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Choices between immediate smaller reward and long-term larger reward are

referred to as intertemporal choice. Numerous functional magnetic resonance

imaging (fMRI) studies have investigated the neural substrates of intertemporal

choice via conventional univariate analytical approaches, revealing dissociable

activations of decisions involving immediately available rewards and decisions

involving delayed rewards in value network. With the help of multivariate analyses,

which is more sensitive for evaluating information encoded in spatially distributed

patterns, we showed that fMRI activity patterns represent viable signatures of

intertemporal choice, as well as individual differences while controlling for age.

Notably, in addition to value network, regions from cognitive control network play

prominent roles in differentiating between different intertemporal choices as well

as individuals with distinct discount rates. These findings provide clear evidence

that substantiates the important role of value and cognitive control networks in

the neural representation of one’s intertemporal decisions.

KEYWORDS

intertemporal choice, multivariate analysis, value network, cognitive control network,
individual differences

Introduction

Choices between the temptation of immediate gratification and better long-term
outcome are ubiquitous in our daily lives. The ability to forgo an immediate reward in order
to achieve another goal can predict one’s cognitive, coping, and social competency (Mischel
et al., 1988). Such individual trait is widely assessed by a paradigm called intertemporal
choice task, which requires participants to repeatedly choose between receiving a smaller
amount of money immediately or a larger amount of money later. Substantial individual
differences in intertemporal choice task have been reported, which are indexed by the delay
discount rate, with higher rate representing the preference for immediate rewards at the cost
of larger future rewards. One’s discount rate is very stable across time (Ohmura et al., 2006;
Kirby, 2009; Senecal et al., 2012), correlated to intelligence and working memory (Shamosh
et al., 2008). Evidence from clinical populations has linked abnormal discount rate to various
psychiatric disorders such as substance abuse (Bickel et al., 1999) and pathological gambling
(Alessi and Petry, 2003).

Efforts have been made to investigate the cognitive and neural mechanistic bases of one’s
intertemporal choice (Peters and Buchel, 2011; van den Bos and McClure, 2013). Several

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1037294
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1037294&domain=pdf&date_stamp=2023-02-28
https://doi.org/10.3389/fnins.2023.1037294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1037294/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1037294 February 22, 2023 Time: 15:23 # 2

Ye and Wang 10.3389/fnins.2023.1037294

lines of empirical evidence have consistently suggested the
involvement of value system, where value is computed and
predicted, such as ventromedial prefrontal cortex (vmPFC), ventral
striatum, and posterior cingulate cortex (PCC). Behaviorally, the
value of reward is discounted as a function of the delay to receiving
it, paralleled neural activities are found in vmPFC, ventral striatum,
and PCC, as they preferentially respond to immediate rewards over
the delayed ones (McClure et al., 2004, 2007), and damage to these
areas leads to steep discounting of later rewards (Ciaramelli et al.,
2021). Meanwhile, regions in cognitive control network, which
support a broad range of executive functions, such as dorsolateral
prefrontal cortex (dlPFC) (Niendam et al., 2012) are uniformly
activated at all decision epochs independent of the delay (McClure
et al., 2004; Ballard et al., 2017). Nevertheless, self-control has
been suggested as a critical component of integrative framework
of intertemporal choice (Berns et al., 2007). It has been shown
that prefrontal control areas are recruited for difficult decisions
as compared to the easy ones (McClure et al., 2004; Ballard et al.,
2017; Jimura et al., 2018). Their functional couplings with reward
networks in resting state successfully predicte one’s discount rate
(Wang et al., 2020), and stimulation of dlPFC decreases one’s
discount rate (He et al., 2016). After all, patience calls for the
ability to wait in addition to the desirability of the reward. Besides
valuation network and cognitive control network, recent studies
also indicate a link between activities in episodic prospection
network (e.g., amygdala, parahippocampus gyrus, insula) and
one’s decision of intertemporal choices (Chen et al., 2019). These
previous efforts suggest that instead of one or two single regions
alone, brain regions from multiple networks are likely to work in
concert in one’s intertemporal choice.

