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The brain tumor segmentation task with different domains remains a major 
challenge because tumors of different grades and severities may show different 
distributions, limiting the ability of a single segmentation model to label such 
tumors. Semi-supervised models (e.g., mean teacher) are strong unsupervised 
domain-adaptation learners. However, one of the main drawbacks of using a 
mean teacher is that given a large number of iterations, the teacher model weights 
converge to those of the student model, and any biased and unstable predictions 
are carried over to the student. In this article, we proposed a novel unsupervised 
domain-adaptation framework for the brain tumor segmentation task, which uses 
dual student and adversarial training techniques to effectively tackle domain shift 
with MR images. In this study, the adversarial strategy and consistency constraint 
for each student can align the feature representation on the source and target 
domains. Furthermore, we introduced the cross-coordination constraint for the 
target domain data to constrain the models to produce more confident predictions. 
We validated our framework on the cross-subtype and cross-modality tasks in 
brain tumor segmentation and achieved better performance than the current 
unsupervised domain-adaptation and semi-supervised frameworks.
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1. Introduction

Glioma, a tumor originating from glial cells, is one of the most common primary brain 
tumors. Accurate automatic brain segmentation is key to the accurate delineation of brain tumor 
regions on neuroimaging, which is required to formulate useful clinical practice guidelines and 
understand the disease and its clinical challenges. However, despite the tireless efforts of 
researchers, accurate automatic brain tumor segmentation on medical images has remained a 
technical challenge due to domain heterogeneity issues, domain shifts, costly and time-
consuming labeling, low-contrast imaging, and data imbalance.

With the promising progress made in medical image-segmentation models (Myronenko, 
2019; Li et al., 2021; Hatamizadeh et al., 2022; Luu and Park, 2022), several deep learning 
methods have been applied to automatically extract feature representations, and stable 
performance has been achieved in the test set of the experimental environment. However, in 
practice, the segmentation results are not always as expected because images acquired in 

OPEN ACCESS

EDITED BY

Xiangzhi Bai,  
Beihang University,  
China

REVIEWED BY

Shijie Zhao,  
Northwestern Polytechnical University,  
China
Shiqiang Ma,  
Tianjin University,  
China
Zhenzhen Dai,  
Henry Ford Health System,  
United States
Siddhartha Chandra,  
Amazon (United States),  
United States

*CORRESPONDENCE

Junying Zeng  
 zengjunying@126.com

SPECIALTY SECTION

This article was submitted to  
Brain Imaging Methods,  
a section of the journal  
Frontiers in Neuroscience

RECEIVED 01 October 2022
ACCEPTED 10 March 2023
PUBLISHED 13 April 2023

CITATION

Qin C, Li W, Zheng B, Zeng J, Liang S, 
Zhang X and Zhang W (2023) Dual adversarial 
models with cross-coordination consistency 
constraint for domain adaption in brain tumor 
segmentation.
Front. Neurosci. 17:1043533.
doi: 10.3389/fnins.2023.1043533

COPYRIGHT

© 2023 Qin, Li, Zheng, Zeng, Liang, Zhang and 
Zhang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 13 April 2023
DOI 10.3389/fnins.2023.1043533

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1043533&domain=pdf&date_stamp=2023-04-13
https://www.frontiersin.org/articles/10.3389/fnins.2023.1043533/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1043533/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1043533/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1043533/full
mailto:zengjunying@126.com
https://doi.org/10.3389/fnins.2023.1043533
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1043533


Qin et al. 10.3389/fnins.2023.1043533

Frontiers in Neuroscience 02 frontiersin.org

different institutions can differ in terms of the image-acquisition 
parameters as well as the tumor distribution, grade, and severity 
(Figure  1). These differences can limit the learning ability of 
segmentation models that are trained using images of both high-grade 
gliomas (HGGs) and low-grade gliomas (LGGs). Furthermore, in 
model training using multimodal images, cross-modality domain 
shifts may arise (for example, a shift from T2-weighted images to 
T1-weighted images), leading to considerable performance 
degradation. In such cases, unsupervised domain adaptation (UDA) 
is useful for brain tumor segmentation as it can enable convolutional 
neural networks to extensively study existing labeled images from 
multiple modalities as a source-domain and unlabeled images from 
the target domain. Promising results have been achieved in the context 
of semantic segmentation by using domain-invariant feature training 
with a self-ensembling technique for MRI domain adaptation (Sener 
et  al., 2016), primarily utilizing both source and target domains 
belonging to the same modality, self-supervised and adversarial 
training (Li et al., 2022), and generative models (Hassan et al., 2018).

