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Near-infrared spectroscopy (NIRS) can measure tissue blood content and

oxygenation; however, its use for adult neuromonitoring is challenging due to

significant contamination from their thick extracerebral layers (ECL; primarily scalp

and skull). This report presents a fast method for accurate estimation of adult cerebral

blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data.

A two-phase fitting method, based on a two-layer head model (ECL and brain), was

developed. Phase 1 uses spectral constraints to accurately estimate the baseline

blood content and oxygenation in both layers, which are then used by Phase 2 to

correct for the ECL contamination of the late-arriving photons. The method was

validated with in silico data from Monte-Carlo simulations of hyperspectral trNIRS

in a realistic model of the adult head obtained from a high-resolution MRI. Phase

1 recovered cerebral blood oxygenation and total hemoglobin with an accuracy of

2.7 ± 2.5 and 2.8 ± 1.8%, respectively, with unknown ECL thickness, and 1.5 ± 1.4 and

1.7 ± 1.1% when the ECL thickness was known. Phase 2 recovered these parameters

with an accuracy of 1.5 ± 1.5 and 3.1 ± 0.9%, respectively. Future work will include

further validation in tissue-mimicking phantoms with various top layer thicknesses

and in a pig model of the adult head before human applications.

KEYWORDS

near-infrared spectroscopy, hyperspectral time-resolved, neuromonitoring, oxygen
saturation, adult, NIRS, real-time, two-layer model of the adult head

1. Introduction

Near-infrared spectroscopy (NIRS) is a portable technology that uses safe (i.e., non-ionizing)
near-infrared light to noninvasively probe living tissue (Denault et al., 2018). NIRS has high
sensitivity to key biomarkers of brain health such as cerebral blood content and oxygenation
(Durduran et al., 2010), and is now widely used for neuromonitoring in both pre-clinical
and clinical settings (Brown et al., 2002; Goldman et al., 2004; Lewis et al., 2018; Abdalmalak
et al., 2020a,b; Milej et al., 2020b). Several NIRS methods have been developed over the years,
but the most popular are based on continuous-wave NIRS (cwNIRS), which is the simplest
NIRS technology and is based on sending a light beam of constant intensity into the tissue
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and monitoring for changes in light attenuation (Scholkmann
et al., 2014; Wojtkiewicz et al., 2014). Importantly, by using a
cwNIRS technique that can measure light attenuation at dozens
of wavelengths, rather than just a few, the spectral features of
the main light absorbers in tissue (e.g., water, oxyhemoglobin
and deoxyhemoglobin) can be leveraged to improve the accuracy
of cwNIRS (Diop et al., 2014). This approach is often called
hyperspectral cwNIRS and has been shown to be reliable for
neonatal neuromonitoring; (Diop et al., 2014; Rajaram et al., 2018)
however, hyperspectral cwNIRS neuromonitoring in adults remains
a challenge due to significant contamination from their thicker
extracerebral layers (ECL; scalp, skull, and cerebrospinal fluid)
(Elliott et al., 2010; Milej et al., 2020a; Li and Diop, 2022).

To mitigate this challenge, alternative NIRS methods that are
more sensitive to deep-lying tissue have been developed, and the most
advanced are based on time-resolved NIRS (trNIRS) (Gagnon et al.,
2008; Diop et al., 2010). In trNIRS neuromonitoring, short pulses of
light are released into the head, and the arrival time of each photon at
the detector is precisely measured to generate a distribution of time-
of-flight (DTOF). This allows for the differentiation of early arriving
photons, which have only passed through the ECL, from late-arriving
photons which are more likely to probe the brain. Several studies
have demonstrated the superior brain sensitivity of trNIRS; (Chance
et al., 1988; Liebert et al., 2003; Selb et al., 2005; Steinbrink et al.,
2006) however, analyzing trNIRS brain measurements is challenging.
Consequently, measurements are often interpreted by assuming that
the brain is a homogeneous medium (Patterson et al., 1989; Gerega
et al., 2018; Baker et al., 2019). While such an approach may work
in neonates, given their thin (3–5 mm) ECL (Li et al., 2015; Sharma
et al., 2020), modeling the adult head as a homogeneous medium is an
oversimplification since NIRS probes are typically positioned on the
scalp for non-invasive measurements. As such, adult measurements
contain significant contribution from the ECL since light must travel
through skin (∼1.2–1.5 mm) and thick skull (∼10 mm) before
reaching the brain (Selb et al., 2014b).