Most existing works investigated the neural substrate of
intertemporal decision-making via conventional univariate
analytical approaches. Despite being a powerful tool to investigate
structure-function mappings when activations differ in local peaks
or clusters of activity (Friston et al., 1994), univariate analysis is
insensitive to information represented in a distributed manner
across voxels (Gluth et al., 2012). Meanwhile, specific decision-
making can be encoded in a spatially distributed way (Gherman
and Philiastides, 2018; Yau et al., 2020). This kind of distributed
information can be measured with the help of multivariate
approach, which overcomes the limitations of univariate approach
by searching for the optimal combination of scattered voxels
and evaluating their contributions to decision discriminability
(Kriegeskorte et al., 2006; Davis et al., 2014). However, albeit being
widely employed in studying individual’s perceptual and cognitive
status (Haxby, 2012), multivariate analysis has relatively rarely
been implemented in the functional imaging of intertemporal
choice (Wang et al., 2014, 2021; Chen et al., 2019; Piva et al., 2019),
with most studies focusing on the dissociable representations of
different intertemporal choices. Meanwhile, individual differences
in intertemporal choice task have seldom been probed by this
approach, especially with task-based images. In view of the stability
of the discount rate and its correlation with one’s cognitive ability
and mental health (Bickel et al., 1999; Alessi and Petry, 2003;
Shamosh et al., 2008), it’s important to investigate the neural
correlates that explain interindividual variability in discount rate.

In this study, we combined functional magnetic resonance
imaging (fMRI) with multivariate analysis techniques in a
relatively large sample to measure spatial ensemble coding of

different intertemporal choices, as well as of the same choice
contrast from individuals with different discount rates, which
has been investigated to a lesser extent. Specifically, we trained
classifiers to test whether and where the ensemble fMRI activity
patterns represent viable signatures of intertemporal choice and
individual differences, respectively. In addition to value network
whose dissociable activations of different choices have been well-
established by prior univariate analyses, we particularly paid
attention to the recruitment of cognitive control network.

Materials and methods

Participants

The data used in this study were obtained from a Cognitive
Training Study via the OpenNeuro database (accession number:
ds002843). The data set contains behavioral and brain imaging
data from 166 healthy adults. Full details regarding the original
participant recruitment, exclusions, and study procedures can be
found in the corresponding paper (Kable et al., 2017). In brief, all
participants completed two fMRI testing sessions on two separate
days, before and after cognitive training, respectively. At each
session, participants completed four runs of intertemporal choice
task. For the purpose of this study, the current analysis only
included data from the pretraining session.

After removing participants with missing files, extreme choice
behaviors (discount rate, k < 0.0017 or k > 0.077, based on a
previous work (Kable et al., 2017), due to the strong imbalance
between small sooner reward options and larger later reward
options) and large head motions (>3 mm of translation or 3◦ of
rotation), fMRI data from a total of 142 participants were included
(57 females, mean age ± SD = 24.58 ± 4.42 years).

Moreover, to examine whether brain activity patterns represent
dissociable signature of individual differences of intertemporal
choice (indexed by discount rate), a subset of participants (n = 84)
were chosen as high (n = 42, 18 women, 25.63 ± 4.36 years) and low
impulsive group (n = 42, 18 women, 23.48 ± 4.42 years) based on
their discount rate (detailed description in Behavioral data analysis
section). In addition, to control for the influence of age, this subset
of participants (n = 84) were regrouped in half (n = 42 for each
group) based on their age, i.e., a median split of the participants by
age (for younger and older group respectively: 19 and 17 female,
mean age ± SD = 20.83 ± 2.19 and 28.26 ± 2.80).

All participants gave written informed consent following
procedures approved by the University of Pennsylvania
Institutional Review Board.