Numerous UDA methods have been proposed in the literature, 
with a growing emphasis on learning to map representations of the 
source domain to those of the target domain while minimizing the 
distribution discrepancy (Long et  al., 2016). In addition, many 
adversarial learning methods train domain-classifier networks (Sun 
et  al., 2015; Sun and Saenko, 2016; Purushotham et  al., 2017) to 
distinguish features as either a source or a target and train a feature-
generator network to mimic the discriminator. In contrast, Ganin et al. 
(2016) employed domain-adversarial training and achieved state-of-
the-art domain-adaptation performance on two distinct classification 
problems (document sentiment analysis and image classification). This 
technique validated adversarial learning and possesses great potential 
in domain-shift problems. Furthermore, several semi-supervised 
learning (SSL) methods have been employed on UDA tasks (Ding 
et al., 2018; Zou et al., 2018, 2019; Zhang et al., 2020) because SSL is a 
special case of UDA problems (Zhang et al., 2021), and SSL methods 
are typically motivated by basic assumptions about the data structure, 
such as the smoothness assumption. For example, self-ensembling is a 
variant of the mean teacher (Tarvainen and Valpola, 2017), and 

minimum class confusion shares similar objectives to entropy 
minimization and self-training. The superior results obtained also 
imply the efficacy of SSL methods for UDA tasks. Despite such 
progress, domain adaptation still needs to be explored in detail, and 
promising results may be achieved by developing SSL frameworks.

For medical image segmentation, Shanis et al. (2019) focused on 
brain tumor intramodality domain adaptation using self-ensembling 
and adversarial training. The authors demonstrated the effectiveness of 
the mean-teacher network and adversarial loss for UDA on medical 
datasets. Current unsupervised learning methods are directed toward 
combining multiple techniques to achieve superior performance in 
domain-adaptation tasks (Saito et al., 2018; Perone et al., 2019). This 
inspired us to further explore the performance of different SSL methods 
on UDA tasks. In this study, we  address two domain-adaptation 
problems: one where the source and target domains belong to the same 
modality but contain tumors of different grades, and another where 
these domains belong to different imaging modalities. Multimodal 
image information complements each other, which improves the 
accuracy of segmentation but also increases the difficulty of the 
segmentation process to a certain extent. The use of multimodal images 
increases the information available for segmentation but simultaneously 
adds a large amount of unnecessary information, thereby limiting the 
learning effectiveness of the segmentation model. These cases are often 
neglected in biomedical image analysis as most deep learning networks 
are trained and tested on a mixture of data collected from different 
institutions and devices, yielding unpredictable performance if the test 
set is from a data source different from the training set.

In this study, we  propose a combined framework that uses 
discriminators for aligning feature spaces, namely dual student models 
to break the limits of the consistency constraint instead of coupling 
the weights. We demonstrate the performance of our method on the 
Brain Tumor Segmentation 2019 (BraTS 2019) dataset. Specifically, 
we applied our method to perform the following two tasks:

 1. Cross-subtype task: We used images of HGGs as the source 
domain and those of LGGs as the target domain for 
HGG-to-LGG domain adaptation.

FIGURE 1

Examples of three-dimensional brain MR images of low-grade glioma (LGG) and high-grade glioma (HGG) samples. Each sample has images from four 
modalities: T1-weighted MRI, contrast-enhanced T1-weighted (T1ce) MRI, T2-weighted MRI, and fluid attenuation inversion recovery (FLAIR) MRI. 
These sequences provide complementary information for different subregions of brain tumors.
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 2. Cross-modality task: Because the whole tumor was annotated 
using T2-weighted images in clinical practice, the tumor region 
and peritumoral edema were highlighted on fluid-attenuated 
inversion recovery (FLAIR) images and T2-weighted images, 
and the core tumor region without peritumoral edema was 
more visible on T1-weighted and contrast-enhanced 
T1-weighted (T1ce) images. We used the T2-weighted and 
FLAIR images as the labeled source domain and the 
T1-weighted and T1ce images as the target domain, which 
provided complementary information for the different 
subregions of brain tumors and a larger domain shift than that 
present in the cross-subtype task.

To the best of our knowledge, our study is the first to use the 
combination of a dual student model and adversarial learning for 
brain tumor domain adaptation. Furthermore, we did not need an 
additional source-domain network or class-ratio priors (Vu et al., 
2019) based on the distribution of classes over the source labels.

