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Introduction: Although the method of visualizing eye-tracking data as a time-

series might enhance performance in the understanding of gaze behavior, it has

not yet been thoroughly examined in the context of rapid automated naming

(RAN).

Methods: This study attempted, for the first time, tomeasure gaze behavior during

RAN from the perspective of network-domain, which constructed a complex

network [referred to as gaze-time-series-based complex network (GCN)] from

gaze time-series. Hence, without designating regions of interest, the features of

gaze behavior during RAN were extracted by computing topological parameters

of GCN. A sample of 98 children (52 males, aged 11.50 ± 0.28 years) was studied.

Nine topological parameters (i.e., average degree, network diameter, characteristic

path length, clustering coe�cient, global e�ciency, assortativity coe�cient,

modularity, community number, and small-worldness) were computed.

Results: Findings showed that GCN in each RAN task was assortative and

possessed “small-world” and community architecture. Additionally, observations

regarding the influence of RAN task types included that: (i) five topological

parameters (i.e., average degree, clustering coe�cient, assortativity coe�cient,

modularity, and community number) could reflect the di�erence between tasks

N-num (i.e., naming of numbers) and N-cha (i.e., naming of Chinese characters);

(ii) there was only one topological parameter (i.e., network diameter) which could

reflect the di�erence between tasks N-obj (i.e., naming of objects) and N-col (i.e.,

naming of colors); and (iii) when compared to GCN in alphanumeric RAN, GCN

in non-alphanumeric RAN may have higher average degree, global e�ciency,

and small-worldness, but lower network diameter, characteristic path length,

clustering coe�cient, and modularity. Findings also illustrated that most of these

topological parameters were largely independent of traditional eye-movement

metrics.

Discussion: This article revealed the architecture and topological parameters of

GCN as well as the influence of task types on them, and thus brought some new

insights into the understanding of RAN from the perspective of complex network.

KEYWORDS

developmental dyslexia, rapid automatized naming, eye tracking, time series, complex

network

1. Introduction

Rapid automatized naming (RAN) tasks (Bowers and Wolf, 1993; Kail et al., 1999;
Wiig et al., 2000; Stainthorp et al., 2010; American Psychiatric Association, 2013; Decker
et al., 2013; Georgiou et al., 2013; Powell et al., 2014; Hjetland et al., 2017; Akhand
et al., 2019; Ullman et al., 2020) have been developed to assess the ability to name a
serially presented list of numbers, letters, words, colors, or objects as rapidly as possible.
RAN abilities, in combination with other cognitive skills (e.g., phonological awareness,
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short-term memory, letter knowledge, and vocabulary), have been
extensively interpreted, and they characterized the features of both
reading-related behavior and developmental dyslexia (Goswami,
2015; Åvall et al., 2019; Georgiou and Parrilla, 2020; Mcweeny
et al., 2021). The eye-tracking technique (Armstrong and Olatunji,
2012; Lai et al., 2013; Chita-Tegmark, 2015; Frazier et al., 2017)
would be a promising tool to capture the visual cognitive features
of the gaze behavior during RAN because it is simple to use,
objective, and suitable for usage with all ages from infancy to
adulthood. In particular, it can be utilized to monitor the focus
locations sequentially and document the critical ocular activities
during RAN. Even though several studies (Jones et al., 2008,
2016; Kuperman and Van Dyke, 2011; Pan et al., 2013; Hogan-
Brown et al., 2014; Gordon and Hoedemaker, 2016; Kuperman
et al., 2016; Silva et al., 2016; Nayar et al., 2018, 2021; Akhand
et al., 2019; Araújo et al., 2021; Wang et al., 2022) have explored
the characteristics of gaze behavior during RAN, only a few of
them have ever examined whether and how gender, age, and
task type alter these characteristics simultaneously. Additionally,
researchers have not fully explored gaze behavior during a Chinese
adaptation of RAN in order to broaden the application of RAN to
developmental dyslexia in Chinese.

Regarding the types of eye-movement metrics (Armstrong and
Olatunji, 2012; Lai et al., 2013; Chita-Tegmark, 2015; Frazier et al.,
2017), there are three widely used categories, namely, fixation-
related metrics, saccadic-related metrics, and scan-path (or fixation
sequence)-related metrics. Fixation-related metrics are usually
associated with the eye pauses within regions of interest (ROIs),
where cognitive processing is believed to occur; saccadic-related
metrics are associated with rapid movements that occur between
fixation events; and scan-path-related metrics are often employed
to examine sequencing of cognitive allocation across a stimulus.
It should be noted that these traditional eye-movement metrics
typically rely on the definition (or prior knowledge) of ROIs and
require setting the spatial range of these ROIs manually before
statistical analysis.

Recent studies (Constantino et al., 2017; Del Bianco et al., 2021;
Hedger and Chakrabarti, 2021; Nayar et al., 2022) proposed the
idea of treating the eye-tracking data as a time series, allowing
us to track the moment-by-moment changes in gaze behavior
during cognitive tasks. Although this idea has been hailed as a
significant advancement in eye-tracking analysis, it has not yet
been thoroughly examined in the context of RAN (Wang et al.,
2022). Additionally, the performance would be further enhanced
if a more potent time series analysis technique can be adopted
from the perspective of non-linear dynamics. For instance, Wang
et al. (2022) showed an entropy-based method to measure gaze
time series during RAN, which was more sensitive to reflect small
perturbations of eye movements than traditional eye-movement
metrics (e.g., total time of naming).

On the contrary, the complex network analysis method (Butts,
2009; Wu et al., 2018; Zhou et al., 2018) has been well-documented
and has shown a powerful idea: first, construct a complex network
in different contexts by using the proper definition of nodes and
edges; then, calculate topological properties of the complex network
from the viewpoint of graph theories; and finally, reveal the
between-group difference of topological properties or even identify

diagnostic features (biomarkers). As a promising research direction
of complex network analysis, some scientists have insightfully
explored the feasibility of the method of converting time series into
a complex network (Zhang and Small, 2006; Lacasa et al., 2012). As
an illustration, a visibility graph algorithm (Lacasa et al., 2012) has
been proposed to map one-dimensional time series into a complex
network. Its effectiveness and potential utility have been confirmed
due to the fact (Lacasa et al., 2012) that the structure of time series
can be conserved in the network topology: periodic time series
convert into regular networks, random time series convert into
random networks, and fractal time series convert into scale-free
networks. Consequently, as a main motivation, this study sought
to examine (i) whether the gaze time series during RAN could be
converted into a complex network by using the proper definition of
nodes and edges and (ii) whether and how the network’s properties
could capture the fundamental characteristics of the gaze behavior
during RAN.