A simple, yet more accurate, approach to account for the ECL
contribution is to divide the head into two compartments: brain
and ECL (Gagnon et al., 2008). This permits the use of analytical
solutions of light propagation in two-layer turbid media to analyze
adult trNIRS brain measurements (Kienle et al., 1998). Nevertheless,
analyzing trNIRS data with a two-layer analytical model is prone to
crosstalk because of the increased number of fitting parameters (from
3 for a homogeneous medium, to 6): 4 parameters for the absorption
and scattering coefficients of both layers, the thickness of the top
layer, and an amplitude term that accounts for the unknown gain
of the trNIRS system. We hypothesize that trNIRS data at dozens of
wavelengths, similar to hyperspectral cwNIRS, will allow for the use
of the spectral features of tissue chromophores to better constrain the
fitting and reduce crosstalk.

To test this hypothesis, we developed a two-phase fitting
algorithm−based on a two-layer analytical model of light
propagation in diffuse media (Kienle et al., 1998)−that leverages
the spectral features of oxyhemoglobin and deoxyhemoglobin to
estimate their concentration in the adult brain from hyperspectral
trNIRS data acquired with probes positioned on the scalp. Phase 1
of the algorithm uses the two-layer analytical model to accurately
estimate initial (i.e., baseline) chromophore concentrations, and
Phase 2 uses these initial values and late-photon analysis (i.e., the tail
of the DTOFs) to rapidly estimate subsequent concentrations. This
approach significantly reduces computation time while accounting

for the ECL contribution to the optical signal. The accuracy of
the method was validated with in silico data from Monte-Carlo
simulations of hyperspectral trNIRS in a realistic model of the
adult head obtained from a high-resolution MRI. The estimated
concentrations were compared with the known inputted values using
Pearson’s correlation and Bland-Altman plots.

2. Materials and methods

The different steps of the two-phase fitting algorithm are
illustrated in Figure 1. In Phase 1, data from two source-detector
distances (2 and 3 cm) are fit separately with a solution to
the diffusion approximation (DA) for a semi-infinite two-layer
medium to recover the absolute concentrations of oxyhemoglobin
and deoxyhemoglobin in the brain (i.e., baseline concentrations)
(Kienle et al., 1998). Phase 2 focuses on rapid estimation of the brain
chromophore concentrations once their baseline values are known.
It is noteworthy that Phase 2 uses data from both source-detector
distances to account for the ECL contribution to the signal.

2.1. Phase 1: Estimation of baseline
chromophore concentrations

There are typically six fitting parameters when a trNIRS curve
(i.e., DTOF) is analyzed with an analytical model of light transport
in a two-layer diffuse medium: the scattering and absorption
coefficients of each layer, the top layer thickness, and an amplitude
term. Because of the large number of fitting parameters, such a
procedure is prone to crosstalk between the parameters (Gagnon
et al., 2008). The current algorithm reduces crosstalk by dividing
the fitting procedure into five steps: (i) roughly estimate the
ECL chromophore concentrations, (ii) roughly estimate the brain
chromophore concentrations, (iii) estimate the scattering coefficients,
(iv) refine the ECL concentrations, and (v) refine the brain
concentrations. Further, the algorithm leverages the spectral content
of the data to better constrain the fitting, thereby further reducing
crosstalk. The details of each step are provided in the following
sections.

2.1.1. Step 1: Rough estimation of the
concentrations of oxyhemoglobin and
deoxyhemoglobin in the ECL

The goal of this step is to use the shorter (2 cm) source-detector
distance data to obtain rough estimates of the concentrations of
oxyhemoglobin and deoxyhemoglobin in the ECL, which will be
further refined in Step 4. Since more than 80% of the signal obtained
at the 2 cm source-detector distance comes from the ECL (Milej
et al., 2020a), analyzing this data with a solution to the DA for a
semi-infinite homogeneous medium will yield results that are heavily
weighted toward the ECL parameters. The homogeneous medium
fitting was implemented in MATLAB 2020B using a bounded
least-squares regression method [fminsearchbnd (D’Errico, 2021)]
to minimize the difference between the analytical model of light
propagation in a semi-infinite homogeneous medium and the DTOF
data at each wavelength. The DTOFs were fit from 50% of the max
on the leading edge to 5% of the max after the peak. The three
fitting parameters in the homogeneous fitting were the absorption
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FIGURE 1