2. Related work

2.1. Unsupervised domain adaptation

Unsupervised domain adaptation has become an important 
technique to alleviate the problem of highly variable data sources and 
costly labeling in a new domain because UDA does not rely on 
labeled training samples from the desired target domain. For the 
segmentation of white-matter hyperintensities, Orbes-Arteaga et al. 
(2019) proposed using a paired consistency loss to guide the 
adaptation and supplementing this with adversarial loss to prevent 
the model from being trapped in bad local minima. Deep co-training 
with the source domain and target domain is a conventional domain-
adaptation training strategy. Due to the limited source-domain data 
and privacy issues, Liu et al. (2021) applied source-free UDA for 
segmentation, which used a pre-trained model rather than the 
conventional method. To overcome the imbalance issue in 
transferring difficulty among classes, Zou et al. (2018) introduced 
class-balanced self-training by generating pseudo-labels with a 
balanced class distribution. Despite such progress, the 
abovementioned models often face challenges in real-world “wild 
tasks,” where large differences exist between labeled training/source 
data and unseen test/target data. UDA seeks to overcome this 
problem without using target-domain labels.

2.2. Semi-supervised learning with dual 
student

In consistency-based methods, the following two roles are 
commonly created, either explicitly or implicitly: a teacher model and 
a student model (i.e., a teacher–student structure). The teacher can 
be summarized as being generated by an exponential moving average 
(EMA) of the student. Ke et al. (2019) showed that these methods lead 
to a performance bottleneck as a coupled EMA teacher is not sufficient 
for the student. To overcome this type of problem, the model must 
learn the knowledge coming from another independent model instead 
of the EMA teacher. Ke et al. (2019) proposed to use dual student 

models to share the same network architecture with different initial 
states and to update them separately to avoid the limitation of the 
weight-coupling problem in the mean teacher. However, the outputs 
of the two models may differ significantly, and the direct application 
of the consistency constraint causes them to collapse with each other 
by exchanging incorrect knowledge. A stabilization constraint was 
thus proposed to overcome this problem, i.e., to define and obtain 
reliable knowledge of the models and exchange reliable knowledge 
with each other. Extensive experiments (Ke et al., 2019) have shown 
that this framework is effective, and it has yielded promising results 
when applied to the image-classification datasets CIFAR, SVHN, and 
ImageNet. Therefore, we employed this concept in our brain tumor 
segmentation and domain-adaptation experiments and achieved 
superior performance to those of UDA baselines and the conventional 
teacher–student structure.

2.3. Adversarial training

In the case of UDA, adversarial training is the most common and 
explored approach for semantic segmentation. The objective behind 
this is to adapt the segmentation network to be invariant to variations 
between the source and target. Zhang et al. (2017) proposed the use 
of both annotated and unannotated images in the segmentation 
pipeline and constructed two types of inputs for the evaluation 
network by using concatenation and element-wise multiplication. 
Luo et al. (2018) proposed adaptive weighting of the adversarial loss 
of different features, emphasizing the importance of category-level 
feature alignment for reducing domain shifts. Recent work on 
adversarial training for medical image segmentation indicates that 
the regulation effect of adversarial loss is applied to the internal 
features of the segmentor to achieve domain invariance, which is 
viewed as an adaptively learned similarity measure between the 
segmented outputs and the annotated ground truth. In this study, 
we computed the adversarial loss (adv

i ) for every model and back-
propagated it with the supervised loss and cross-coordination 
consistency loss to the segmentation network (G) for target image 
predictions. The discriminator (D) was trained with cross-entropy 
loss by using both domains and was designed to distinguish the 
domain of the input.

3. Methodology

In this section, we present our proposed framework for UDA on 
the BraTS 2019 dataset (Figure 2). Our model acts as a generator and 
is responsible for predicting segmentation maps for the input image, 
which could stem from the source or target domain, while the 
discriminator (D) takes the segmentation maps and predicts the 
domain of the input by means of an output of 1 or 0. The segmentation 
network attempts to fool the discriminator, which is achieved using a 
fully convolutional neural network, thus yielding features from the 
two domains with the same distributions. The combination of dual 
student and adversarial training allows both student models to have 
the ability to train and distinguish the domain of the input 
independently, without misleading each other. The cross-coordination 
consistency constraint allows both models to be interactive and learn 
from each other.
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3.1. Proposed model

Our UDA framework consists of the two modules as shown 
in Figure 2: (i) the student networks G1 and G2 with different 
initializations and (ii) the discriminators D1 and D2, which are 
separately in charge of adversarial training and feature alignment 
for G1 and G2, respectively. First, we  forward propagated the 
labeled images as the source domain and the unlabeled images as 
the target domain in a batch through each segmentation network 
(G1 and G2). Then, we updated the network weights through the 
ground truth from the source domain and obtained pre-softmax 
layer predictions about the unlabeled target domain. Predictions 
from both domains were passed through the discriminators D1 
and D2 to distinguish whether the input belonged to the source 
or target domain. The networks G1 and G2 act as a generative 
model, and adversarial loss from D1 and D2 is back-propagated 
through the G1 and G2 networks, respectively, to update the 
network weights to learn domain-invariant feature 
representation. The predictions (P) of the original target-domain 
data from the networks G1 and G2 are transformed into P PT T1 2/

. The predictions (P′) of the transformed target-domain data 
from the networks G1 and G2 are noted as P PT T1 2

′ ′
/ . 

