Solid lines and dashed lines represent the results obtained with trainable (T) classifiers and random (R) classifiers, respectively. The batch size is 128.

both BP and LBP. These results further confirm that temporal

truncation exhibits the same effect on classification accuracy

on event-based datasets. A very small or long interval leads

to lower accuracy. For VGG11, an optimal interval can be

seen at 5 and 10 for BP and LBP5, respectively, as shown in

Figure 5A. LBP is able to improve the accuracy. For ResNet18,

the optimal interval can be seen as 4 for both BP and LBP,

as shown in Figure 5B. However, in this case, LBP cannot

improve the accuracy, which can be attributed to that in the

deep network architecture, due to high dataset complexity, the

information loss caused by local training exceeds the benefits of

overfitting reduction.

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 10

Number of memory access estimated for training AlexNet (A) on CIFAR10 dataset and (B) on CIFAR10-DVS dataset.

FIGURE 11

Number of additions estimated for training (A) LeNet-1 on EMNIST dataset and (B) LeNet-2 on DvsGesture dataset for one batch iteration. The batch

size is 128.

FIGURE 12

Number of additions estimated for training AlexNet (A) on CIFAR10 dataset and (B) on CIFAR10-DVS dataset.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

In summary, temporal truncation affects the classification

performance of SNNs differently on different types of datasets.

It shows an overall negative impact on classifying frame-based

datasets, whereas it brings on benefits in improving classification

performance on DVS-recorded datasets with optimally chosen

intervals. From all the experiments, we can see that a good choice

of the truncation interval appears in the range from 2 to 10.

Regarding local training, in the scenario where overfitting is not

severe, such as in LeNet-1 trained on EMNIST, LBP causes inferior

performance. On the other hand, LBP can alleviate overfitting

effect to some extent and lead to better accuracy. The roles of

temporal truncation and local training are not orthogonal. Instead,

in most cases, they tend to function synergistically. In addition,

the use of random classifiers results in accuracy loss, especially

in LBP1.

4. Computational cost

DNNs are typical of tens of or hundreds of layers with millions

of or even billions of parameters. They are both computationally

and memory intensive, making them difficult to be implemented

in hardware. Training DNNs poses a great challenge in hardware

design. Thus, it is essential to assess the computational cost

of a training algorithm. In this section, we will analyze the

computational cost of the proposed training method on different

hardware platforms in terms of required GPU memory, external

memory access, and number of arithmetic operations.

4.1. GPU memory cost

Temporal truncation reduces the length of backward pass

and eliminates the requirement to store the history of neural

states before the current interval, which leads to memory saving.

Local training avoids the necessity to build a whole backward

computational graph by training SNNs block by block, which

also leads to memory saving. In this section, we measure and

compare the maximum GPU memory used to perform each

classification task under different settings of (k, n) in Pytorch.

The measurement was done with the commonly-used command

max_memory_allocated in Pytorch (Li G. et al., 2021; Wang et al.,

2021).

Figure 6 shows the measured GPU memory cost for training

LeNet with trainable classifiers on different datasets. Due to the

larger network scale and longer training window, the memory

cost of LeNet-2 is much higher than that of LeNet-1. Clearly,

memory cost decreases linearly with decreasing truncation interval.

Compared to BP, LBP2 can reduce memory cost. As shown in

Figures 6A, B, the reduction percentage increases with decreasing

interval from 20.14 to 64.73% for classifying EMNIST and from

2.06 to 32.61% for classifying DvsGesture. Further decreasing n

in LBP contributes to minor change. This is mainly because the

uneven distribution of layer neurons and parameters in networks

causes particular layers to dominate in memory occupation.

Replacing trainable classifiers with random classifiers has a

negligible effect on reducing memory cost.

The same observations can be seen in the memory cost

for training AlexNet on CIFAR10 and CIFAR10-DVS datasets,

as shown in Figures 7A, B, respectively. LBP1 helps reduce the

memory cost from 31.86 to 60.91% for classifying CIFAR10,

and from 3.44 to 54.42% for classifying CIFAR10-DVS with the

decreasing truncation interval. Using random classifiers leads to

less than a 2% reduction.

In the simulation framework, the memory cost of neural

networks are caused by the storage of parameters, network states,

and computational graphs (CGs) (Gao et al., 2020). The memory

cost (MC) of an SNN can be determined by

MC = N (w)+MC (CG)+ C = N (w)+ N (states)+ N (inter.)

+ N
(

grads
)

+ C (8)

where N (w), N (states), N (inter.), and N(grads) are the number of

trainable parameters, neural states, intermediate tensors allocated

in computational graphs, and gradients, respectively, C is a

constant representing thememory consumed by CUDAworkspace.