Taken together, this study attempted, for the first time, to
measure the gaze behavior during RAN from the perspective of the
network domain, which constructed a complex network [referred
to as gaze-time-series-based complex network (GCN)] from gaze
time series. In this way, network-domain evaluation of the gaze
behavior during RAN was conducted by computing the topological
properties of GCN. The strengths of the suggested technique were
2-fold. First, it conducted a network-domain evaluation of gaze
behavior using two-dimensional time series (i.e., temporal-spatial
information of eye gazes), which was different from the visibility
graph approach (Lacasa et al., 2012) using one-dimensional time
series. Second, it did not involve manually setting ROIs in contrast
to typical eye-tracking analysis. To illustrate the feasibility of the
suggested technique, this study recruited 98 children (52 boys, aged
11.50 ± 0.28 years) and conducted a network-domain evaluation
of gaze behavior during RAN for each child by computing the
structure and topological properties of GCN. It also discussed the
potential ocular mechanisms that could explain the existence of the
GCN’s structure. Additionally, this study investigated the effects of
various RAN tasks on the topological properties of GCN, as well as
the association between these topological properties and traditional
(typical) eye-movement metrics.

2. Materials and methods

The Southeast University Research Ethics Committee gave its
approval to all study protocols and research techniques, ensuring
that they adhered to the World Medical Association’s Declaration
of Helsinki regarding the use of humans in testing. All participating
children’s parents gave their informed consent, and each participant
gave their verbal consent. After finishing the research, each child
was given a toy that was appropriate for their age.

2.1. Study design and participants

This study was conducted in Sanmenxia, Henan Province,
China, between September 2021 and March 2022. According to
the districts’ rankings of GDP per person in 2020, the districts of
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Sanmenxia were divided into three levels, namely, strong economic
level (>90,000 RMB), medium economic level (70,000–90,000
RMB), and weak economic level (<70,000 RMB). In order to
prevent bias in sample selection, this study randomly selected a
district with a medium economic level and randomly selected
an ordinary primary school locally from the district. This study
focused on gaze behavior for only sixth-grade children to control
the potential influence of age on RAN abilities. There were five
classes in the sixth grade in this primary school. For each class,
11 boys and 11 girls were randomly recruited to participate in
the experiment. In this way, 110 children were initially invited to
participate in the current study.

Exclusion criteria were as follows: (a) children with abnormal
hearing functioning (i.e., hearing threshold levels bigger than 25
dB HL) and vision functioning (i.e., naked or corrected monocular
visual acuities below than 1.0); (b) children with significant sensory
or motor impairment; (c) children with a history of previous
neurological or psychiatric disorders; (d) children with IQ score
lower than 85 or higher than 115 [normal IQ score ranges from
85 to 115; since IQ score is correlated with RAN abilities (Hogan-
Brown et al., 2014; Wolff, 2014; Nayar et al., 2018, 2021), too
low or high IQ score might lead to biased evaluation for the
normative data of typically developing children; (e) children who
had repeated a grade; (f) bilingual children; and (g) children
who cannot complete the tasks or whose experimental data are
incomplete. Based on inclusion and exclusion criteria, a total of
98 children (52 boys, aged 11.50 ± 0.28 years) were invited to
participate in the current experiments in the end.

2.2. RAN procedures

To extend the application of RAN to developmental dyslexia
in Chinese, this study employed a Chinese adaptation of RAN
(C-RAN; refer to Figure 1) that substituted highly frequently used
Chinese characters for English letters. As shown in Figure 1, the
C-RAN paradigm in this study consisted of four tasks, namely,
Task N-num (i.e., naming of numbers), Task N-cha (i.e., naming of
Chinese characters), Task N-col (i.e., naming of colors), and Task
N-obj (i.e., naming of objects). It should be remarked that tasks
N-obj and N-col belong to non-alphanumeric RAN tasks, while
tasks N-num and N-cha belong to alphanumeric RAN tasks. For
each task, a 5 × 10 matrix of objects was presented, in which each
matrix used five repetitions of each of the 10 different objects with
the order pseudo-randomized.

Participants were tested in a quiet room. Each participant was
situated between 60 and 90 cm away from the 21.5 in. TFT LCD
monitor (with 1,920 × 1,080 resolution) displaying the stimuli
of each RAN task shown in Figure 1. Following a standard 9-
point calibration procedure, all participants were instructed to
name the stimuli (numbers, Chinese characters, colors, or objects)
of each RAN task as accurately and rapidly as possible from
left to right in each row, and from top to bottom for all rows.
To ensure comprehension of task instructions, all participants
required practice by naming a 2 × 5 matrix of objects before the
formal test of each RAN task. Eye movements during naming were
recorded using a Tobii 4C eye tracker (90Hz; Tobii Technology

AB, Danderyd, Sweden). In order to avoid the reliability of data
collection, all participants were asked not to shake their bodies
(especially their heads) visibly. Participants were re-calibrated
following any large movements.

To ensure the consistency and fidelity of the administration of
evaluation tools, a senior expert with a professional experience of
more than 8 years carried out the measures for all participating
children. The senior expert had training in the administration of
all tools used in this study.

2.3. Traditional eye-movement metrics

This study defined a “fixation point” as a point at which a
gaze was held for at least 100ms and gaze shifts were within a 40-
pixel grid. A saccade can be observed if rapid movements occur
between two fixations; the saccade amplitude can be calculated by
the distance between two fixations; and regressions typically occur
when there are backward eye movements toward previously visited
items. Based on the definitions above, six traditional (typical) eye-
movement metrics (i.e., average fixation duration, fixation counts,
average saccade amplitude, saccade counts, regression counts, and
a total time of naming) were computed as follows (Armstrong
and Olatunji, 2012; Lai et al., 2013; Chita-Tegmark, 2015; Frazier
et al., 2017) to evaluate gaze behavior during RAN tasks. (1) The
total number of fixations can be calculated as fixation counts;
(2) The total number of saccades can be calculated as saccade

counts; (3) The total number of regressions can be calculated as
regression counts; (4) Average saccade amplitude can be calculated
by averaging the amplitude of each saccade; (5) Average fixation

duration can be calculated by averaging duration time of each
fixation; (6) The total time of completing a RAN task can be
calculated as the total time of naming. According to earlier research
(Wiig et al., 2000), the mean percentage of RAN accuracy remained
constant and did not significantly change with age for typically
developing (TD) individuals (aged 6–21 years) in the United States.
Hence, this study focused on the total time of naming (used to
measure reading fluency and speed) only and did not record the
accuracy of naming during RAN (even though this parameter may
be useful for the diagnosis of dyslexia).