We  computed the consistency loss between P PT T1 2/ and 
P PT T1 2
′ ′
/  and back-propagated the losses through the student 

networks G1 and G2. Finally, cross-coordination consistency was 
applied to the predictions from the target domain between the 
student networks G1 and G2 and was back-propagated through 
all of them.

3.2. Supervised source-domain adaptation

A robust model is the basis of source and target-domain 
training. Our models were trained with a supervised loss on the 
source domain. Formally, we set Xs H W D C⊂ × × ×  of the BraTS 
2019 source examples along with associated ground truth C -class 
segmentation maps; Y Cs

H W D⊂ ( ) × ×
1,  provides the label of pixel 

(h, w, d) as a one-hot vector. H, W, and D are the height, width, 
and depth, respectively, of the image and label. Let F  be  the 
segmentation network, which acquires an image x  and predicts 
a C -dimensional “soft-segmentation map.” We  chose dice 
loss and cross-entropy loss as our supervised segmentation loss 
seg ,  and the segmentation constraint can be  computed 
as follows:

 
  seg dice ce= ∗ +( )0 5.
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FIGURE 2

Illustration of our proposed architecture. Two models are trained independently. Each batch includes labeled data (from the source domain) and 
unlabeled data (from the target domain). As unlabeled data, we used the transformed segmentation maps generated with the original images as the 
input and the alternative segmentation maps generated with the transformed images as the input to meet the consistency constraint. In addition, the 
cross-coordination constraint is enforced between the students by their prediction and the perturbed one. Furthermore, each student must learn the 
segmentation task constraint for the labeled data.
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where yi  and pi  denote the ground truth and the probability 
that a pixel belongs to a category prediction, respectively, while M  
denotes the number of classes in the segmentation network G1/G2.

3.3. Dual student with adversarial learning

We combined adversarial learning with the dual student (Ke et al., 
2019) to define the stable sample and stable constraint in our 
framework. To break the limit of the EMA model, we  chose to 
initialize the weights of the networks by using the Xavier and Kaiming 
initializations and used the same training dataset for forward 
propagation by using U-Net (Ronneberger et al., 2015) and for back-
propagation, respectively. Notably, we  wished to emphasize the 
difference and independent learning of the two student models either 
in the way they are initiated or in the network architecture. In this 
manner, the student i  weights θ i  were not an ensemble of the student 
j  weights θ j  in a successive training step t  with the smoothing 

coefficient α ∈[ ]01,  like all existing teacher–student methods. 
Furthermore, if the student has biased predictions for specific samples, 
the EMA teacher is most likely to maintain the mistake learning and 
enforce the student to follow. A ramp-up operation for the consistency 
constraint is the most commonly applied one to alleviate this bias; 
however, this operation cannot solve the problem. In this case, training 
relatively independent but interactive models is beneficial as this gains 
loosely coupled targets. We  used the dual student model as a 
regularizer to smoothen the weights of our feature space domain-
adaptation network. The two student network weights were updated 
using task loss, cross-coordination consistency loss, and adversarial 
loss. For both our student models, we used the architecture proposed 
by Ronneberger et al. (2015).

3.4. Cross-coordination consistency 
constraint

If the outputs of the two student models vary widely, directly applying 
the consistency constraint will cause collapse due to the exchange of 
wrong knowledge. The EMA teacher does not suffer from this type of 
problem owing to the coupling effect. For good performance of the dual 
student, each of the student models must be  able to reliably extract 
knowledge and effectively exchange knowledge with the other model.