In TBPTT, networks are unfolded in time, and the history of

the states, intermediate tensors, and gradients are saved. Once

the backward update is finished, all the history is discarded.

Thus the memory cost of TBPTT with a truncation interval

k is

MC = k (MC (CG))+ N (w)+ C (9)

The benefit of local training methods is only possible at the last

time step of the truncation interval at which a partial graph of the

block length is saved. When local training method is applied, the

memory cost becomes

MC =
(

k− 1
)

(MC (CG))+MCLocal (CG)+ N (w)+ C (10)

whereMCLocal (CG) is the maximummemory cost of local training

methods determined by layer distribution in the network.MC(CG)

depends on network architectures and remains constant in time,

which explains the linearity in the memory change. The memory

gap between BP and LBP is determined by the difference between

MC (CG) and MCLocal (CG), i.e., the difference between a whole

graph and a partial graph. The difference is the function of network

architectures and proportional to the block length, remaining

unchanged with k.

4.2. Memory access and arithmetic
operations analysis

The BP algorithm requires hardware to store all the neural

states at each layer before performing backward updates from

the top layer, as those states are needed to compute errors

and gradients along the backward pass. More costly, the BPTT

algorithm introduces an extra time dimension and requires the

storage of the whole history of all the states at each layer. General

hardware, such as CPU, GPU, and field-programmable gate array

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

(FPGA), has limited on-chipmemory capacity, which is not enough

to accommodate the states and parameters of state-of-the-art

networks. The intermediate states and network parameters have to

be saved in external memories such as DRAM. Thus, the BPTT

algorithm adds a significant memory overhead and a huge data

communication burden on hardware. Frequent communication

also brings on high energy consumption since memory access

consumes much more energy than arithmetic operations. For

example, for the 45 nm CMOS process, memory access consumes

3 orders of magnitude more energy (Han et al., 2015). Reducing

memory access frequency can lead to significant energy and time

saving. In this section, we analyze and model the memory traffic

pattern and the number of arithmetic operations in training SNNs

with the proposed training algorithm.

Figure 8 illustrates the data transfer between external memories

and processing cores in both forward pass and backward pass of

a local block during a truncation interval. Assume that on-chip

memory has the capacity to store the parameters and batch neural

states of a layer. During forward update, at time t, each layer has

to read its weights Wn and previous neural states Ut−1, n from an

external memory, and write the updated states Ut, n back to the

external memory in separate locations. We omit the transfer of

spikes since they are one-bit data. The number of read and write

operations in forward pass is expressed by

N
f
r =

Nl
∑

n=1
(|Wn| + |Un|)+ (|Wc| + |Uc|) ,

N
f
w =

Nl
∑

n=1

|Un| + |Uc|

(11)

whereNl is the number of layers in a local block, |Wn| and |Wc| are

the total number of weights in the layer n of the main network and

weights in the classifier layer, respectively, |Un| and |Uc| are the

total number of batch neural states in the layer n and the classifier

layer, respectively. During backward update, the network needs to

compute the errors (δ, γ)t,n, in each layer at each time step, and

propagate the potential error backward through layers and time.

At any time step in the middle of truncation interval, for example,

at tk − 1 in Figure 8, to compute the errors at the layer n, the

network has to read the current neural statesUtk−1, n, weights from

the upper layerWn+1, and potential errors from the next time step

γ tk ,n. Gradients dWn also need to be read for accumulation. The

updated potential errors γ tk−1,n and gradients dWn are written

back to memory. The number of read and write operations in the

middle of the backward pass is expressed by

Nb
r =

Nl
∑

n=1

(∣

∣Wn
∣

∣+ 2
∣

∣Un
∣

∣

)

+

Nl−1
∑

n=1

(∣

∣Wn+1
∣

∣

)

+ 2 |Wc|

+ 3 |Uc| (12)

Nb
w =

Nl
∑

n=1

(
∣

∣Wn
∣

∣+
∣

∣Un
∣

∣

)

+ |Wc|

+ |Uc| (13)

We simplify the formulation using the fact that
∣

∣dWn
∣

∣ = |Wn|

and |γ n| = |Un|. Clearly, in the middle of the backward pass, the

local training method does not help reduce the number of memory

FIGURE 13

Normalized number of MACs estimated for training di�erent

networks averaged over training time windows for one batch

iteration. For each task, the number of MACs was normalized over

that required by BP.