Flowchart of the two-phase hyperspectral trNIRS data analysis algorithm. The following provides additional information on each step of the algorithm.
Step 1: 1st fitting: Fitted for Amplitude, µa(λ), and µs ’(λ); 2nd fitting: Amplitude was fixed to the mean value obtained in the 1st fitting and fitted for µa(λ)
and µs ’(λ); 3rd fitting: Amplitude and µs ’(λ) were fixed to the values obtained in the 1st and 2nd fitting, and fitted for µa(λ) only; Computed [Hb] and
[HbO2] from µa(λ). Step 2: The tail of the logarithm of the DTOFs was fit to obtain µa(λ); Computed [Hb] and [HbO2] from µa(λ). Step 3: 1st fitting: Fitted
for Amplitude, µa(λ), and µs ’(λ); 2nd fitting: Amplitude was fixed and fitted for µa(λ), and µs ’(λ); the latter were used as the mean reduced scattering
coefficient for both brain and ECL. Step 4: [Hb] and [HbO2] in the brain were fixed to the values obtained in Step 2; µs ’(λ) fixed to values obtained in Step
3; Fitting parameters: ECL thickness, and [Hb] and [HbO2] in the ECL; The initial guess of [Hb] and [HbO2] were the values obtained in Step 1 and were
allowed to vary ± 50%; ECL thickness was set to the average value obtained from the segmented MRI and allowed to vary ± 10%. Step 5: [Hb] and [HbO2]
in the ECL were fixed to the values obtained in Step 4; µs ’(λ) fixed to values obtained in Step 3; Fitting parameters: [Hb] and [HbO2] in the brain; The initial
guess of [Hb] and [HbO2] in the brain was 30 µM and allowed to vary between 0 and 80 µM. Step 6: The absorption coefficients in the ECL, µaECL (λ), and
the brain, µaBrain (λ), obtained from Steps 4 and 5 were used to estimate the ECL contribution (fECL) to the absorption coefficients from the late-photon
analysis, µaLp (λ). Step 7: For any subsequent trNIRS spectrum (i.e., DTOFs dataset), the absorption coefficient in the brain, µaBrain (T, λ), can be rapidly
estimated from the baseline absorption coefficients in the brain and ECL, and the ECL contribution to the absorption coefficients obtained from late
photon analysis of the DTOFs (fECL).

coefficient, reduced scattering coefficient, and amplitude. The 2 cm
data were analyzed through three rounds of fitting, with all three
parameters allowed to vary freely in the first round. Thereafter, the
mean amplitude for all wavelengths was computed, and the DTOFs
were fit a second time with the amplitude fixed to this mean value,
to obtain estimates of the wavelength-dependent absorption and
reduced scattering coefficients. The wavelength-dependent scattering
coefficients recovered from this round were then fit to a model of
Mie Scattering (Eq. 1) to further reduce the noise in the estimated
scattering coefficients. Note that in Eq. 1, a and b are the scattering
amplitude and power, respectively, λ is the wavelength in nm, and
µ′s(λ) is the wavelength-dependent reduced scattering coefficient
(mm−1).

µ′s(λ) = a(
λ

800
)−b (1)

Thereafter, the DTOFs are fit a third time–with both the mean
amplitude and reduced scattering values fixed to their values obtained
from the previous round of fitting–to estimate the wavelength-
dependent absorption coefficient (Figure 2).

The absorption coefficient depends on the tissue chromophores’
concentrations (Ci) and their wavelength-dependent extinction
coefficients (εi):

µa (λ) =
∑

i

Ciεi(λ) (2)

This relationship can be used to recover the concentrations
of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) from
the wavelength-dependent absorption coefficients by solving the
following system of linear equations (Eq. 3):

µa(λ1)

µa(λ2)
...

µa(λn)

=

WFεWater(λ1)+ CHbεHb(λ1)+ CHbO2εHbO2(λ1)

WFεWater(λ2)+ CHbεHb(λ2)+ CHbO2εHbO2(λ2)
...

WFεWater(λn)+ CHbεHb(λn)+ CHbO2εHbO2(λn)

(3)

where WF is the water fraction and is assumed to be 80% (Oros-
Peusquens et al., 2019).