2.4. Topological properties of complex
network

Topological properties of the complex network can be
calculated from the viewpoint of graph theories. Numerous
topological properties have been proposed and can be applied in
different contexts (Butts, 2009; Muldoon et al., 2016; Bassett and
Bullmore, 2017; Wu et al., 2018; Zhou et al., 2018). In this study,
nine topological properties were computed as follows.

(1) Average Degree can be calculated as follows:

MeanDegree = m/n (1)
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FIGURE 1

The Chinese RAN paradigm presented a 5×10 matrix of stimuli (e.g., numbers, Chinese characters, colors, or objects) in di�erent tasks: (A) Task

N-num (i.e., naming of numbers); (B) Task N-cha (i.e., naming of Chinese characters); (C) Task N-col (i.e., naming of colors); and (D) Task N-obj (i.e.,

naming of objects). RAN, rapid automatized naming.

wherem is the total number of edges, and n is the total number
of nodes.

(2) Network Diameter can be calculated as follows:

Diameter = maxi,j(dij) (2)

where dij is the distance between nodes i and j.

(3) Characteristic Path Length can be calculated as follows:

L =
1

n(n− 1)

∑

i6=j
dij (3)

where n is the total number of nodes, and dij is the distance
between nodes i and j.

(4) Clustering Coefficient can be calculated as follows:

C = (
1

m
)
∑

i
2Ei/[ki

(

ki − 1
)

] (4)

wherem is the total number of edges, ki is the degree of the i-th
node, and Ei is the number of triangles attached to the i-th node.

(5) Global Efficiency can be calculated as follows:

GE =
1

n(n− 1)

∑

i6=j

(
1

dij
) (5)

where n is the total number of nodes, and dij is the distance
between nodes i and j.

(6) Assortativity Coefficient can be calculated as follows:

AC =

∑

i wiki/m− [
∑

i (wi+ki)/(2m)]2
∑

i (w
2
i + k2i )/(2m)− [

∑

i (wi+ki)/(2m)]2
(6)

where m is the total number of edges, and wi and ki are the
degrees of the nodes at the ends of the i-th edge, with i=1, 2, . . . ,m.

It has been shown (Newman, 2002, 2003) that the assortativity
coefficient AC is the Pearson correlation coefficient for the degrees
of neighboring nodes, which is supposed to have bounds AC

ǫ[−1, 1]. In particular, a network is assortative when AC > 0 and
disassortative when AC< 0 (Newman, 2002, 2003).

(7) Modularity can be calculated as follows:

Q = (
1

2m
)
∑

i,j
[Aij − kikj/(2m)]δ(ci, cj) (7)

where m is the total number of edges; Aij is the adjacency
matrix; ki and kj are the degrees of nodes i and j, respectively; ci and
cj are the communities that nodes i and j belong to, respectively;
and δ is a simple delta function that takes 1 when ci equals cj,
0, otherwise.
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It has been shown (Newman, 2004; Newman and Girvan, 2004)
that Q ǫ [0, 1]; and the greater the modularity Q, the clearer the
community structure.

(8) Community Number is referred to as the total number of
communities when modularity Q reaches its maximal value.
That is, Community Number can be calculated as follows:

community number = argmax (Q) (8)

where Q is defined in Equation 7.

(9) Small-Worldness (i.e., small-world property) can be
calculated as follows:

SW = 1−
√

(12
c + 12

L)/2 (9)

with 1C =
Clatt−Cobs
Clatt−Crand

and 1L =
Lobs−Crand
Llatt−Lrand

, where Cobs and
Lobs are the clustering coefficient and characteristic path length of
the observed network, respectively; Clatt and Llatt are the clustering
coefficient and characteristic path length of the lattice network
constructed with the same number of nodes and degree distribution
as the observed network, respectively; and Crand and Lrand are the
clustering coefficient and characteristic path length of the random
network constructed with the same number of nodes and degree
distribution as the observed network, respectively.

It has been shown (Muldoon et al., 2016) that SW ǫ [0, 1],
and networks with a value SW closer to 1 will have more small-
world characteristics. Additionally, Bassett and Bullmore (2017)
suggested a threshold of SW > 0.4 for the network to be considered
a small-world network but stressed that this measure should be
seen as continuous, with increasing SW indicating an increasingly
small-worldness.

2.5. Complex network mapped from time
series of eye gazes

This study sought to measure the gaze behavior during RAN
from the perspective of the network domain, which constructed a
complex network (referred to as GCN) from gaze time series. To
better demonstrate our approach, this article used raw eye-tracking
data of a child during a RAN task as an illustrating example (refer to
the heatmap in Figure 2A). As depicted in Figure 2, our algorithm
included the following three steps:

Step 1 (Gaze time-series data acquisition): Let the m-th gaze
coordinate be represented by (xm, ym). Raw gaze coordinates were
recorded at every sampling point. Figure 2B showed the trajectory
of eye gazes in the illustrating example, where two adjacent gazes
were linked by a straight line.

Step 2 (Network construction): The gaze time series was
mapped into a complex network (referred to as GCN), where the
m-th gaze was taken as the m-th node. The connection between
nodes w andm was established according to the following rule:

gmw =

{

1, dmw < θmw

0, otherwise
(10)

where dmw is the Euler’s distance between nodes w and m; θmw

is the threshold determined by the distribution of neighbors (Zhu
et al., 2016) of nodesm and w. In this way, a complex network (i.e.,
GCN) was constructed, which was defined by the graph G = (gij).
Figure 2C visualizes the network connectivity of the GCN in the
illustrated example.

Step 3 (Topological properties analysis): Nine parameters
(i.e., average degree, network diameter, characteristic path length,
clustering coefficient, global efficiency, assortativity coefficient,
modularity, community number, and small-worldness) of GCN
were computed for each participating child. Figure 2D shows
the detailed values of these topological parameters in the
illustrating example.

2.6. Statistical analysis

We first examined our data to determine appropriate statistical
models (parametric vs. non-parametric). After confirming that our
data failed to pass the normality test and variance homogeneity
test, we performed a series of non-parametric Friedman rank-sum
tests (Eisinga et al., 2017) for the nine topological parameters of
GCN, where the effect size was measured by Kendall’s W and
was defined as small (W = 0.1), medium (W = 0.3), and large
(W = 0.5). Additionally, for post-hoc multiple comparisons, we
utilized the non-parametric Wilcoxon signed rank tests with the
Bonferroni correction applied to p-values to control the false
discovery rate (FDR).

To examine the independence between each of the nine
topological parameters and six traditional eye-movement metrics,
we carried out a series of rank-based non-parametric linear
regression analyses (Hettmansperger and McKean, 2011) to obtain
regressionmodels, where each of the nine topological parameters of
GCN was taken as the dependent variable; while the six traditional
eye-movement metrics were taken as the independent variable in
different RAN tasks. The determination coefficient R2 was used to
evaluate the fitting degree of a regression model.