Intertemporal choice task

The detailed description of the intertemporal choice task has
been provided elsewhere (Kable and Glimcher, 2009). In brief,
participants had to choose between a fixed small sooner reward
(SS, $20 received today) and a larger later (LL, e.g., $40 in a
month, range of amount: $21∼$58; rang of duration: 2∼180 days)
reward, whose magnitude and delay varied from trial to trial.
After a choice was made, choice feedback (1 s) was given to the
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participants. Participants had 4 s to make their choice. For each
session, participants completed a total of 120 intertemporal choices
inside the scanner.

fMRI data acquisition

Magnetic resonance imagingscans were performed using a
Siemens Trio 3 T scanner and a Siemens 32-channel head coil
optimized for parallel imaging. A standard echo-planar imaging
(EPI) sequence was used to acquire BOLD fMRI data while
participants performed the intertemporal choice task (voxel size:
3 mm × 3 mm × 3 mm; matrix: 64 × 64; axial slices: 53 axial
slices; TR: 3,000 ms; TE: 25 ms). High-resolution anatomical images
were obtained using a standard Magnetization Prepared Rapid
Acquisition Gradient Echo (MPRAGE) sequence (TR: 1,100 ms;
axial slices: 160 axial slices; matrix: 192 × 256). Additionally, a B0
field map was acquired (TR: 1270 ms; TE1: 5.0 ms; TE2: 7.46 ms)
to support the off-line estimation of geometric distortion in the
functional data.

Behavioral data analysis

Discount rates (k) in this experiment were estimated by fitting
a logistic regression to data (Kable et al., 2017). Higher values of k
indicate greater discounting of monetary value over time and less
tolerance of delay. Since the original delay discount rate was not
normally distributed, a log10 transformation was applied [log (k)].
Participants with discount rate in the top 30% of the distribution
were assigned to the high impulsive group whereas those with
discount rate in the bottom 30% to the low impulsive group.

fMRI data analysis

The preprocessing of fMRI data was done using the SPM12
software1 on the MATLAB platform. Functional images were
spatially realigned to the first image in the time series, and were
corrected for movement-related variance based on the field map
and movement-by-distortion interactions using the Unwarp tool
in SPM. The T1 structural image was co-registered to the mean
aligned functional image, and underwent segmentation and spatial
normalization to MNI space. Realigned functional images were
normalized using the transformation parameters derived from the
structural image normalization. Finally, the normalized functional
images were smoothed with a 6mm full-width half-maximum
Gaussian kernel (Vermeylen et al., 2020).

A general-linear model (GLM) approach was used to estimate
the task events. The GLM had two regressors of interest: (1) trials
in which the LL choice was chosen (LL choice); (2) trials in which
the SS choice was chosen (SS choice). These two regressors were
convolved with the canonical hemodynamic response function.
In addition, six raw head-movement parameters were included
in model as nuisance regressors. A high-pass filter of 1/128 Hz

1 https://www.fil.ion.ucl.ac.uk/spm12/

was implemented to remove low frequency drift from the time-
series. We computed first-level contrasts as the following: (1)
SS, (2) LL, (3) LL > SS. The contrast maps were then used
as inputs in the following second-level univariate analyses and
multivariate pattern analyses. For the univariate analyses, effects
(see Figures 1B, C, 2G) were corrected for multiple comparisons
using family-wise error rate (FWE) correction with a p-value
set to 0.05.

First, we conducted two classifications which applied the
linear support vector machines (SVM, https://www.csie.ntu.edu.
tw/cjlin/libsvm/; model setting: “-s 0 -t 0”) with default parameter
[c = 1 (Chang and Lin, 2011)]. To facilitate classification across
participants, each feature (i.e., parametric value of each voxel)
was normalized across the training set, and the normalization
parameters were applied for normalizing the test set. Specifically,
the first classifier was employed to assess the difference in the
neural representation between SS choice and LL choice, which
draw upon the contrast images of SS (contrast 1) and LL (contrast
2) extracted respectively for each participant, resulting in two
images per participant. We conducted a leave one-subject-out cross
validation procedure across participants (i.e., exclude the 2 images
from one participant for testing, train with the remaining 282
images from 141 participants) to estimate the predictive capability
of neural encoding patterns for intertemporal decision-making
(Figure 1D).