FIGURE 14

FoMs for di�erent local training methods on di�erent datasets. For

each local training method, the smallest FoM is selected. On top of

each bar, the value represents the truncation length.

access because the consecutive execution between the forward

update and backward update is prohibited at the time step. At the

end of the interval where t = tk, there is no temporal component

needed to compute the errors. Since the backward pass of the block

can immediately start after the forward pass finishes, the current

neural states of the top layer and classifier can be buffered on the

chip for the backward update, eliminating the need to read them

from external memory. There is also no need to read the gradients.

Thus, the number of reads can be reduced to

Nb
r =

Nl−1
∑

n=1

(
∣

∣Wn+1
∣

∣+ |Un|
)

+ |Wc| (14)

Using random weights in the classifier can further reduce

memory access volume by removing all the operations on classifier

weights. As argued in Mostafa et al. (2018), random weights can

be generated on the fly by random number generators (RNGs),

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

FIGURE 15

(A) Accuracy drop and (B) computational cost reduction of the selected method by the proposed FoM on all the datasets. The BPTT method is taken

as the baseline for calculating the accuracy drop and computational cost reduction.

avoiding the storage in external memories. It could cause either

resource overhead in the case of multiple RNGs for parallel

processing, or increased latency as computation needs to wait for

the generation of random weights. Also, on-chip memory has to be

allocated to hold them before computation finishes.

SNNs replace MAC operations with multiplex-accumulation

operations through event communication in the forward update.

However, in the backward update, full-precision errors are

the information carriers, so MAC operations are inevitable, as

indicated in Equation (4). The addition operations in the forward

update are dominated by the computation of synaptic input, which

is proportional to the size of weight matrices and input spike

sparsity, expressed by

N
f

add
=

Nl
∑

n=1
αn−1Mn +

αc|Wc||Uc|

Nc
(15)

where αn−1 is the input sparsity to the layer n, Nn and Nc are

the number of neurons in the layer n and a classifier, respectively,

and Cn
o is the number of output channels in a convolutional

layer n. Mn is the total number of additions without considering

sparsity, computed by (|Wn| |Un|) /Cn
o for a convolutional layer

and (|Wn| |Un|) /Nn for a fully-connected layer. In the backward

update, according to Equations (4), (5), and (7), the number of

additions is estimated as

Nb
add
=

Nl
∑

n=1

(

2
∣

∣Un
∣

∣+ Nbα
n−1

∣

∣Wn
∣

∣

)

+ 2 |Uc| + Nbαc |Wc| (16)

It is worth to note that the batch size Nb is multiplied with

the weight matrix size representing a computation of a batch of

gradients. MAC operations only appear in Equation (4), which are

used to propagate errors backward from upper layers. The number

of MACs can be expressed as

Nb
mac =

Nl−1
∑

n=1
Mn+1 +

|Wc||Uc|

Nc
(17)

4.3. Memory access

We estimated the number of memory access, including reads

and writes required in one training iteration. The batch size is

kept as 128 for all the cases. Figures 9A, B show the estimation for

training LeNet with both types of classifiers on EMNIST dataset

and DvsGesture dataset, respectively. The number of memory

access decreases with the truncation interval, rapidly when the

interval becomes small. With trainable classifiers, LBPs lead to

more memory access when the interval is large, because of the

overhead of classifier weights. When the interval is small, the

advantage of LBPs becomes more significant, thus overcoming the

overhead. On the contrary, the use of random classifiers avoids the

overhead, making LBPs better than BP at all intervals. Specifically,

on EMNIST dataset, temporal truncation can contribute to around

a 55% reduction for LBP1 with either type of classifiers. LBP1 can

lead to around 23% reduction with trainable classifiers and 29%

reduction with random classifiers at k = 1 against BP, respectively.

The estimated number of memory access for training AlexNet

on CIFAR10 dataset and CIFAR10-DVS dataset is shown in

Figures 10A, B. In AlexNet, the size of a classifier layer is much

smaller compared to the network layers. The small overhead of

trainable classifiers is overcome by the benefit. So LBPs lead

to a reduction in memory access at all intervals. On CIFAR10,

temporal truncation can lead up to around 50% reduction in LBP1.

Compared against BP, LBP1 can lead up to 31% with trainable

classifiers and 33% with random classifiers, respectively.

4.4. Arithmetic operations

Based on the analytical model above, we estimated the number

of arithmetic operations involved in one batch training iteration,

including additions and MACs. Figures 11A, B plot the results

for LeNet trained on EMNIST dataset and DvsGesture dataset,

respectively. Figures 12A, B show the results for AlexNet trained

on CIFAR10 dataset and CIFAR10-DVS dataset, respectively.