As the BraTS 2019 dataset remains a significant challenge owing 
to the inclusion of multimodal data and domain-shift data, we put 
considerable effort into dealing with densely but inaccurately 
unlabeled target data. First, according to the smoothness assumption, 
a small perturbation must not affect the prediction of the samples. 
Therefore, we augmented the unlabeled images using operations such 
as random rotation/flip/reflection, contrast transformation, and noise 
perturbation. The transformed images were inputted into the two 
models to output the predictions PTi  and PT j . The original image 
predictions P Pi j, of the two models were subjected to the same 
transformation to produce the newly transformed predictions Pti , 
Ptj . If the transformed prediction PTi  of the original target data is 

in the classification prediction neighborhood of the prediction Pti  of 
the transformed target data, this means that this sample has a high 
probability for the predicted label. The prediction consistency in its 
neighborhood can reflect the degree of stability of a sample x . Our 

dual adversarial structure also imposed the consistency constraint to 
meet the smoothness assumption and used the consistency loss con  
for model training. For student i, the distance between PTi  and Pti  
was measured using the mean square error as follows:

 
con
i T i tiP P

n
=
∑ − 2

 
(4)

In addition to the abovementioned training details, to ensure that 
our dual adversarial student structure was trainable, we imposed the 
cross-coordination constraint on reliable samples from two 
independent models and introduced a Boolean function {condition}, 
followed by the method described by Ke et al. (2019) to measure the 
prediction consistency and indicate the reliability of x. For student i, 
the condition outputs one when it is true, and zero otherwise, as follows:

 
{ } { } { }( )i i i i i

x x x x xR P P M Mξ ξ= = & > >
 

(5)

where

 
M xx
i i= ( )

∞
f θ ,

 
(6)

x  is the noisy augmentation of a sample x. Pxi  and Pxi  are the 
predicted labels of samples x and x , respectively, by a student i. Mx

i  is 
the maximum prediction probability of model output. ¾ ,∈[ ]01  is a 
hyperparameter that indicates a confident threshold. If Mx

i  exceeds ξ , 
x is considered to be far from the decision boundary of the ground truth, 
i.e., this sample has a high probability for the predicted label. We also used 
the Euclidean distance to measure the prediction consistency as shown:

 
ε θ θx
i if x f x= ( ) − ( )i

, ,
2

 
(7)

Smaller distances indicate a more reliable x. In addition to 
measuring the reliability of x from one model, the distance 
measurement between the predictions of students i and j was key to 
calculating the cross-coordination constraint. Their distance was 
measured by MSE . Thus, the overall cross-coordination constraint 
for student i on sample x was written as follows:

 





cross
i x

i
x
j

MSE x
i

x
j

x
j
MSE

x
x R R

R x
( ) =

>{ } ( ) = =

( )

 ε ε ,

,

1

otherwise




  

(8)

Notably, x stems from unlabeled target data and not from the 
training data. For student j, we  calculated the cross-coordination 
constraint in the same manner and marked it as crossj , which was as 
used in the training process.

3.5. Object function

With the proposed framework for training the student models i 
and j, we formulated the final loss function for the domain-adaptation 
task as follows:
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student
j  was calculated in the same way as student

i . Is  and It  
are inputs from the source and target domains, respectively. We used 
the averages of the dice and cross-entropy losses for the brain tumor 
segmentation task due to the low density and class imbalance issue of 
brain MR images. The consistency loss coni tI( )  was used to validate 
the predictions of each student model whether they were reliable or 
not. The cross-coordination constraint loss crossi

tI( )  measures the 
difference in the predictions between the dual student model to avoid 
collapse and exchanging the wrong knowledge. The adversarial loss 
adv
i

tI( )  was calculated using the cross-entropy loss on unlabeled 
target predictions and labels to align the feature representations of the 
source and target domains. Because adversarial training may be less 
useful in the beginning stage of the training when the student model 
can produce good segmentation for the annotated training images, 
we set λadv = 0.1 initially and set λadv = 1 after all iterations. The 
value must be small (<1) when the student model can produce decent 
segmentation results. Furthermore, the discriminator networks were 
trained by the cross-entropy discriminator loss disc s tI I,( )  using 
source and target feature representations.

3.6. Model architecture

Segmentation network: We used U-Net (Ronneberger et al., 2015) 
as our segmentation network with batch normalization, max pooling, 
and dropout. Networks were trained using stochastic gradient descent 
with momentum = 0.9; the weight decay was set to 1e − 4, and a poly 
learning rate decay policy was applied. The two student networks had 
identical U-Net architecture, and all student network weights were 
updated by back-propagation. The performance of the models was 
validated using target data and separately tested on holdout test sets.

Discrimination network: For discriminators, we  used a fully 
convolutional neural network consisting of five convolutional layers 
with 4 × 4 × 4. kernels and a stride of 2. Except for the last 
convolutional layer, each convolutional layer was followed by a 
leaky rectified linear unit parameterized by 0.2 and a dropout 
probability of 0.5. Discriminators were trained with Adam as the 
optimizer with β1 = 0.45 and β2 = 0.999.