2.1.2. Step 2: Rough estimation of the
concentration of oxyhemoglobin and
deoxyhemoglobin in the brain

Step 2 establishes preliminary rough estimates of the
concentrations of oxyhemoglobin and deoxyhemoglobin in the
brain. One of the benefits of using trNIRS is that the tail of the
DTOF is highly sensitive to deep tissue absorption (Diop and
Lawrence, 2013). As such, the tail of the DTOFs were used to
obtain a rough estimation of the brain absorption coefficient:
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FIGURE 2

Wavelength-dependent absorption (A) and reduced scattering (B) coefficient obtained following each round of fitting the 2 cm distance data assuming a
homogenous medium.

µa (λ) ∼= −

∂ ln(DTOF(λ,t))
∂t
c
n

(4)

where c is the speed of light in a vacuum, and n is the refractive
index of the tissue (assumed to be equal to 1.4). The tail of
the DTOFs were fit within the region between 5 and 1% of
the max after the peak. All wavelengths from the long source-
detector distance (3 cm) were individually analyzed using Eq. 4.
The absorption coefficients were used to compute the rough initial
estimates of oxyhemoglobin and deoxyhemoglobin concentrations
in the brain, similar to Eq. 3. These concentrations will be later
used to constrain the fitting of the 3 cm data with the two-layer
analytical model (Step 4).

2.1.3. Step 3: Estimation of the reduced scattering
coefficient

Step 3 analyzes the DTOFs from the 3 cm source-detector
distance, using the process outlined in Step 1, to estimate the mean
reduced scattering coefficient of the combined two-layer (i.e., both
the ECL and the brain). Note that we are assuming homogenous
tissue scattering, instead of layer-specific scattering coefficients, as
this reduces both the duration and complexity of the fitting.

2.1.4. Step 4: Refining the extracerebral
concentrations

In Step 4, the estimates of oxyhemoglobin and deoxyhemoglobin
concentrations in the ECL are refined by simultaneously fitting the
DTOFs of all the wavelengths with an analytical model of light
transport in a two-layer diffusive medium (Kienle et al., 1998).
The fitting parameters for this step are the concentrations of
oxyhemoglobin and deoxyhemoglobin in both layers and the ECL
thickness. The fitting algorithm was implemented in MATLAB, using
the function fminsearchbnd to minimize the difference between the
analytical model and the DTOFs of the full spectrum.

In this step, the concentrations of oxyhemoglobin and
deoxyhemoglobin in the brain are fixed to the values obtained
in Step 2, ECL concentrations estimated in Step 1 are used as the
initial guess and allowed to vary ± 50%, and the ECL thickness is
assigned an initial value equal to the average from the segmented
MRI and allowed to vary ± 10%. The reduced scattering coefficients
were fixed to the values obtained in Step 3. Finally, the amplitude
is assigned by multiplying the one-layer amplitude from the
homogenous fitting in Step 3 with the quotient of the one-layer
solution divided by the two-layer solution, using the homogenous
optical properties from Step 3. This corrects for any discrepancy
in the amplitude of the two solutions. The fitting was conducted
on the 3 cm source-detector distance DTOFs from 50% of the
maximum on the leading edge to 5% after the peak. The refined ECL
concentrations and thickness are then used in Step 5 to refine the
brain concentrations.

2.1.5. Step 5: Refining the cerebral concentrations
In the final step of Phase 1, the ECL parameters recovered from

Step 4 are fixed, and the concentrations of oxyhemoglobin and
deoxyhemoglobin in the brain “layer” are allowed to vary between
0 and 80 µM, with an initial value of 30 µM. Note that the rough
estimates of brain chromophores’ concentrations obtained in Step 2
could be used as initial guess and allowed to vary ± 50%. However,
because this step is very stable once the scattering coefficient, the
ECL thickness, and the concentrations of the chromophores in the
ECL are determined (Step 3 and 4), we relaxed the constraints for the
concentrations of oxyhemoglobin and deoxyhemoglobin to illustrate
the flexibility of the algorithm. The DTOFs obtained at the 3 cm
source-detector distance for all wavelengths were simultaneously fit
using the two-layer analytical model, from 5 to 1% of the maximum
on the tail edge of the curves. This choice was guided by the
fact late-arriving photons (i.e., the tail of the DTOF) are more
sensitive to deep-lying tissue which, in this case, represents the brain
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layer. The estimated concentrations represent the baseline brain
concentrations of oxyhemoglobin and deoxyhemoglobin, which are
used in Phase 2 for rapid estimation of subsequent cerebral blood
content and oxygenation.