The second classifier was used to evaluate the difference of
neural representation between high impulsive participants and
low impulsive participants in the contrast LL > SS (contrast 3),
resulting in one image per participant. Differed from the first
classification, the cross validation procedure was performed by
excluding two contrast images from two participants for testing
and training with the remaining 82 contrast images from 82
participants, with 41 being high impulsive and 41 being low
impulsive, to estimate the predictive capability of neural encoding
patterns for intertemporal decision-making of high and low
impulsive participants (Figure 2A). Note that for both the first and
the second classifications, we also applied 10-fold cross-validation
strategies to verify the stability of the results.

In addition, to control for the influence of age difference
between the high and low impulsive participants, we further
regrouped the 84 participants in the second classification based
on their age rather than their discount rate. Otherwise, procedure
identical to the second classification was employed to estimate
the predictive capability of neural encoding patterns for older and
younger participants’ intertemporal decision-making.

In these classifications, the classifier was trained in the training
set and then applied to the test set to obtain the labels of untested
images. After all rounds of cross validation were completed,
averaged classification accuracy was calculated to quantify the
classifier performance. To determine whether the accuracy was
significantly higher than values expected by chance, we performed
a permutation test that the task labels were randomly shuffled 1,000
times and ran the above prediction pipeline each time. Based on a
null distribution of the accuracy, we estimated the significance by
dividing the number of permutations that showed a higher value
than the actual accuracy by the total number of permutations.

Specially, to examine the predictive capability of neural
encoding patterns for discount rates of all participants, we
performed another analysis using support vector regression (SVR)
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FIGURE 1

(A–C) Statistical activation t-map in univariate analysis. (A) Statistical activation t-map for contrast LL vs. SS in univariate analysis, with warm color
indicating stronger activation for LL relative to SS (regions exhibiting LL > SS were shown in (B) and cool color indicating stronger activation for SS
relative to LL (regions exhibiting SS < LL were shown in (C) (Significant threshold: pFWE < 0.05). (D–F) Schematic overview of analysis for first
classifier and corresponding results. (D) The univariate analysis was first used to obtain the activation maps for larger later choice (LL choice) and
small sooner choice (SS choice) from each participant. The whole-brain activated parametric values from the LL choice and SS choice activation
maps for each participant (n = 142) were extracted as the features, which were then used to build classifier. (E) The whole-brain weighted map. The
color bar indicates weight value. (F) The top 1% voxels with highest weights (absolute value). Specially, all these voxels were with positive weights.
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based on data from 142 participants. By using a leave one-
subject-out cross validation, one participants was used as the
testing sample, and the remaining participants were used as the
training samples to select the features and build the model. This
processing was repeated until all participants became a testing
sample. After all folds were completed, we obtained the predicted
log k value for each participant. Pearson’s correlation coefficient
(r) was calculated based on the linear interdependence between the
predicted value and the actual value. To assess the significance, we
randomly shuffled the log k values 1,000 times and ran the above
prediction procedure for each time to obtain a null distribution
of correlation coefficients between the predicted and actual log
k values. Significance was caculated by dividing the number of
permutations that showed a higher value than the actual coefficient
by the total number of permutations.

In order to identify the brain regions made the most prominent
contributions in the classifier, we trained a model using images
from all analyzed participants to obtain the weight component
for each voxel (Haufe et al., 2014; Cui et al., 2020; He et al.,
2021). A higher absolute value of the weight indicates a greater
contribution of the corresponding feature to the classification.