4. Experiments

4.1. Dataset and data split

We evaluated our proposed framework on the BraTS 2019 database 
(Menze et al., 2015). This dataset includes the images of 76 patients with 
LGGs and 259 patients with HGGs. All subjects were registered on 
different imaging modalities, such as T1-weighted, T1ce, T2-weighted, 
and FLAIR MRI in the preprocessing step. The BraTS 2019 dataset 
defines three labels on brain tumor images: peritumoral edema, enhanced 
tumor, and non-enhanced tumor. The source and target domains have 

the same classes. The whole tumor class includes all the abovementioned 
three labels; the tumor core class is a union of the enhanced and 
non-enhanced tumor labels, while the enhancing tumor core class is an 
independent class, which also constitutes a hyperactive part.

Following the procedure described by Liu et  al. (2021), 
we evaluated our method according to the cross-subtype and cross-
modality segmentation evaluation protocols.

For the HGG-to-LGG task, during the data preprocessing stage, 
we  concatenated image slices from the four modalities as a four-
channel input and resampled the images and paired labels to a spatial 
size of 128 × 128 × 128 to reduce the computational cost. Our training 
set included the labeled images of 259 HGG patients as the source-
domain and the unlabeled images of 46 LGG patients as the target 
domain. The unlabeled images of the remaining 10 and 20 LGG 
patients were used as the validation and test sets, respectively.

For the cross-modality UDA task, we experimented on both the 
T2 + FLAIR to T1 + T1ce and T1 + T1ce to T2 + FLAIR tasks. For the 
T2 + FLAIR to T1 + T1ce task, we used two-channel images (from T2 
and FLAIR) as the input and resampled them to a spatial size of 
128 × 128 × 128 before the network training. We used the images of the 
HGG patients to test the performance of our framework. Our training 
set included the labeled T2-weighted + FLAIR MR images of 259 
HGG patients as the source domain and the unlabeled T1 + T1ce MR 
images of 210 HGG patients as the target domain. The unlabeled 
T1 + T1ce MR images of the remaining 19 and 30 HGG patients were 
used as the validation and test sets, respectively.

For the T1 + T1ce to T2 + FLAIR task, the preprocessing steps 
were the same as the cross-modality task described earlier. Our 
training set contained the labeled T1 + T1ce MR images of 259 HGG 
patients as the source domain and the unlabeled T2 + FLAIR MR 
images of 210 HGG patients as the target domain. The unlabeled 
T2 + FLAIR MR images of the remaining 19 and 30 HGG patients 
were used as the validation and test sets, respectively.

4.2. Training protocol and evaluation metrics

4.2.1. Experimental settings
For a fair comparison and analysis, we  employed previous 

mainstream methods and our proposed framework to perform the 
same iterations with the same set of parameters for optimizers and 
learning rate decay. All training steps used a batch size of 2. We applied 
the poly learning rate, where the learning rate was multiplied by 

1−










iter
iter

power

max_
, where max_iter = 15,000 and power = 0.9.

 

We also conducted extensive experiments on the BraTS 2019 dataset 
with the same dataset split and settings. The training was performed 
on a single NVIDIA RTX 3090 GPU with the PyTorch deep learning 
toolbox. We performed the following comparable experiments on the 
BraTS 2019 dataset:

 1. (super-all): Training the segmentation network (with no 
domain adaptation) on the combined source and target data 
and validating and testing on the holdout target dataset.

 2. (super-source): Training the segmentation network (with no 
domain adaptation) on source data alone and validating and 
testing on target data.
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 3. (da-mt): Domain adaptation using only mean teacher 
(Tarvainen and Valpola, 2017). Training the segmentation 
network on labeled source data and unlabeled target data and 
validating and testing on target data.

 4. (da-entropy-mini): Domain adaptation using only entropy 
minimization (Vu et al., 2019).

 5. (da-adv): Domain adaptation using only adversarial training 
(Zhang et al., 2017).

 6. (da-ds): Domain adaptation using the dual student model (Ke 
et al., 2019).

 7. (Ours): Proposed domain-adaptation framework using both 
dual student and adversarial training.