All statistical analysis above was conducted with R language
(version 4.0.2), and the significance level α was set at 0.05. In
particular, R packages “rstatix” (Kassambara, 2021) and “Rfit”
(Kloke and McKean, 2012) were used.

3. Results

3.1. Topological properties changed with
RAN tasks

We verified that our data failed to pass both the normality test
and the variance homogeneity test (p-values ≥ 0.05). Hence, we
conducted a series of non-parametric ANOVA procedures to reveal
the influence of task types on each of the nine topological properties
of GCN. Table 1 summarized our results and showed that there
were significant differences between four RAN tasks for the nine
topological parameters [x2(3): 11.58–265.82; p-values ≤ 9 × 10−3;
Kendall’sW: 0.04–0.904]. Additionally, we carried out the post-hoc
test for multiple comparisons. Figure 3 summarizes our results and
shows that:

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1024881
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1024881

FIGURE 2

Method, involving three steps, to construct the gaze-time-series complex network (GCN) in an illustrating example of a child during a RAN task. (A)

Heatmap of gazes in the illustrating example; (B) Raw spatial coordinate of eye gazes in the illustrating example, where two adjacent gazes were

linked by a straight line; (C) The network connectivity of GCN in the illustrating example, where dots represented nodes and black lines represented

connections between nodes; (D) Topological properties analysis and their values in the illustrating example. RAN, Rapid automatized naming.

(1) Average Degree: Average degree in task N-num was
significantly lower than that in the other three RAN tasks (p-
values< 1× 10−4), while the average degree in task N-cha was
significantly lower than that in tasks N-obj andN-col (p-values
< 1 × 10−4). However, there was no significant difference
between tasks N-col and N-obj in average degree (Z = 1,838, p
= 0.23).

(2) Network Diameter: The network diameter in task N-num
or N-cha was significantly higher than that in task N-obj (p-
values < 1 × 10−3), while there was a significant difference
between tasks N-obj and N-col in network diameter (p< 0.05).

(3) Characteristic Path Length: Characteristic path length in task
N-num was significantly lower than that in tasks N-obj and
N-col (p-values < 1 × 10−4), while the characteristic path

length in task N-cha was significantly higher than that in tasks
N-obj and N-col (p-values < 1 × 10−4). However, there was
no significant difference between tasks N-num and N-cha
(Z = 2,444, p= 1.0), as well as between tasks N-col and N-obj
(Z = 2,186, p= 1.0), in characteristic path length.

(4) Clustering Coefficient: The clustering coefficient in task N-
num was significantly lower than that in task N-cha (p <

1 × 10−4), while the clustering coefficient in task N-cha
was significantly higher than that in tasks N-obj and N-col
(p-values < 1 × 10−4). However, there was no significant
difference between other tasks in the clustering coefficient

(p-values > 0.05).
(5) Global Efficiency: Global efficiency in task N-num was

significantly lower than that in tasks N-obj and N-col (p-
values < 1 × 10−4), while global efficiency in task N-cha was
significantly lower than that in tasks N-obj andN-col (p-values
< 1 × 10−4). However, there was no significant difference
between tasks N-num and N-cha (Z = 2,622, p = 1.0), as well
as between tasks N-col and N-obj (Z = 2,653, p = 1.0), in
global efficiency.

(6) Assortativity Coefficient: The assortativity coefficient in task
N-num was significantly lower than that in task N-cha (p
< 0.05), while the assortativity coefficient in task N-cha
was significantly higher than that in task N-obj (p < 0.05).
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TABLE 1 Di�erence between di�erent RAN tasks for each of the topological parameters (M ± SD).

Topological parameters N-num N-cha N-obj N-col x2(3) p Kendall’s W

Average degree 23.90± 5.60 33.00± 6.63 54.00± 12.30 56.50± 14.00 265.82 <1× 10−4 0.90

Network diameter 15.80± 2.29 15.70± 2.15 14.70± 1.58 15.10± 1.36 24.39 <1× 10−4 0.08

Characteristic path length 6.07± 0.69 6.04± 0.59 5.63± 0.42 5.65± 0.38 65.52 <1× 10−4 0.22

Clustering coefficient 0.72± 0.04 0.75± 0.03 0.72± 0.03 0.73± 0.03 47.44 <1× 10−4 0.16

Global efficiency 0.24± 0.02 0.24± 0.01 0.26± 0.01 0.25± 0.01 134.07 <1× 10−4 0.46

Assortativity coefficient 0.63± 0.11 0.68± 0.09 0.64± 0.10 0.65± 0.09 11.58 0.009 0.04

Modularity 0.78± 0.02 0.79± 0.02 0.77± 0.02 0.77± 0.02 51.91 <1× 10−4 0.18

Community number 12.90± 2.35 14.60± 2.76 13.70± 3.14 14.40± 3.58 18.11 <1× 10−3 0.06

Small-worldness 0.66± 0.06 0.66± 0.05 0.69± 0.04 0.68± 0.03 31.53 <1× 10−4 0.11

RAN, rapid automatized naming; N-num, naming of numbers; N-cha, naming of Chinese characters; N-col, naming of colors; N-obj, naming of objects.

FIGURE 3

Influence of task types on di�erent topological parameters: (A) average degree; (B) network diameter; (C) characteristic path length; (D) clustering

coe�cient; (E) global e�ciency; (F) assortativity coe�cient; (G) modularity; (H) community number; and (I) small-worldness. *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001. RAN, rapid automatized naming; N-num, naming of numbers; N-cha, naming of Chinese characters; N-col, naming of

colors; N-obj, naming of objects.
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However, there was no significant difference between tasks
N-col and N-obj in the assortativity coefficient (p > 0.05).

(7) Modularity: Modularity in task N-num was significantly
lower than that in task N-cha (p < 0.01), but higher than that
in tasks N-obj and N-col (p-values < 0.01), while modularity

in task N-cha was significantly higher than that in tasks N-
obj and N-col (p-values < 1 × 10−4). However, there was
no significant difference between tasks N-col and N-obj in
modularity (Z = 2,330, p= 1.0).

(8) Community Number: The community number in task N-
numwas significantly lower than that in tasks N-cha andN-col
(p-values< 0.01). However, there was no significant difference
between other tasks in community number (p-values > 0.05).

(9) Small-worldness: Small-worldness in task N-num was
significantly lower than that in tasks N-obj and N-col (p-
values < 1 × 10−4), while small-worldness in task N-cha was
significantly lower than that in tasks N-obj andN-col (p-values
< 1 × 10−4). However, there was no significant difference
between tasks N-num and N-cha (Z = 2,548, p = 0.66),
as well as that in N-col and N-obj (Z = 2,727, p = 0.29),
in small-worldness.