Results

Behavioral results

The average delay discount rates (log k) were −1.78 ± 0.33
(mean ± SD). The log k was −1.43 ± 0.11 in high impulsive
group (n = 42) and −2.21 ± 0.19 in low impulsive group
(n = 42), respectively.

Neural pattern differentiates different
intertemporal choices

Univariate analysis revealed that in line with previous studies
(McClure et al., 2004, 2007), SS choice led to stronger activations
in PCC, vmPFC, striatum relative to LL choice (Figures 1A–C
and Tables 1, 2). On the other hand, we employed the first
classifier to estimate the predictivity of neural encoding patterns
for intertemporal decision-making. The results indicated that
the classifier was able to efficiently differentiate individuals’
intertemporal decisions between immediate reward options and
the delayed ones with classification accuracy as high as 76.06%
(p < 0.001, 1,000 permutation tests). The top 1% high weighted
voxels located in the value network [vmPFC (MNI coordinate
of peak voxel: 8, 38, −8), bilateral ventral striatum (−10, 6, −4;
10, 6, −4), PCC (−4, −54, 14)] as well as cognitive control
network [dlPFC (−22, 28, 46), anterior cingulate cortex (ACC,
−6, 38, 12), mid-cingulate cortex (MCC, −4, −34, 38)], all with
positive weights (Figures 1E, F), indicating that these regions
play crucial roles in the representation of one’s intertemporal
choices. This classification cannot be fully attributed to activation
differences, as comparisons between the activation map and
weight map showed that vmPFC exhibits stronger activation
for SS choice, while bilateral ventral striatum, ACC and MCC

exhibiting stronger activations for LL choice, and dlPFC did
not show preferential activation for LL or SS. Moreover, we
applied a 10-fold cross-validation strategy to verify the stability,
which yielded similar results [accuracy: 75.35%, the top 1% high
weighted voxels located in the value network [vmPFC (MNI
coordinate of peak voxel: −2, 46, −6), bilateral ventral striatum
(−6, 8, −6; 8, 8, −4), PCC (−4, −54, 14)) and cognitive
control network (dlPFC (−22, 24, 48), anterior cingulate cortex
(ACC, −8, 36, 16), mid-cingulate cortex (MCC, −2, −34, 38)],
Supplementary Figures 1A, B].

Neural pattern in cognitive control
network distinguishes participants with
high and low impulsivity

Substantial individual differences of one’s discount rate have
been widely reported (Figner et al., 2010; Peters and Buchel, 2011).
To test whether and where the ensemble activities in our brain
reflected this difference, we performed another classification to
discriminate the same contrast images (LL > SS) from impulsive
and patient individuals. The results showed that albeit the decision
contrasts were held invariant, contrast images were robustly
classified into the relevant groups (accuracy = 91.67%, p < 0.001,
1,000 permutations). The top 1% high weighted voxels situated
primarily in cognitive control network [bilateral insula (−26, 22,
−2; 32, 33, −4), bilateral superior parietal lobe (SPL, −40, −42,
44; 44, −42, 46), bilateral dlPFC (−46, 4, 36; 40, 4, 32), and
ACC (2, 20, 42)], all with negative weights (Figures 2B, C).
These results were verified by a 10-fold cross-validation [accuracy:
92.86%, the top 1% high weighted voxels situated primarily in
cognitive control network [bilateral insula (−34, 18, −4; 34, 22,
−4), bilateral superior parietal lobe (SPL, −30, −62, 46; 34,
−58, 46), bilateral dlPFC (−46, 6, 36; 46, 6, 32), and ACC (0,
18, 46)], Supplementary Figures 1C, D]. On the other hand,
univariate analysis found no brain region’s activation was strongly
correlated with one’s discount rates (threshold: pFWE < 0.05,
Figure 2G).