2.2. Phase 2: Rapid estimation of cerebral
blood content and oxygenation

Phase 2 uses the absorption coefficients estimated using the late-
photon analysis (Eq. 4) on the 3 cm source-detector data to correct
for the ECL contamination. This is accomplished by leveraging
the absolute concentrations of the chromophores in both layers
measured in Phase 1 (Eq. 5). Phase 2 has two steps: estimation of the
ECL contribution to the absorption coefficient computed using late-
photon analysis of the 3 cm SDD data (Step 6), and rapid estimation
of chromophore concentrations in the brain (Step 7). Step 7 can
be repeated for all subsequent datasets (i.e., spectrum of DTOFs),
enabling rapid neuromonitoring (∼0.18 s per analysis). Note that
while Phase 1 is compatible with a spectral resolution of 10 nm,
Phase 2 requires at least a spectral resolution of 2 nm between 680
and 930 nm. The increased spectral resolution is needed for the late-
photon analysis due to the reduced signal-to-noise ratio (SNR) of late
arriving photons.

2.2.1. Step 6: Estimation of the extracerebral
contribution

Step 6 estimates the contribution of the ECL to the absorption
coefficients recovered from the late-photon analysis of the DTOFs
from the 3 cm SDD. This allows the fitting algorithm to account for
the ECL contamination in subsequent hyperspectral trNIRS datasets,
without the need to repeat the more computationally intensive two-
layer analysis. More specifically, the absorption coefficients obtained
from the late-photon analysis, µaLP (t,λ), can be expressed as a
weighted average of the absorption coefficients of the two layers:
(Jacques, 2013).

µaLP (T = 0,λ) = fECL (λ) × µaECL(T = 0,λ)+

fBrain(λ) × µaBrain(T = 0,λ) (5)

where µaBrain(T = 0, λ) and µaECL(T = 0,λ) are the baseline
brain and ECL absorption coefficients computed by inputting the
absolute concentrations estimated in Step 4 and 5 into Eq. 2,
and assuming 80% water concentration. µaLP (T = 0,λ) are the
absorption coefficients recovered by applying the late-photon analysis
to the baseline DTOFs from the 3 cm SDD.

In a two-layer head model, the contribution of one layer can be
expressed as a function of the other, such as fBrain = 1− fECL, where
fBrain is the fraction of the absorption coefficient coming from the
brain layer and fECL is the fraction from the ECL. Thus, Eq. 5 can
be rearranged to isolate the ECL fraction:

fECL(λ) =
µaLP (T = 0, λ)−µaBrain(T= 0,λ)
µaECL(T = 0,λ)−µaBrain(T= 0,λ)

(6)

2.2.2. Step 7: Rapid estimation of deep tissue
chromophore concentration

Step 7 allows rapid estimation of oxyhemoglobin and
deoxyhemoglobin concentrations in the bottom layer (i.e., the

brain). By combining Eqs. 5 and 6, the time-dependent absorption
coefficient in the brain, µaBrain (T,λ), can be expressed as a function
of the baseline absorption coefficients in each layer, fECL, and the
baseline late-photon absorption coefficient:

µaBrain (T, λ) =

µaBrain (T = 0,λ) ∗
(

1+
µaLP (T,λ)−µaLP (T = 0,λ)

µaLP (T = 0,λ)−fECL(λ) µaECL (T 0,λ)

)
(7)

Furthermore, using Eq. 2 and assuming a water concentration
of 80%, the wavelength-dependent absorption coefficient can
be used to compute the concentrations of oxyhemoglobin and
deoxyhemoglobin in the brain. Cerebral oxygen saturation (SO2) and
total cerebral hemoglobin (HbT) are then computed using Eqs. 8 and
9, respectively:

SO2 =
CHbO2

CHbO2+CHb
(8)

HbT = CHbO2+CHb (9)