3.2. Association between topological
parameters and traditional eye-tracking
metrics

To examine the independence between each of the nine
topological parameters and six traditional eye-movement metrics,
we carried out a series of rank-based non-parametric linear
regression analyses. Table 2 summarizes our results and shows as
given below.

3.2.1. Task N-num
(1) Average degree was significantly correlated with the total

time of naming (B = 1.50, t = 561.40, p < 1 × 10−4) and average
fixation duration (B = −9.45 × 10−4, t = −6.51, p < 1 × 10−4),
where the regression model was determined with R2 = 0.99. (2)
Network diameter was significantly correlated with saccade counts
(B= 0.08, t= 2.29, p= 0.02) and regression counts (B=−0.18, t=
−3.47, p < 1× 10−3), where the regression model was determined
with R2 = 0.12. (3) Modularity was significantly correlated with the
total time of naming (B = −5.48× 10−3, t = −2.50, p = 0.01) and
average fixation duration (B= 4.84× 10−4, t= 4.07, p< 1× 10−4),
where the regression model was determined with R2 = 0.17. (4)
Community number was significantly correlated with regression
counts (B = −0.16, t = −2.42, p = 0.02), where the regression
model was determined with R2 = 0.05. (5) Other topological
parameters were not significantly correlated with traditional eye-
tracking metrics (p-values > 0.05).

3.2.2. Task N-cha
(1) Average degree was significantly correlated with total time

of naming (B = 1.51, t = 626.56, p < 1 × 10−4), average fixation
duration (B = −0.001, t = −8.30, p < 1 × 10−4), and fixation

counts (B = −0.002, t = −2.49, p = 0.01), where the regression
model was determined with R2 = 0.99. (2) Clustering coefficient
was significantly correlated with average fixation duration (B= 3.97
× 10−4, t = 2.04, p = 0.046), where the regression model
was determined with R2 = 0.10. (3) Community number was
significantly correlated with average fixation duration (B = 0.04,
t = 2.21, p = 0.03), where the regression model was determined
with R2 = 0.08. (4) Small-worldness was significantly correlated
with fixation counts (B = −0.002, t = −2.11, p = 0.038),
where the regression model was determined with R2 = 0.19. (5)
Other topological parameters were not significantly correlated with
traditional eye-tracking metrics (p-values > 0.05).

3.2.3. Task N-obj
(1) Average degree was significantly correlated with total time

of naming (B = 1.50, t = 586.64, p < 1 × 10−4) and average
fixation duration (B = −1.13 × 10−3, t = −5.32, p < 1 × 10−4),
where the regression model was determined with R2 = 0.99. (2)
Assortativity coefficient was significantly correlated with average
saccade amplitude (B = −5.0 × 10−3, t = −2.02, p = 0.046),
where the regression model was determined with R2 = 0.09. (3)
Other topological parameters were not significantly correlated with
traditional eye-tracking metrics (p-values > 0.05).

3.2.4. Task N-col
(1) Average degree was significantly correlated with total time

of naming (B = 1.50, t = 809.94, p < 1 × 10−4), average fixation
duration (B = −0.001, t = −5.86, p < 1 × 10−4), and average
saccade amplitude (B = −0.002, t = −3.66, p < 1 × 10−3), where
the regression model was determined with R2 = 0.99. (2) Path
length was significantly correlated with average fixation duration
(B=−0.004, t=−2.02, p= 0.046) and fixation counts (B=−0.01,
t = −2.17, p = 0.03), where the regression model was determined
with R2 = 0.07. (3) Global efficiency was significantly correlated
with total time of naming (B = −1.02 × 10−3, t = −2.02,
p = 0.046), average fixation duration (B = 1.09×10−4, t = 2.24,
p= 0.03), and fixation counts (B= 4.21× 10−4, t= 2.34, p= 0.02),
where the regression model was determined with R2 = 0.12. (3)
Small-worldness was significantly correlated with the total time of
naming (B=−3.01× 10−3, t =−2.26, p= 0.026), average fixation
duration (B = 2.96 × 10−4, t = 2.30, p = 0.024) and fixation
counts (B = 1.11 × 10−3, t = 2.34, p = 0.02), where the regression
model was determined with R2 = 0.06. (5) Other topological
parameters were not significantly correlated with traditional eye-
tracking metrics (p-values > 0.05).

4. Discussion

Recent studies (Constantino et al., 2017; Del Bianco et al.,
2021; Hedger and Chakrabarti, 2021; Nayar et al., 2022) have
demonstrated the benefits of considering the eye-tracking data as
a time series, as opposed to typical eye-movement measures that
require the definition of ROIs and ignore dynamic aspects. It is
conceivable to expect that the performance would be enhanced
if a non-linear time series analysis technique could be adopted.
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TABLE 2 The values t corresponding to the independent variables in the regression model for each of the nine topological parameters, with

determination coe�cient R2.

Task
types

Topological
parameters

Total time
of naming

Average
fixation
duration

Fixation
counts

Average
saccade
amplitude

Saccade
counts

Regression
counts

R2

N-num Average degree 561.40d −6.51d −1.42 0.11 0.01 0.56 0.99

Network diameter −0.88 −0.75 0.87 1.23 2.29a −3.47c 0.12

Characteristic path
length

−1.30 0.05 0.81 −0.02 1.36 −1.50 0.08

Clustering coeff. −0.41 1.81 0.13 0.10 −0.11 0.28 0.06

Global efficiency 0.68 −0.18 0.24 −0.10 −0.51 0.88 0.11

Assortativity coeff. 1.21 −0.22 −1.18 −0.15 −0.45 1.12 0.06

Modularity −2.50a 4.07d 1.53 −0.02 −0.21 0.27 0.17

Community number 1.53 −0.92 −1.41 0.70 1.19 −2.42a 0.05

Small-worldness 1.16 −0.06 −0.82 −0.23 −1.34 1.54 0.06

N-cha Average degree 626.56d −8.30d −2.49a 1.08 −0.35 −0.81 0.99

Network diameter −0.36 −0.08 0.78 0.53 0.06 −1.23 0.05

Characteristic path
length

−1.34 0.58 1.93 1.03 −1.54 0.08 0.19

Clustering coeff. −0.94 2.04a 1.07 0.43 −0.34 0.12 0.10

Global efficiency 1.12 −0.45 −1.27 −0.57 0.83 0.75 0.22

Assortativity coeff. 0.16 0.78 0.13 −0.75 0.19 0.25 0.09

Modularity −1.25 1.15 1.74 1.39 −1.55 0.39 0.13

Community number −1.35 2.21a 0.70 −1.83 1.17 −0.26 0.08

Small-worldness 1.36 −0.69 −2.11a −1.22 1.74 −0.25 0.19

N-obj Average degree 586.64d −5.32d −0.75 0.04 −0.03 0.08 0.99

Network diameter 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Characteristic path
length