All the results reveal the same trend of change of accuracy

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

affected by temporal truncation and local training. Temporal

truncation does not lead to a notable reduction, less than 5%/0.7%

in LeNet-1/2 and 0.3% reduction in AlexNet at maximum.

However, LBPs cause more additions than BP, up to 32% in

LeNet-1, only 1% in LeNet-2 and 0.66% in AlexNet. This

large difference is due to the proportion of classifiers in the

whole network. In small networks with local classifiers, such

as LeNet-1, the classifier size is comparable to the size of

the main network, which causes a large overhead. The use of

random classifiers can reduce the overhead to 16% in LeNet-1.

Thus, random classifiers are beneficial to small networks in

this regard.

The estimated number of MACs for different networks in

one batch iteration is shown in Figure 13. We normalized the

values over the number of MACs required by BP in each

task. The number was also averaged over the training time

window. The number of MACs is independent of truncation

interval and the type of classifiers but dependent on the size

of networks and local training blocks. Generally, multi-channel

convolutional layers consume much more MACs than linear

layers. In local training methods, convolutional operations between

blocks are avoided because errors are not propagated. The local

error propagation is from linear classifiers, leading to very small

overhead. Increasing the number of local training blocks can

significantly reduce MACs. Specifically, LBP1 leads to a 72%

reduction in LeNet-1 and a 99% reduction in both LeNet-2 and

AlexNet. The significant reduction in MACs is one of the most

attractive benefits of local training methods, as it can greatly

improve the training energy efficiency of SNNs and is not affected

by BPTT.

5. Conclusion and discussions

We have investigated and analyzed the impact of the

design variables on classification performance and computational

cost in various tasks. In this section, we will address the

important design problem with regard to the optimal choice

of the variables while considering many performance aspects.

The role of random classifiers will be discussed. Then, we

will discuss the limitations of our training method and the

promising solutions.

5.1. Summary

We have studied what roles the temporal truncation and

local training play in affecting accuracy and computational cost

including GPU memory cost, memory access, and arithmetic

operations. The design space regarding the length of truncation

interval and the size of local training blocks was explored.

The impact of temporal truncation on accuracy depends on

the type of datasets. It tends to decrease accuracy on frame-

based datasets, while improves accuracy on DVS-recorded

datasets with properly chosen intervals. Local training harms

the classification performance when the size of network fits

well with datasets, whereas it leads to improvement in the

accuracy of the networks when overfitting is severe. In most

cases, temporal truncation functions synergistically with local

training. The combined effect helps slow down the decrease

of accuracy and even improve accuracy in many cases. Both

methods can contribute to a substantial reduction in GPUmemory.

Temporal truncation reduces memory access volume and has

a negligible effect in lessening computational operations. Local

training causes notable overhead in memory access and additions

in small networks. However, it brings down the number of

MACs remarkably.

5.2. How to determine the design variables?

It remains challenging in how to choose the degrees of

temporal truncation and spatial locality, i.e., the values of

(k, n). The choice depends on classification tasks and also the

trade-off between classification performance and computational

cost. For good classification performance, local training method

could be promising with the block length larger than 1 and

a good choice of k lies in the range from 2 to 10. For low

computational cost, the best choice is undoubtedly the layer-

wise local training with the truncation interval of 1. To provide

a guidance for selecting (k, n), we define a figure of merit

(FoM) considering both accuracy and computational cost equally

as below

FoM = AL+ 0.25∗ (MC + #MA+ #ADD+ #MAC) (18)

where AL is the accuracy loss, MC is the GPU memory cost,

#MA, #ADD, and #MAC are the number of memory access,

additions, and MAC, respectively. All the terms are normalized

against the BPTT method. From the definition, a small FoM is

desirable. Figure 14 displays the comparison among different local

training methods across all the datasets under the defined FoM. For

each local training method, the smallest FoM is selected, and the

corresponding value of k is shown on top of each bar. From the

comparison, the layer-wise local training method (LBP1) shows the

best FoM on all the datasets except for EMNIST. In most cases,

the best k lies in the range from 1 to 10. Specifically, the best

values of (k, n) are (1, 2), (10, 1), (1, 1), and (10, 1) on EMNIST,

DvsGesture, CIFAR10, and CIFAR10-DVS, respectively. It is worth

noting that the proposed FoM considers the equal contribution

from accuracy and computational cost and different definitions

can be proposed to determine the design choice under practical

application constraints.

In Figures 15A, B, we summarized the accuracy drop and

computational cost reduction of the best training design according

to the proposed FoM. The BPTTmethod is taken as the baseline for

calculating the accuracy drop and computational cost reduction.