2.3. Validation

Validation was conducted using in silico data generated with
Monte-Carlo Extreme (MCX) in an adult head model at various
skin and brain oxygen saturations (Fang and Boas, 2009; Yan and
Fang, 2020). Using in silico data allows for direct comparison of the
results of the algorithm with the “ground truth” inputted parameters
while maintaining realistic geometry and optical properties. To better
mimic experimental conditions, we segmented an MRI of an adult
head into four tissue types: scalp, skull, cerebrospinal fluid (CSF), and
brain using 3DSlicer (Kikinis et al., 2014). Brain and scalp oxygen
saturations were varied independently from 40 to 80% and 50 to
70%, respectively, in 2% increments. The wide range of scalp oxygen
saturations were simulated to investigate the confounding effects of
changing scalp SO2 on the accuracy of estimating brain SO2. 126
simulations were conducted for each brain-skin pair, corresponding
to the wavelength range of 680 to 930 nm, in 2 nm increments.
In total, we completed 8,316 simulations for this validation. The
source was positioned on the right side of the head with the detectors
placed 2 and 3 cm toward the forehead, as shown in Figure 3.
Each simulation had a total of 3 billion photons with random
seeds, ensuring realistic photon statistics with high SNR at both
detectors. The optical properties of bone and CSF, the scattering
coefficient, anisotropy factor, and refractive indices of the skin and
brain, were obtained from literature (Firbank et al., 1993; Jacques,
2013). Absorption coefficients of skin and brain were computed using
Eq. 2 for each oxygen saturation in the aforementioned range. Total
hemoglobin in the skin and brain were set to 12.4 and 55 µMol,
respectively, for all the simulations (Luttkus et al., 1995; Kanti et al.,
2014; Auger et al., 2016; Farzam et al., 2017).

3. Results

Estimation of the baseline chromophore concentrations from a
full spectrum of DTOFs (i.e., Phase 1) required 315 s of computation
(CPU: Intel Core i7-6800K @ 3.4 GHz, using parallel computing
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FIGURE 3

Adult head model with source (red dot) and detectors (green dot). The source-detector distances were 2 and 3 cm. The tissues shown are skin (dark
blue), skull (light blue), cerebrospinal fluid (orange), and brain (yellow). Due to GPU limitations, only the right upper octant of the head was simulated and
is shown above–gray tissues not included in the simulations.

with 6 cores, GPU: EVGA NVIDIA GEFORCE GTX 1080 8 GB,
RAM: 4 Kingston HyperX 32 GB, totaling 128 GB), while Phase 2
only took 0.18 s.

3.1. Phase 1: Baseline chromophore
concentrations

The estimated absorption spectra and the expected wavelength-
dependent absorption for four brain and three skin oxygen
saturations are shown in Figure 4 to illustrate the qualitative
similarity between the recovered and “ground truth” absorption
spectra. Figure 4 shows that when cerebral oxygen saturation
decreases, the error in the recovered absorption spectrum increases
slightly; this is particularly obvious above 800 nm and is a result of
errors in the recovered oxyhemoglobin concentration (Figure 4A).
Further, Figure 4B shows that the algorithm has excellent sensitivity
to the brain as the ECL oxygen saturation has negligible impact on
the accuracy of the estimated cerebral absorption coefficient.

The results of the quantitative analysis are shown in Figure 5A.
The mean (± standard deviation) difference between the recovered
brain oxygen saturations and the true values is 2.7 ± 2.5%, and
the correlation coefficient between the true and recovered values is
0.99 (p < 0.0001). For the total hemoglobin, the mean (± standard
deviation) difference between the recovered concentration and the
simulated concentration of 55 µM is 2.8 ± 1.8%. The mean
ECL thickness was estimated to be 12.4 mm, representing a mean
(± standard deviation) difference of 3.0 ± 2.2% from the “ground
truth.”

For comparison, Phase 1 was repeated with the ECL thickness
fixed to its known value of 12 mm, which led to more accurate
estimates of all the hemodynamic parameters (Figure 5B). Notably,
the mean (± standard deviation) difference between the recovered
brain oxygen saturation was reduced to 1.5 ± 1.4%, with a Pearson’s
correlation coefficient of 0.99 (p< 0.0001), and the total hemoglobin

was recovered with a mean (± standard deviation) difference of
1.7± 1.1%.