0.17 −0.11 −0.54 −1.37 1.36 −1.13 0.06

Clustering coeff. 0.57 0.75 −0.91 −0.14 0.81 −0.62 0.18

Global efficiency −0.09 −0.01 0.56 1.20 −1.29 1.35 0.09

Assortativity coeff. −0.33 0.54 −0.14 −2.02a 1.61 −0.04 0.09

Modularity −0.43 1.47 0.12 0.81 −1.49 0.40 0.22

Community number −1.11 1.58 1.04 −1.17 0.63 0.09 0.10

Small-worldness −0.12 0.02 0.26 1.64 −1.52 1.12 0.10

N-col Average degree 809.94d −5.86d −0.78 −3.66c 1.74 −0.67 0.99

Network diameter 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Characteristic path
length

1.95 −2.02a −2.17a −0.05 −0.33 −0.23 0.07

Clustering coeff. 1.28 −0.34 −1.49 −1.04 0.02 −0.06 0.13

Global efficiency −2.02a 2.24a 2.34a 0.31 0.23 0.82 0.12

Assortativity coeff. 0.80 −0.72 −0.80 −1.16 0.37 0.07 0.05

Modularity −0.09 0.29 −0.69 −0.81 −0.19 −0.01 0.16

Community number −0.81 1.42 0.14 −1.99 −0.67 1.81 0.12

Small-worldness −2.26a 2.30a 2.34a 0.33 0.15 0.28 0.06

aCorresponding to p < 0.05.
cCorresponding to p < 1× 10−3 .
dCorresponding to p < 1× 10−4 .
Variables with correlation were marked with bold.
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This study proposed a non-linear eye-movement analysis method
from the perspective of the network domain, which constructed
a complex network (referred to as GCN) from gaze time series
during RAN. This suggests that eye-movement data (responding
to gaze behavior) during RAN could be analyzed by computing the
topological parameters of GCN. In this way, the proposed method
established a link between eye-movement analysis and complex
network analysis, much like the Fourier transforms did for time-
domain and frequency-domain research. As far as we know, this is
the first time to report such an idea, which illustrates a novel study
direction for eye-movement analysis.

4.1. Structural features of GCN

Small-world architecture (Watts and Strogatz, 1998; Bassett
and Bullmore, 2016) may inherit crucial characteristics of
many complex systems and, thus, has been significant in the
understanding of network sciences, particularly in the study of
brain networks (Bullmore and Bassett, 2011). Numerous studies
(Bassett and Bullmore, 2016) have been conducted to address
the following issues: (i) how to build a small-world network
(Watts and Strogatz, 1998); (ii) how to determine whether a
network has small-world architecture (Bassett and Bullmore,
2016); and (iii) how to use the difference of small-world index
at the group or/and individual level in the understanding of
real systems [e.g., brain networks (Bassett and Bullmore, 2016)].
Findings (refer to Figure 3I) showed that SW > 0.4 in all cases.
This suggests that GCN may possess “small-world” architecture
in all RAN tasks (Bassett and Bullmore, 2017). This “small-
world” architecture of GCN is characterized by a distinctive
combination of high clustering coefficient and short characteristic
path length, which supports high local and global efficiency in
information communication and maintains low wiring costs (i.e.,
sparse connections; Latora andMarchiori, 2001). Such a conception
of an “economic small-world” could be interpreted as the biological
evolution supporting the optimal GCN structure for TD children.

It is well-known that by randomly adding a few long-range
connections to a regular network, one can set up a small-world
network (Watts and Strogatz, 1998; Bassett and Bullmore, 2016).
However, the current study sought to investigate an inverse issue,
i.e., what infrastructure or unit allows the occurrence of small-
worldness (i.e., small-world property) in real networks (e.g., GCN
in the current study). Small-worldness is typically accompanied by
the presence of a community structure or hub nodes, according to
earlier studies (Bullmore and Sporns, 2009; He and Evans, 2010;
Meunier et al., 2010). This inference may again be supported
by our finding (refer to Figure 3G) that GCN in each RAN task
has a community structure. Given the existence of community
architecture, GCN has intensive intra-community connections
and sparse inter-community connections. These sparse inter-
community connections (acting as shortcuts) may reduce the
characteristic path length of the network and improve global
efficiency, while these intensive intra-community connections
may boost local clustering and hence facilitate information
specialization within a particular community. Therefore, the best
balance of information integration and segregation may be ensured

by such a well-organized community structure, which would also
support the small-world configuration in GCN.

This study assessed the assortativity coefficient which quantifies
the tendency of nodes to preferentially connect to nodes with
a similar degree (degree-degree correlations). According to our
findings (refer to Figure 3F), GCN in each RAN task was regarded
as an assortative network with a positive degree–degree correlations
because AC > 0. This suggests that high-degree and low-degree
nodes in GCN tend to attach to other high-degree and low-
degree nodes, respectively. Additionally, when the assortativity
coefficient of GCN decreases, this order tends to deteriorate,
and some nodes start establishing new connections with nodes
with less similar degrees to their own degrees. Given that the
assortativity coefficient in non-alphanumeric GCN is lower than
that in alphanumeric GCN, GCN in non-alphanumeric RAN tasks
may be more likely to worsen nodes’ propensity to link to other
nodes preferentially than in alphanumeric RAN tasks. It should
be noted that reduced assortativity in brain diseases (such as
Alzheimer’s disease, Parkinson’s disease, epilepsy, and depression)
was observed (Bialonski and Lehnertz, 2013; Wagner et al., 2019;
Conti et al., 2022), in which a complex network was built from brain
imaging time series. Therefore, it makes sense to speculate that the
assortativity coefficient may comprehend and even recognize the
distinction between healthy subjects and patients (e.g., dyslexia).

4.2. Mechanism to support small-world
architecture and modularity

Gaze behavior consists of three events (Rayner, 1998; Engbert
et al., 2002; Bhargavi and Prabha, 2020), namely, fixations, saccades,
and regressions. Fixations are recognized, when a gaze is held
for at least 100ms (Harezlak and Kasprowski, 2019). Saccades are
very rapid movements, during which the eyes change position
to reach another fixation point. Regressions occur when there
are backward eye movements toward previously visited items.
Based on the observations made above, it is clear to draw
the conclusion that fixations can be considered as clustering of
eye gazes, saccades as links between fixations, and regressions
as sparse long-distance connections between gazes. Hence, this
physical mechanism of eye movements may essentially support the
presence of community structure in GCN, where intra-community
connections are intensive but intra-community connections are
sparse. It should be noted that the number of fixations is
often higher than the actual number of communities, and one
community may typically host many fixations.