On EMNIST and CIFAR10, the accuracy drop is within 1%,

whereas the accuracy can be improved by up to 7.26% in the other

cases. On the other hand, the proposed training method leads

to >80% reduction in GPU memory cost and >99% reduction

in the number of MACs in most cases. On two datasets, the

number of memory access is also considerably reduced by >40%.

A negligible overhead in additions can be observed. Therefore,

the proposed training method has been demonstrated to retain

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

good classification performance or even improve it while achieving

significant reduction in computational cost.

5.3. The role of random classifiers

The use of random classifiers in LBPs was proposed for its

potential contribution in reducing computational cost in both

ANNs and SNNs (Mostafa et al., 2018; Kaiser et al., 2020). No

comparisons were made between random classifiers and trainable

classifiers. Our work reveals a detailed comparison between them.

Random classifiers cause worse accuracy when used with LBPs.

Especially, the loss becomes more severe in LBP1. They are

beneficial in reducing memory access and additions in small

networks, but make negligible contributions to reduction in GPU

memory, memory access, and additions in large networks. They

have no effect on MACs. More specifically, in AlexNet trained

on CIFAR10-DVS with the same (k, n), random classifiers can

cause 20.16% accuracy drop with negligible improvement in

computational cost compared to trainable classifiers. Therefore, our

study shows that trainable classifiers have more considerable merit

than random classifiers.

5.4. Limitations and future perspectives

The temporal truncation interval and local block length are two

hyper-parameters that requires to be optimized in our proposed

method. In our study, we have adopted a grid search to determine

the optimal values. The results reflect that the optimal values

vary from task to task and network to network, which poses a

limitation on the applicability of the proposed method. A good

choice of (k, n) has been discussed above under the proposed

FoM. Although the optimal performance may not be achieved

on all the tasks, it can still deliver promising improvement.

Hyperparameter optimization has remained a challenge in deep

learning. Most commonly in literatures, hyperparameters are

chosen based on rules of thumb summarized in practice involving

manual tuning. There exists many optimization algorithms. Classic

approaches, such as random search (Bergstra and Bengio, 2012),

Bayesian model (Snoek et al., 2012), and evolutional algorithms

(Xiang and Zhining, 2019), are generally time consuming and

may not converge. In recent years, gradient-descent based

optimization methods have made it possible to directly optimize

hyperparameters in the training loop, such as bilevel optimization

(Franceschi et al., 2018). Thus, such optimization method could be

a promising addition to our proposed training method to automate

hyperparameter search for achieving optimal performance in

various tasks.

TBPTT can be implemented in different ways. Instead of going

through all the time steps in the backward pass during a truncation

interval, the backward update can stop in the middle. In other

words, the backward update can have a shorter time pass than the

forward update. Cutting short the backward pass can furthermore

reduce computational cost. Although in our work local training has

been shown to improve classification performance in some cases,

the intrinsic downside of local training method still remains and

could considerably harm the performance of large-scale networks

such as ResNets for more complex tasks such as ImageNet. As

pointed out by Wang et al. (2021) local training is short-sighted

and suffers from essential information loss while progressing along

with the network. Many solutions were proposed to alleviate this

issue. Wang et al. (2021) proposed an alternative loss function

considering information preservation. Nokland and Eidnes applied

an auxiliary loss function to create another backward pass for

information flow (Nøkland and Eidnes, 2019). These proposals

provide opportunities for further improvement in classification

performance in our proposed training method.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

Conceptualization: WG and KS. Methodology: WG,

MF, AE, and KS. Software, algorithms, and writing—

original draft preparation: WG. Investigation and validation:

WG and MF. Writing—review and editing: MF, AE, and

KS. Supervision: AE and KS. Project administration: KS.

All authors contributed to the article and approved the

submitted version.

Funding

This research is funded by King Abdullah University of Science

and Technology (KAUST) AI Initiative.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

References

Abderrahmane, N., Lemaire, E., andMiramond, B. (2020). Design space exploration
of hardware spiking neurons for embedded artificial intelligence. Neur. Netw. 121,
366–386. doi: 10.1016/j.neunet.2019.09.024

Aicher, C., Foti, N. J., and Fox, E. B. (2019). “Adaptively Truncating
Backpropagation Through Time to Control Gradient Bias”, in UAI 2019,
the Conference on Uncertainty in Artificial Intelligence (Tel Aviv-Yafo,
Israel).