Another analysis using SVR, which drawed upon data from all
142 participants showed a weak yet significant correlation between
the predicted log k value and the actual log k value (r = 0.16,
p < 0.01, 1,000 permutations), indicated that one’s discount
rate can be predicted from one’s neural activity. Specifically, all
abovementioned regions (resulted from the second classification
using SVM) were included in the top 5% high weighted voxels
obtained from the SVR analysis [bilateral insula (−36, 17, 0; 35,
17, 0), bilateral superior parietal lobe (−34, −60, 42; 41, −43,
49), bilateral dlPFC (−44, 0, 38; 48, 10, 40), and ACC (1, 12, 52),
Figures 2D–F].

According to previous evidence from adolescent, discount
rate exhibited a modest but significant decrease to age (Anokhin
et al., 2015). In this sample, participants with high and low
impulsivity differed in age [i(82) = 2.24, p = 0.028]. To
determine whether the successful classification above was
based on disparity in age, we regrouped the sample (n = 42
in each group) based on their age [t(82) = 13.55, p < 0.001]
and trained a classifier to discriminate the same contrast
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TABLE 1 Brain regions showing significant larger activation in the
contrast of LL > SS.

Region Cluster
size

MNI coordinates (mm) t-
value

x y z

Occipital lobe 92,632 36 −76 −10 37.06

18 −90 6 36.17

−16 −86 −10 36.05

Orbitofrontal cortex 1,191 24 38 −20 13.68

20 70 0 8.62

30 62 −12 7.94

Orbitofrontal cortex 662 −22 42 −18 13.03

−18 52 −20 8.43

−34 60 −14 7.16

Superior temporal gyrus 62 44 −26 −4 8.24

Paracentral lobule 50 −16 −34 50 7.26

Superior temporal gyrus 71 48 −40 14 7.15

60 −38 18 5.75

Fusiform 28 −28 −6 −36 7.12

TABLE 2 Brain regions showing significant larger activation in the
contrast of SS > LL.

Region Cluster
size

MNI coordinates (mm) t-
value

x y z

Medial frontal gyrus 13,059 20 −42 16 18.48

Parietal lobe 2,013 −50 −66 30 15.94

Middle temporal gyrus 1,382 62 −14 −12 10.90

Superior temporal gyrus 1,012 60 −58 28 11.90

Inferior frontal gyrus 457 52 36 −2 11.58

Parahippocampa gyrus 254 22 −12 −16 9.95

Insula 241 44 −12 −4 10.44

Insula 89 −42 −4 −12 6.85

Parietal lobe 62 −8 −52 30 7.10

images (LL > SS) from older and younger individuals. The
results showed that the classifier was unable to successfully
classify the contrast image into the corresponding age group
(accuracy = 45.24%, p = 0.72, 1,000 permutation tests), suggesting
that the successful classification of patient and impulsive
individuals was unlikely due to the age difference between
the two groups.

Discussion

Using multivariate pattern analysis, the present study found
that the spatially distributed information of neural activity in
human brain can not only robustly predict one’s intertemporal
choice, but also successfully differentiate high and low impulsive
participants with high accuracies while controlling for age.

Notably, in addition to regions from value network that
have been reported to preferentially respond to immediate
rewards, our results showed that the neural representation
of different intertemporal choices from regions that were
previously suggested to have comparable ensemble activities
(McClure et al., 2004), were actually dissociable. These findings
provide clear evidence that substantiate the important role of
value and control networks in the neural representation of
individual intertemporal decision.

Although the neural mechanisms between different choices
processes in intertemporal decision-making have been explored
extensively (Kable and Glimcher, 2007; Hare et al., 2009;
Harris et al., 2011; Waegeman et al., 2014; Maier Silvia et al.,
2015), relatively less studies have examined such different neural
mechanisms from the perspective of neural representation (Wang
et al., 2014, 2021; Chen et al., 2019; Piva et al., 2019). By taking
full advantage of information from the voxels, multivariate analysis
endows us with higher sensitivity and reliability (Lv et al., 2021).
Our study benefits from such advantages, as besides confirming
dissociable pattens in regions previously reported to have different
activation levels, we identified a range of regions with distinct
distributed ensemble activities that have been documented as
overall equally activated.