4.2.2. Evaluation metrics
For the evaluation of the segmentation models, we adopted two 

metrics: the dice similarity coefficient (DSC) and Hausdorff distance 
(HD). The DSC measures the general overlap rate and the similarity 
between two sets of image data y yand , i.e., the similarity between 
sets of pixels. The DSC is the most widely used metric for the evaluation 
of image-segmentation models. It can be formulated as follows:

 
DSC y y

y y
y y







,( ) = × ∩
+

2

 
(11)

As a boundary-based metric, the HD is more sensitive than the 
DSC in terms of the segmentation boundary. The HD between two 
point sets is defined by the sum of all minimum distances from all 
points of a point set to another, divided by the number of points in a 
point set. The point sets represent our segmentation results and the 
ground truth, such that the maximum HD can indicate the maximum 
distance of the labeled and the predicted boundary.

4.3. Evaluation results

4.3.1. Cross-subtype HGG-to-LGG UDA
HGGs and LGGs have different sizes and position distributions in 

terms of tumor regions. We trained all experiments for 15,000 iterations 
with HGG images as the source-domain and LGG images as the target 
domain. The networks were trained with four-channel 3D MRI 
volumes with a spatial size of 128 × 128 × 128 to perform four-class 
segmentation (background, enhanced tumor, whole tumor, and core 
tumor). The evaluation was implemented in the testing set consisting 

of LGG images. The performance scores for all experiments of the 
cross-subtype task are presented in Table  1. A comparison of the 
experimental results from the super-all and super-source models 
showed that the performance of the neural network models degraded 
drastically if the test data were from another domain than the training 
data. We attempted a different method, similar to the teacher–student 
structure and adversarial training, to complete the ablation study. In 
Table 1, the super-all model is the result of supervised learning and is 
used as a reference value. Our model is compared to the results of the 
super-all model for reference only. Compared to the super-source 
model, our model improved the dice scores of the whole tumor and 
enhanced tumor classes by 20.17 and 3.90%, respectively, and decreased 
the HDs of the whole tumor and core tumor classes by 2.13 mm and 
1.04 mm, respectively. We compared the results of our model to the best 
experimental results, i.e., those of the da-adv model. We found that the 
HDs of the core tumor class were essentially the same for both models, 
decreasing by only 0.46 mm in our model. Thus, our proposed domain-
adaptation method showed better performance overall, mitigated 
domain shift to an extent, and achieved noticeable improvement in 
segmenting the whole tumor and core tumor classes in the LGG 
dataset. The segmentation results are illustrated in Figure 3.

4.3.2. Cross-modality T2 + FLAIR to T1 + T1ce and 
T1 + T1ce to T2 + FLAIR UDA

Multimodal images have abundant information that is effectively 
complemented, which improves the accuracy of segmentation but also 
increases its difficulty to a certain extent. Multimodal image 
information includes a large amount of unnecessary information, 
making the segmentation problem more difficult. We  started our 
experiment using tumor image slices from different imaging 
modalities. To ensure the rigor of the controlled experiment, we used 
only the images of the HGG subjects for the experiment.

The quantitative evaluation results of the T2 + FLAIR to T1 + T1ce 
and T1 + T1ce to T2 + FLAIR tasks in the cross-modality UDA task are 
presented in Tables 2, 3, respectively. In addition to the quantitative 
evaluation, we visualized the segmentation results of different UDA 
methods for the two cross-modality UDA tasks (Figures  4, 5). As 
shown in Tables 2, 3, our proposed dual student with adversarial 
learning networks showed improved performance in the target domain 
and outperformed the mean teacher (da-mt) by a large margin but did 
not outperform the source model (super-source). We will continue to 
improve our network architecture in our future work.

TABLE 1 Quantitative comparisons of DSC and HD in the HGG-to-LGG UDA task.

Experiment DSC [%]↑ HD [mm]↓

WholeT CoreT EnhT WholeT CoreT EnhT

Super-all 90.5062 64.9026 62.6651 8.19622 10.4381 10.1364

Super-source 68.6837 49.4666 59.7344 14.2450 15.0449 9.4586

da-mt 85.0194 27.1972 55.8531 13.9670 18.6337 14.0247

da-entropy-mini 85.5472 31.7202 54.8776 17.9886 18.0106 11.9540

da-adv 73.5623 45.4938 62.9094 14.3056 13.5430 10.2944

da-ds 84.0640 47.0138 63.6998 12.3527 14.0168 11.6854

Ours 88.8554 48.3152 63.6357 12.1197 14.0049 11.0748

DSC, dice similarity coefficient; HD, Hausdorff distance; HGG, high-grade glioma; LGG, low-grade glioma; UDA, unsupervised domain adaptation; WholeT, whole tumor; CoreT, core tumor; 
EnhT, enhanced tumor; da-mt, domain adaptation using mean teacher; da-entropy-mini, domain adaptation using entropy minimization; da-adv, domain adaptation using adversarial 
learning; da-ds, domain adaptation using dual student; ours, our framework. The bold numbers indicate the better experimental results for each segmentation target.
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TABLE 2 Quantitative comparisons of DSC and HD in the T2 + FLAIR to T1 + T1ce UDA task.