Amir, A., Taba, B., Berg, D., Melano, T., Mckinstry, J., Nolfo, C. D., et al.
(2017). “A Low Power, Fully Event-Based Gesture Recognition System”, in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7388–7397.
doi: 10.1109/CVPR.2017.781

Amir, A., Taba, B., Berg, D. J., Melano, T., Mckinstry, J. L., Nolfo, C. D., et al.
(2021). “Deep Residual Learning in Spiking Neural Networks”, in Advances in Neural
Information Processing Systems.

Belilovsky, E., Eickenberg, M., and Oyallon, E. (2020). “Decoupled greedy learning
of CNNs”, in Proceedings of the 37th International Conference on Machine Learning.

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter
optimization. J. Mach. Learn. Res. 13, 281–305.

Beyeler, M., Oros, N., Dutt, N., and Krichmar, J. L. (2015). A GPU-accelerated
cortical neural network model for visually guided robot navigation. Neur. Netw. 72,
75–87. doi: 10.1016/j.neunet.2015.09.005

Bi, G. -Q., and Poo, M. -M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J.
Neurosci. 18, 10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bohté, S. M., Kok, J. N., and Poutré, H. L. (2000). “SpikeProp: backpropagation
for networks of spiking neurons”, in ESANN 2000, European Symposiumon Artificial
Neural Networks.

Cohen, G., Afshar, S., Tapson, J. C., and Schaik, A. V. (2017). “EMNIST: Extending
MNIST to handwritten letters,” in 2017 International Joint Conference on Neural
Networks (IJCNN) 2921–2926. doi: 10.1109/IJCNN.2017.7966217

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., et al. (2020). Rethinking
the performance comparison between SNNS and ANNS. Neur. Netw. 121, 294–307.
doi: 10.1016/j.neunet.2019.09.005

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Computat. Neurosci. 9, 99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing”, in 2015 International Joint Conference on Neur. Netw. (IJCNN) 1–8.
doi: 10.1109/IJCNN.2015.7280696

Ding, J., Yu, Z., Tian, Y., and Huang, T. (2021). “Optimal ANN-SNN
conversion for fast and accurate inference in deep spiking neural networks”, in
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
doi: 10.24963/ijcai.2021/321

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,
R., Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Nat. Acad. Sci. 113, 11441–11446.
doi: 10.1073/pnas.1604850113

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021). Deep
Residual Learning in Spiking Neural Networks. Adv. Neur. Inf. Proces. Syst. 34,
21056–21069.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. (2018). “Bilevel
programming for hyperparameter optimization and meta-learning”, in International
Conference on Machine Learning 1568–1577.

Furuya, K., and Ohkubo, J. (2021). Semi-supervised learning combining
backpropagation and STDP: STDP enhances learning by backpropagation with a small
amount of labeled data in a spiking neural network. J. Phys. Soc. Japan 90, 074802.
doi: 10.7566/JPSJ.90.074802

Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., et al. (2020).
“Estimating GPU memory consumption of deep learning models”, in
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA: Association for Computing Machinery). doi: 10.1145/3368089.
3417050

Guo, W., Yantir, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021).
“Toward the optimal design and FPGA implementation of spiking neural networks,”
in IEEE Transactions on Neural Networks and Learning Systems 1–15.

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that
learns spike timing–based decisions. Nature Neurosci. 9, 420–428. doi: 10.1038/
nn1643

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). “Learning both weights and
connections for efficient neural networks”, in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1. (Montreal, Canada:
MIT Press).

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing SNNs
and RNNs on neuromorphic vision datasets: Similarities and differences. Neur. Netw.
132, 108–120. doi: 10.1016/j.neunet.2020.08.001

Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M., et al. (2021).
The SpiNNaker 2 processing element architecture for hybrid digital neuromorphic
computing. ArXiv abs/2103.08392. doi: 10.48550/arXiv.2103.08392

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation
for training deep spiking neural networks”, in Proceedings of the 32nd International
Conference on Neural Information Processing Systems. (Montréal, Canada: Curran
Associates Inc.).

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic Plasticity Dynamics
for Deep Continuous Local Learning (DECOLLE). Front. Neurosci. 14, 424.
doi: 10.3389/fnins.2020.00424

Karen Simonyan, A. Z. (2014). “Very deep convolutional networks for
large-scale image recognition”, in The International Conference on Learning
Representations (ICLR).