In line with the previous finding (Chen et al., 2019),
the classifier showed that global neural representation could
distinguish the LL and SS choice with high classification accuracy
at the whole brain level. Specially, by quantifying feature weight
for each voxel, we further demonstrated that several regions
play critical roles in the classification. As aforementioned, prior
research on neural substrates of intertemporal choices with
the help of univariate analysis emphasize the participation
of value network (McClure et al., 2004, 2007), which are
replicated in our results. Specifically, the value network system,
including medial prefrontal cortex, striatum, PCC, which are
considered as one of the potential neural substrates of choice
impulsivity, have been reported to respond stronger to immediate
rewards (McClure et al., 2004, 2007; Hare et al., 2008, 2011).
Furthermore, they track the subjective valuation of delayed
rewards, as activities in these regions increase along with the
increase of objective amount of a reward and decrease of the
imposed delay to a reward (Kable and Glimcher, 2007). The
representation of relative subjective value in the dorsomedial
prefrontal cortex (dmPFC) is further confirmed with multivariate
pattern analyses (Wang et al., 2014; Piva et al., 2019).

Critically, by identifying the prominent roles regions such
as ACC, MCC, dlPFC play in the representation of ultimate
choice, our results additionally highlight the role of cognitive
control network in the representation of ultimate choice. As
nodes of cognitive control network (Monosov et al., 2020;
Domic-Siede et al., 2021), albeit these regions were seldom
reported to vary in mean fMRI responses of different choices
(McClure et al., 2004, 2007), they have been reported to be
preferentially activated in difficult choice trials (McClure et al.,
2004; Jimura et al., 2018) and shorter delay time (Wang et al.,
2021). Additionally, recruitment of cognitive control system has
also been reported in other value-based decision making tasks
(Lee and Daunizeau, 2021; Matsui et al., 2022). Together with a
previous study (Chen et al., 2019), our results corroborated these
findings and took a step further with the help of multivariate
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FIGURE 2

(A–C) Schematic overview of analysis for second classifier and corresponding results. (A) The univariate analysis was first used to obtain the
activation map for contrast between larger later choice and small sooner at the individual level. The whole-brain activated parametric values from
the univariate activation map for high (n = 42) and low (n = 42) impulsive participant were extracted as the features, which were then used to build
classifier. (B) The whole-brain weighted map. The color bar indicates weight value. (C) The top 1% voxel with highest weights (absolute value).
Specially, all these voxels were with negative weights. (D–F) Schematic overview of a support vector regression (SVR) analysis and the corresponding
results. (D) The univariate analysis was first used to obtain the activation map for contrast between larger later choice and small sooner at the
individual level. The whole-brain activated parametric values from the univariate activation map for all participant (n = 142) were extracted as the
features, which were then used to build classifier. (E) The whole-brain weighted map. The color bar indicates weight value. (F) The top 5% voxel with
highest weights (absolute value). (G) Statistical t-map for correlation between one’s log k-value and brain activations.
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analysis to demonstrate an integrative framework of intertemporal
choice, in which value system as well as control system are
implemented (Berns et al., 2007).