Experiment DSC [%]↑ HD [mm]↓

WholeT CoreT EnhT WholeT CoreT EnhT

Super-all 78.0329 85.8035 76.2321 19.0370 15.9223 16.1871

Super-source 33.9026 54.2546 40.5328 38.4868 32.4899 32.5497

Mean-teacher 27.8227 44.7233 35.4824 41.9225 38.9808 39.0486

Our method 32.2734 45.7109 36.8492 43.8065 41.5501 41.3097

DSC, dice similarity coefficient; HD, Hausdorff distance; T2, T2-weighted images; FLAIR, fluid attenuated inversion recovery; T1, T1-weighted images; T1ce, contrast-enhanced T1-weighted 
images; UDA, unsupervised domain adaptation; WholeT, whole tumor; CoreT, core tumor; EnhT, enhanced tumor. The bold numbers indicate the better experimental results for each 
segmentation target.

TABLE 3 Quantitative comparison of DSC and HD in the T1 + T1ce to T2 + FLAIR UDA task.

Experiment DSC [%]↑ HD [mm]↓

WholeT CoreT EnhT WholeT CoreT EnhT

Super-all 86.9167 59.1378 38.9827 18.8570 12.9443 12.7880

Super-source 58.3561 37.3261 23.5320 31.7271 33.6304 33.3393

Mean-teacher 30.2762 24.5957 15.7010 33.3301 34.6847 33.9832

Our method 48.9012 31.2129 21.7738 31.2453 32.4403 32.6667

DSC, dice similarity coefficient; HD, Hausdorff distance; T1, T1-weighted images; T1ce, contrast-enhanced T1-weighted images; T2, T2-weighted images; FLAIR, fluid attenuated inversion recovery; 
UDA, unsupervised domain adaptation; WholeT, whole tumor; CoreT, core tumor; EnhT, enhanced tumor. The bold numbers indicate the better experimental results for each segmentation target.

5. Discussion

We have presented a novel UDA framework based on semi-
supervised methods for the tumor severity domain shift and cross-
modality domain-adaptation tasks. Unlike other UDA methods that 
construct networks based on the characteristics of data from different 
domains, we  did not work on designing the network but rather 

focused on establishing connections between the source-domain 
labels and the target-domain data. Despite the costly labeling, we had 
abundant biomedical images to utilize and could propose novel 
methods using source labels and the target-domain data to address 
UDA difficulties and alleviate the domain gap. Using a semi-
supervised framework to solve the difficulties of UDA is a good 
research direction, and the purpose of our research in this study is also 

FIGURE 3

Illustration of the segmentation results of different unsupervised domain-adaptation methods in the high-grade glioma to low-grade glioma 
experiments. Yellow indicates the enhancing tumor core class. Yellow + red indicates the tumor core class. Yellow + red + green indicates the whole 
tumor class. gt, ground truth; da-mt; domain adaptation using mean teacher; ours, our framework.
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to try to utilize the advantages of semi-supervised approaches and 
achieve good performance on the BraTS 2019 dataset. Therefore, our 
framework has the potential to be applied to segmentation models 
that are stable in a source domain with the target-domain data from a 
range of clinical devices, in order to combat the problem of 
domain shift.

6. Conclusion

We have presented a novel approach to multi-modality and cross-
modality domain adaptations by using the dual student model and 
adversarial training. We  evaluated our model on the BraTS 2019 
dataset, which has multimodal images and includes HGG and LGG 
patients, to address the cross-modality and tumor severity domain 
shifts. The results showed an improved segmentation performance in 
both tasks. The superior performance in both types of domain shifts 

validates the efficiency and accuracy of our proposed model. We plan 
to extend our method to other biomedical image-segmentation 
datasets to overcome domain-shift problems and improve the domain 
application. Future studies will include extensive hyperparameter 
tuning for medical image segmentation and UDA.
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FIGURE 4
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recovery; UDA, unsupervised domain adaptation.

FIGURE 5

Examples of 2D slice and 3D segmentation results of different methods for T2-weighted and FLAIR MR images in the T1 + T1ce to T2 + FLAIR UDA task. 
T1ce, contrast-enhanced T1-weighted images; FLAIR, fluid attenuated inversion recovery; UDA, unsupervised domain adaptation; NET, non-enhancing 
tumor; ET, enhancing tumor; ED, peritumoral edema.
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