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2018). STDP-
based spiking deep convolutional Neur. Netw. for object recognition. Neur. Netw. 99,
56–67. doi: 10.1016/j.neunet.2017.12.005

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30, 2050027.
doi: 10.1142/S0129065720500276

Kim, S., Park, S., Na, B., and Yoon, S. (2020). Spiking-YOLO: Spiking neural
network for energy-efficient object detection. Proc. AAAI Conf. Artif. Intell. 34, 11270–
11277. doi: 10.1609/aaai.v34i07.6787

Kim, Y., and Panda, P. (2021). Optimizing deeper spiking neur. netw. for dynamic
vision sensing. Neur. Netw. 144, 686–698. doi: 10.1016/j.neunet.2021.09.022

Kingma, D. P., and Ba, J. (2015). “Adam: A Method for Stochastic Optimization”,
in ICLR 2015, the International Conference on Learning Representations.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Available online at: http://www.cs.utoronto.ca/\simkriz/learning-features-2009-TR.
pdf (accessed December 8, 2021).

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2017). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep spiking
convolutional neural networks with STDP-based unsupervised pre-training followed
by supervised fine-tuning. Front. Neurosci. 12, 435. doi: 10.3389/fnins.2018.00435

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front. Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training Deep
Spiking neural networks Using Backpropagation. Front. Neurosci. 10, 1–13.
doi: 10.3389/fnins.2016.00508

Li, G., Müller, M., Ghanem, B., and Koltun, V. (2021). “Training graph
neural networks with 1000 layers”, in International Conference on Machine
Learning 6437–6449.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). CIFAR10-DVS: An event-stream
dataset for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2021). “A survey of convolutional
neural networks: analysis, applications, and prospects,” in IEEE Transactions on Neural
Networks and Learning Systems 1–21.

Lin, Y., Ding, W., Qiang, S., Deng, L., and Li, G. (2021). ES-ImageNet: A million
event-stream classification dataset for spiking neural networks. Front. Neurosci. 15,
726582. doi: 10.3389/fnins.2021.726582

Liu, F., Zhao, W., Chen, Y., Wang, Z., and Jiang, L. (2022). “SpikeConverter: An
efficient conversion framework zipping the gap between artificial neural networks
and spiking neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence 36, 1692–1701. doi: 10.1609/aaai.v36i2.20061

Liu, F., Zhao, W., Chen, Y., Wang, Z., Yang, T., and Jiang, L. (2021).
SSTDP: Supervised spike timing dependent plasticity for efficient spiking

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1016/j.neunet.2015.09.005
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.24963/ijcai.2021/321
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.7566/JPSJ.90.074802
https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1038/nn1643
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.48550/arXiv.2103.08392
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1016/j.neunet.2021.09.022
http://www.cs.utoronto.ca/{sim }kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/{sim }kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.3389/fnins.2021.726582
https://doi.org/10.1609/aaai.v36i2.20061
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1047008

neural network training. Front. Neurosci. 15, 756876. doi: 10.3389/fnins.2021.
756876

Ma, C., Xu, J., and Yu, Q. (2021). “Temporal dependent local learning for deep
spiking neural networks”, in 2021 International Joint Conference on Neural Networks
(IJCNN) 1–7. doi: 10.1109/IJCNN52387.2021.9534390

Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S. (2018). Applications of
deep learning and reinforcement learning to biological data. IEEE Trans. Neur. Netw.
Learn. Syst. 29, 2063–2079. doi: 10.1109/TNNLS.2018.2790388

Marquez, E. S., Hare, J. S., and Niranjan, M. (2018). Deep cascade learning. IEEE
Trans. Neur. Netw. Learn. Syst. 29, 5475–5485. doi: 10.1109/TNNLS.2018.2805098

Meng, Q., Yan, S., Xiao, M., Wang, Y., Lin, Z., and Luo, Z. -Q. (2022). Training
much deeper spiking Neur. Netw. with a small number of time-steps. Neur. Netw. 153,
254–268. doi: 10.1016/j.neunet.2022.06.001

Mirsadeghi, M., Shalchian, M., Kheradpisheh, S. R., and Masquelier, T. (2021).
STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking
neural networks. Neurocomputing 427, 131–140. doi: 10.1016/j.neucom.2020.11.052

Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2018). Deep supervised learning
using local errors. Front. Neurosci. 12, 608. doi: 10.3389/fnins.2018.00608

Naveros, F., Luque, N. R., Ros, E., and Arleo, A. (2020). VOR adaptation on
a humanoid iCub robot using a spiking cerebellar model. IEEE Trans. Cybern. 50,
4744–4757. doi: 10.1109/TCYB.2019.2899246

Nøkland, A., and Eidnes, L. H. (2019). “Training neural networks with local error
signals”, in International Conference on Machine Learning 4839–4850.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9,
437. doi: 10.3389/fnins.2015.00437

Park, S., and Yoon, S. (2021). Training energy-efficient deep spiking
neural networks with time-to-first-spike coding. ArXiv abs/2106.02568.
doi: 10.48550/arXiv.2106.02568

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). “On the difficulty of training
recurrent neural networks”, in Proceedings of the 30th International Conference on
Machine Learning (Atlanta, GA, USA: JMLR.org).