Considerable individual differences have been repeatedly
described in delay discounting, which reflect crucial facets of
behavioral impulsivity and self-control (Figner et al., 2010; Peters
and Buchel, 2011). In parallel, imaging studies investigating
neural correlates of intertemporal choice in impulsive and patient
individuals showed that they exhibited various neural dynamics
even under identical choice condition (Jimura et al., 2013,
2018). Specifically, the relationship between the recruitment
of dlPFC and choice difficulty was primarily observed in
low impulsive individuals. Activities in ventral striatum and
anterior prefrontal cortex correlated negatively and positively,
respectively, with the degree of discounting. Most of the existing
works using multivariate approach to investigate the individual
differences in decision impulsivity draw upon brain activity
during resting state such as regional homogeneity pattern and
functional connectivity (Lv et al., 2019; Wang et al., 2020).
Using functional imaging data from a relatively large sample,
our results indicate that although decision contrast remained
the same (LL > SS), drastic distinct patterns were found in
individuals with different discount rates, indexed by high accuracy
when decoding high and low impulsive participants. This was
verified by a SVR analysis based on data from 142 participants.
Furthermore, regions in cognitive control network take leading
roles in differentiating the representations of impulsive and
patient participants. Despite being modulated by reward type
and state of deprivation, discount rate is relatively stable over
time (Kirby, 2009), hence can be regarded as an attribute of the
person. Our results mapped this characteristic of individual onto
one’s neural activities.

Nevertheless, we don’t exclude the involvement of value system
in one’s discount rate, as we only reported the top 1% high
weighted voxels of classification, leaving clusters from regions such
as ventral striatum and PCC unexamined. In addition to being
important nodes of cognitive control network, aforementioned
regions such as ACC and anterior insula also engage in the
encoding of value (Norbury et al., 2018; Yee et al., 2021).
Indeed, ACC and anterior insula also play an important role in
distinguishing participants with different impulsivities, suggesting
that value system and control system are likely to act in concert
in one’s intertemporal choice, substantiating that patient decision
requires the individual is both willing and able to wait (Roberts
and Fishbach, 2022). On the other hand, delay-discounting rate was
successfully predicted from representational connectivity between
regions representing the amount of reward (dmPFC, vmPFC,
lateral frontal pole cortex, etc.) (Wang et al., 2021), suggesting that
connections in the value system also play an important role in
one’s discount rate.

It’s worth noting that a growing body of research link
maladaptive intertemporal choices and psychiatric illnesses such
as substance abuse, gambling disorder, making it being proposed
as a candidate behavioral marker for psychopathology (Bickel,
2015). In parallel, alternations were documented in brain structure
and functional connectivity associated with value and cognitive
control system in individuals with impulsive problems (Weng
et al., 2013; Freinhofer et al., 2020). With the help of multivariate
analysis, our study also identified functional neural signatures

in cognitive control network corresponding to one’s impulsivity,
which underscores cognitive control as a potential mechanism
underlying various impulsive disorder, making these regions
promising therapeutic target for altering impulsive behaviors.
Previous study took advantage of repetitive transcranial magnetic
stimulation and found that disruption of function of the lateral
prefrontal cortex increased choices of immediate rewards over
larger delayed rewards (Figner et al., 2010). Moreover, efforts have
been made to enhance cognitive performance to shift behavior
away from immediate and risky rewards in non-clinical individuals,
albeit with little success (Kable et al., 2017), which may be due to
the training population and targeted cognitive domain. Cognitive
control training in clinical population is warranted to explore the
candidate therapy in ameliorating impulsivity.

Some issues warrant further discussion. First, this study
includes only young and healthy adults. Previous research found
that discount rate is related to one’s age, exhibiting a decrease to
older adults (Anokhin et al., 2015). Future research will need to
establishe the link between changes in neural activity patterns and
changes in age-related impulsivity. Secondly, numerous research
links abnormal discount rate with psychiatric disorder such as
substance abuse and gambling disorder (Bickel et al., 1999; Alessi
and Petry, 2003). It would be interesting to include participants
with these psychiatric disorders in the furture.

In summary, this study adopted multivariate analysis approach
in a relatively large sample to explore the underlying neural
substrates of impulsive choice. At the global level, the classifier built
with global activation pattern not only successfully distinguished
the intertemporal choices, but also effectively distinguished the
high and low impulsive participants. Furthermore, the results
underlined regions in value network and cognitive control
network as critical components of these neural signatures.
These results deepen our understanding of the neural correlates
of intertemporal choice as well as emphasize the utility of
pattern analysis in predicting intertemporal decision-making and
individual differences.
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