For each RAN task, participants were instructed to scan and
name the 5 × 10 matrix of objects serially from left to right
in each row, and from top to bottom for all rows. This eye
movement pattern theoretically resembles eyeballs “walking” on a
lattice of gazes. On the contrary, recent studies (Haworth et al.,
2015; Harezlak and Kasprowski, 2019; Mohammadhasani et al.,
2020) suggested that eye movements might exhibit fractal and
chaotic characteristics. These seemingly random eye movements,
along with an ocular “walk” on a lattice, may provide evidence for
the existence of small-world architecture (Watts and Strogatz, 1998;
Bassett and Bullmore, 2016). This notion is strongly supported by
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our finding that GCN in each RAN task displayed small-world
architecture (refer to Figure 3I).

4.3. Influence of di�erent RAN tasks

This study conducted six pairs of comparisons between
four RAN tasks and examined how different tasks affected the
topological properties of GCN. Findings (refer to Figure 3) showed
that: (i) Average degree and modularity could not indicate the
difference between the pair of tasks N-obj and N-col, but they
might reflect the difference between each of the other five pairs; (ii)
Characteristic path length, global efficiency, and small-worldness
could not indicate the difference between the pair of tasks N-obj
and N-col, as well as the pair of tasks N-num and N-cha, but they
might reflect the difference between each of the other four pairs;
(iii) Each of the three pairs of RAN tasks’ differences might be
reflected by network diameter and clustering coefficient; and (iv)
Each of the two pairs of RAN tasks’ differences might be reflected
by assortativity coefficient and community number.

Additionally, five topological parameters (i.e., average degree,
clustering coefficient, assortativity coefficient, modularity, and
community number) could reflect the difference between tasks N-
num and N-cha. Only one topological parameter (i.e., network
diameter) was able to distinguish the difference between tasks N-obj
and N-col, but the other eight parameters were unable to do so.

Generally, RAN tasks (Bowers andWolf, 1993; Kail et al., 1999;
Wiig et al., 2000; Stainthorp et al., 2010; American Psychiatric
Association, 2013; Decker et al., 2013; Georgiou et al., 2013;
Powell et al., 2014; Hjetland et al., 2017; Akhand et al., 2019;
Ullman et al., 2020) can be grouped into two categories, namely,
alphanumeric and non-alphanumeric RAN tasks. In particular,
naming of numbers, letters, words, or Chinese characters belongs
to alphanumeric RAN tasks, while naming of colors or objects
falls under the category of alphanumeric RAN tasks. Alphanumeric
RAN might require mainly phonological processing, i.e., the
corresponding verbal codes of these stimuli are readily accessible
at the surface level (Donker et al., 2016), while non-alphanumeric
RAN seems to demand additional steps and require conceptual
processing to establish meaning and subsequently the selection
of the appropriate name code, before phonological processing
results in articulating a response (Donker et al., 2016). These
additional cognitive stages suggest that non-alphanumeric RAN
may often need longer naming time, longer fixation duration,
and higher fixation counts when compared to alphanumeric RAN.
This suggests that GCN in non-alphanumeric RAN may typically
have more nodes than GCN in alphanumeric RAN (as a result
of the occurrence of more gazes). However, even in such a
circumstance, GCN in non-alphanumeric RAN still has a higher
average degree, a smaller lower network diameter, and a shorter
characteristic path length than that in alphanumeric RAN. This
fact supports the hypothesis that GCN in non-alphanumeric RAN
might have a more ideal architecture than that in alphanumeric
RAN. Accordingly, when compared to alphanumeric RAN, GCN
in non-alphanumeric RAN had a higher average degree, global
efficiency, and small-worldness, but it also had a lower network
diameter, characteristic path length, clustering coefficient, and

modularity. The mechanism driving the structural difference
between alphanumeric and non-alphanumeric RAN would merit
more investigation in future studies.

4.4. Association between network
properties and traditional metrics

This study carried out a series of rank-based non-
parametric linear regression analyses to examine the
independence between each of the nine topological
parameters and six traditional eye-movement metrics. In
all RAN tasks, our results (refer to Table 2) demonstrated
that the average degree was dependent on six traditional
eye-movement metrics, particularly total naming time,
average fixation duration, and fixation counts, with a high
determination coefficient R2 = 0.99; however, the other eight
topological parameters were largely independent of these
traditional metrics.

Rather than emphasizing the superiority of our technology
over traditional eye-tracking metrics, this study attempted to
provide a novel gaze time series analysis method to measure
gaze behavior from the perspective of the network domain. As
noted, the majority of topological parameters might be rather
independent and impossible to be predicted using traditional eye-
movement metrics. This suggests that our technique might be
considered an important supplement to traditional eye movement
analysis. It should be noted that one topological parameter (i.e.,
network diameter) could be utilized to differentiate between tasks
N-obj and N-col but the six conventional eye-movement metrics
could not.

4.5. Network constructed from time series

Many physical systems can be modeled as complex networks
(Butts, 2009; Wu et al., 2018; Zhou et al., 2018) by using a proper
definition of nodes and edges, which may usually enhance our
understanding of their structure and functions. Recent studies
have illustrated a promising research direction, which converted
time series into a complex network (Zhang and Small, 2006;
Lacasa et al., 2012). As an illustration, Zhang and Small (2006)
assigned each cycle of a time series to a node and used temporal
correlation measures to establish edges (i.e., connections between
nodes). They sought, for the first time, to set up a linkage
between time series and topological features. They specifically
showed that noisy periodic time series could be mapped into
random networks, while chaotic time series could be mapped into
networks with small-world or/and scale-free features. However,
their solution could only be applied to pseudoperiodic time series
(Lacasa et al., 2012). In order to overcome this problem, Lacasa
et al. (2012) introduced a visibility graph approach that may be
used to analyze any type of one-dimensional time series. They
showed that periodic time series can be converted into regular
networks, random time series can be converted into random
networks, and fractal time series can be converted into scale-free
networks.
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Even though the visibility graph approach offers a promising
paradigm for graph-based time series analysis, it can only
be applied to one-dimensional time series. Hence, more
research is needed to extend the visibility graph approach
from one-dimensional time series to multivariate time
series. The current study was precisely in this line and
made a novel suggestion to map a two-dimensional gaze
time series in a complex network in the context of RAN.
Clearly, the applicability of the concept of transforming
time series into complex networks was further extended by
our study.