Paszke, A. (2019). “PyTorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 8024–8035.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shrestha, S., and Orchard, G. (2018). “SLAYER: Spike Layer Error Reassignment in
Time”, in Advances in Neural Information Processing Systems 31

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical Bayesian optimization
of machine learning algorithms”, in Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 2. (Lake Tahoe, Nevada: Curran
Associates Inc.).

Srinivasan, G., Panda, P., and Roy, K. (2018). STDP-based unsupervised feature
learning using convolution-over-time in spiking neural networks for energy-
efficient neuromorphic computing. J. Emerg. Technol. Comput. Syst. 14, 44.
doi: 10.1145/3266229

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958.

Sutskever, I. (2013). Training Recurrent Neural Networks. Toronto, ON, Canada:
University of Toronto.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). “On the importance of
initialization andmomentum in deep learning”, in Proceedings of the 30th International
Conference on Machine Learning.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neur. Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., and Maida, A. (2019). BP-STDP: Approximating backpropagation
using spike timing dependent plasticity. Neurocomputing 330, 39–47.
doi: 10.1016/j.neucom.2018.11.014

Wang, Y., Ni, Z., Song, S., Yang, L., and Huang, G. (2021). “Revisiting Locally
Supervised Learning: an Alternative to End-to-end Training”, in ICLR 2021, the
International Conference on Learning Representations.

Williams, R. J., and Zipser, D. (1995). “Gradient-based learning algorithms
for recurrent networks and their computational complexity,” in Backpropagation:
Theory, Architectures, and Applications (New York, NY: L. Erlbaum Associates Inc.)
433–486.

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021). “A tandem learning
rule for effective training and rapid inference of deep spiking neural networks,” in IEEE
Transactions on Neural Networks and Learning Systems 1–15.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2019). Direct training for spiking
neural networks: faster, larger, better. Proc. AAAI Conf. Artif. Intell. 33, 1311–1318.
doi: 10.1609/aaai.v33i01.33011311

Xiang, W., and Zhining, Y. (2019). “Neural network hyperparameter tuning
based on improved genetic algorithm”, in Proceedings of the 2019 8th International
Conference on Computing and Pattern Recognition (Beijing, China: Association for
Computing Machinery). doi: 10.1145/3373509.3373554

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in deep
learning based natural language processing. IEEE Comput. Intell. Magaz. 13, 55–75.
doi: 10.1109/MCI.2018.2840738

Yu, Q., Song, S., Ma, C., Wei, J., Chen, S., and Tan, K. C. (2021).
“Temporal encoding and multispike learning framework for efficient recognition of
visual patterns,” in IEEE Transactions on Neural Networks and Learning Systems
1–13.

Zhao, Z., Zheng, P., Xu, S., andWu, X. (2019). “Object detection with deep learning:
a review,” in IEEE Transactions on Neural Networks Learning Systems 30, 3212–3232.
doi: 10.1109/TNNLS.2018.2876865

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper
with directly-trained larger spiking neural networks”, in AAAI-21, The Thirty-
Fifth AAAI Conference on Artificial Intelligence. doi: 10.1609/aaai.v35i12.
17320

Frontiers inNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.3389/fnins.2021.756876
https://doi.org/10.1109/IJCNN52387.2021.9534390
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1109/TNNLS.2018.2805098
https://doi.org/10.1016/j.neunet.2022.06.001
https://doi.org/10.1016/j.neucom.2020.11.052
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.1109/TCYB.2019.2899246
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.48550/arXiv.2106.02568
http://JMLR.org
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1145/3266229
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neucom.2018.11.014
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1145/3373509.3373554
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1609/aaai.v35i12.17320
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
	1. Introduction
	2. Methods
	2.1. Neural models
	2.2. Temporally-truncated local BPTT

	3. Experiments
	3.1. Experiment setup
	3.2. Spiking convolutional neural networks
	3.3. Encoding methods
	3.3.1. Frame-based datasets
	3.3.2. Event-based datasets

	3.4. Classification accuracy results

	4. Computational cost
	4.1. GPU memory cost
	4.2. Memory access and arithmetic operations analysis
	4.3. Memory access
	4.4. Arithmetic operations

	5. Conclusion and discussions
	5.1. Summary
	5.2. How to determine the design variables?
	5.3. The role of random classifiers
	5.4. Limitations and future perspectives

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