4.6. Cross-cultural or cross-language
e�ects

Researchers should typically use a Chinese adaptation of
RAN rather than the original English form when studying
developmental dyslexia in Chinese. It should be noted that there
are some notable discrepancies between the two versions as
a result of Chinese characters’ unique characteristics. Typical
discrepancies were listed as follows: (i) Chinese characters not
only have shape and sound attributes like English letters but
also represent meaning; (ii) Chinese characters have no clear
form-to-sound conversion rules, thus, readers need to remember
the pronunciation of Chinese characters; and (iii) The visual
complexity of Chinese characters is much higher than that of
English letters. Consequently, when compared to the original RAN,
the Chinese adaptation may have higher cognitive complexity
and thus activate a wider range of brain regions (Liao et al.,
2015; Peng et al., 2017). To extend the application of RAN to
developmental dyslexia in Chinese, a Chinese adaptation of RAN
(i.e., the C-RAN) was suggested by substituting Chinese characters
(highly frequently used) for English letters. Even though the
current study did not demonstrate the performance of the C-
RAN, it is conceivable to expect that it could be more appropriate
than the original RAN for assessing developmental dyslexia
in Chinese.

Georgiou et al. (2016) sought to understand the role of
RAN in reading fluency and spelling across three languages
(i.e., Chinese, English, and Finnish). They showed that: (i) RAN
predicted reading fluency equally well across languages; and
(ii) RAN did not exert a significant direct effect on spelling,
and a substantial proportion of its predictive variance was
mediated by phonological processing (in Chinese and Finnish) and
orthographic processing (in English). Their findings demonstrated
both the cross-cultural consistency and inconsistency which might
be reflected by RAN.

Recent studies (Nayar et al., 2021, 2022) examined the cultural
effects on gaze behavior. For instance, a cross-cultural study
(Nayar et al., 2021) discovered that children (with or without
autism) from Hong Kong typically required longer eye-voice
spans and more fixations than their counterparts from the US.
This finding showed that cross-cultural inconsistency influenced
gaze behavior during RAN, which may be captured by eye-
movement metrics.

4.7. Potential applications and future
research

Rapid automatized naming has been widely applied to evaluate
several reading-related abilities, such as processing speed (Kail
et al., 1999), visual processing ability (Stainthorp et al., 2010), or
serial processing ability (Georgiou et al., 2013). It has also been
interpreted as an index of word-specific “orthographic” and/or
word-specific phonological knowledge (Bowers and Wolf, 1993;
Decker et al., 2013; Powell et al., 2014). Therefore, the suggested
method can be employed to assess reading-related skills, as well as
to aid in the diagnosis of several cognitive abnormalities, including
dyslexia (Goswami, 2015; Åvall et al., 2019; Georgiou and Parrilla,
2020), specific language impairment (Snowling and Melby-Lervag,
2016), attention deficit/hyperactivity disorder (ADHD; Tannock
et al., 2000), learning disabilities, and autism spectrum disorder
(ASD; Hogan-Brown et al., 2014; Zhao et al., 2019). In particular,
the suggested technique can be applied to understand the difference
in topological parameters in GCN during cognitive tasks between
TD children and children with developmental disorders (e.g.,
dyslexia, specific language impairment, ADHD, and ASD). It would
also deserve to examine whether this difference would be affected
by age and gender.

Additionally, our technique can essentially be considered as a
network-domain measure method to evaluate an individual’s RAN
abilities. The normative data can be established by calculating the
5, 10, 15, 25, 50, 75, and 90th centiles as grade-specific reference
values for each topological parameter in GCN, similar to what we
did in our previous research (Xie et al., 2022). Our method could,
thus, be applied to assist in the diagnosis of RAN-related cognitive
deficits (e.g., dyslexia) by choosing appropriate cut-off values for
topological parameters. This notion has been illustrated in our
recent study (Xie et al., 2022), which found that attention-related
skills might be used to screen for learning difficulties by using the
5th centile as the cut-off value.

4.8. Strengths and limitations

Strengths of the current study included that: (i) it conducted
a network-domain evaluation of gaze behavior using two-
dimensional time series (i.e., temporal-spatial information of
eye gazes), in contrast to the visibility graph approach (Lacasa
et al., 2012) using one-dimensional time series; and (ii) it did
not require manually setting ROIs, which is different from
typical eye-tracking analysis. However, there are also some
limitations and future studies worth noting. First, this study
investigated only monolingual Chinese Grade 6 children (older
children). Our decision was based on the fact that by that time,
RAN would become automatic (Georgiou and Stewart, 2013),
potentially stabilizing its relationship with reading. However,
RAN abilities may generally change with age (van den Bos
et al., 2002) and depend on the language (e.g., Araújo et al.,
2015). This implies that the current single-grade study may
miss the opportunity to document developmental changes in
RAN abilities across languages. Second, previous studies showed
that: (i) Girls have a faster cognitive and social development
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up to the end of adolescence than boys of the same age (Gur
et al., 2012; Xie et al., 2022); (ii) Gender differences may
play a significant role in the evaluation of neurological and
psychiatric disorders; (iii) The research on learning disabilities
and ADHD supports a higher prevalence in boys (Yong and
Mcintyre, 1992; Retz-Junginger et al., 2010; Rucklidge, 2010;
Williamson and Johnston, 2015); and (iv) Age and gender may
combine to affect cognitive abilities (Xie et al., 2022). However,
as a limitation, this study did not consider the influence of
gender on gaze behavior. In particular, the current study did
not adequately capture the gender effect on developmental
alterations in RAN abilities at different ages. Finally, this study
did not analyze the influence of IQ on gaze behavior during
RAN, even though IQ might affect an individual’s RAN abilities
(Wolff, 2014; Nayar et al., 2021). It should be noted that after
controlling the influence of IQ, RAN might predict reading speed
(Wolff, 2014). The aforementioned flaws would be discussed in
future research.

5. Conclusion

This article suggested a new method to measure gaze
behavior during RAN from the perspective of the network
domain, which mapped gaze time series during RAN into
a complex network (referred to as GCN). Findings showed
that GCN in each RAN task was assortative and possessed
“small-world” and community architecture for TD children.
Those topological properties would be applied to evaluate an
individual’s RAN abilities, as well as to aid in the diagnosis of
cognitive abnormalities (e.g., dyslexia) by setting appropriate cut-
off values. The influence of different tasks on the topological
properties of GCN was examined. The time series analysis
methods, cultural effects, potential applications, strengths, and
limitations were discussed as well. As the eye-tracking method is
fundamental for psychological research, the suggested technique
may have the potential to be used in a very broad prospect
of applications.
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