Correlation and Bland-Altman plots analysis were conducted for
both when the ECL thickness was unknown and known (Figure 6).
When ECL thickness was unknown (Figure 6A), the correlation
plot had a sum of squared error of 2.3% and a Pearson R-value
squared of 1, while the correlation plot for the known ECL thickness
(Figure 6C) had a sum of squared error of 1.3% and an R-value
squared of 1. The Bland-Altman plot for the unknown ECL thickness
case (Figure 6B) had a coefficient of variation of 2.0%, while the
plot for the known ECL thickness (Figure 6D) had a coefficient of
variation of 0.81%.

3.2. Phase 2: Rapid estimation of cerebral
chromophore concentration

The estimated cerebral oxyhemoglobin, deoxyhemoglobin, and
total hemoglobin from Phase 2 are shown in Figure 5C. The mean
(± standard deviation) difference between the recovered and true
brain oxygen saturation and total hemoglobin are 1.5 ± 1.5 and
3.1± 0.9%, respectively. Further, there is a strong agreement between
the estimated and simulated values, with a Pearson’s correlation
coefficient of 0.99 (p< 0.0001).

Figure 7 shows the correlation and Bland-Altman plots for the
results of Phase 2. The correlation plot had a sum of squared error
of 6.2% and a Pearson R-value squared of 1.00. The coefficient of
variation from the Bland-Altman plot was 0.96%.

4. Discussion and conclusion

A hyperspectral trNIRS data analysis method that can quickly
and reliably estimate cerebral concentrations of oxyhemoglobin
and deoxyhemoglobin was developed and validated. The findings
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FIGURE 4

(A) Estimated absorption coefficient for the 40, 50, 60, and 70% brain oxygen saturations with skin oxygen saturation set to 70% versus the true (inputted)
values. (B) Recovered versus true (inputted) absorption coefficient spectra for 50, 60, and 70% skin oxygen saturation at 70% brain oxygen saturation.

FIGURE 5

Results from Phase 1 with unknown (A) and known (B) ECL thickness and Phase 2 (C): For every cerebral oxygen saturation, 11 scalp saturations (50 to 70
in 2% increments) were evaluated. The estimated oxyhemoglobin (red), deoxyhemoglobin (blue), and total hemoglobin (black) are plotted against the
true cerebral SO2. The dotted lines are the “ground truth” while the solid lines are the estimated values. The error bars represent the standard deviation.

of the current report show that the algorithm can estimate adult
cerebral oxygen saturation and total hemoglobin concentration
with high accuracy. Although it takes 5.2 min to analyze a full
trNIRS spectrum with Phase 1, this phase is only needed once per

subject to establish the baseline concentrations of oxyhemoglobin
and deoxyhemoglobin. Once concentrations are established, all
subsequent trNIRS spectra can be analyzed with Phase 2, which
takes only 0.18 s, to estimate cerebral hemoglobin concentration
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FIGURE 6

Correlation and Bland-Altman plots for the Phase 1 results with unknown (A,B, respectively; blue), and known (C,D, respectively; red) ECL thicknesses.
The correlation plots show the mean estimated cerebral oxygen saturation for every true brain oxygen saturation (coloured squares), the line of best fit
(solid black line), and the expected values (dotted black line).

FIGURE 7

Correlation (A) and Bland-Altman (B) plots of Phase 2 results. The correlation plot shows the estimated mean cerebral oxygen saturation for every true
brain oxygen saturation (blue squares), the line of best fit (solid black line), and the expected values (dotted black line).

and oxygen saturation. The increased speed allows for real-time
neuromonitoring while maintaining high accuracy.

A major challenge when using NIRS for adult neuromonitoring
is the significant signal contamination by the ECL. Previous studies

have reported that the ECL is responsible for 52–88% of the
detected optical signal at 2–3 cm source-detector distances, which
represents a serious challenge when estimating brain chromophore
concentrations (Selb et al., 2014a; Milej et al., 2020a). To investigate
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FIGURE 8

Results of Phase 2 analysis when using a wide range of brain and scalp oxygen saturations as the baseline values for estimating fECL. In the legend, (B)
denotes the simulated cerebral oxygen saturation and S represents the simulated scalp oxygenation, both in percent. (A) The recovered oxyhemoglobin,
(B) recovered deoxyhemoglobin, (C) recovered brain oxygen saturation, and (D) recovered total hemoglobin plotted versus the true cerebral oxygen
saturation. The dotted black lines represent the “ground truth”.

the potential confounding effects of the ECL on the accuracy of the
method, 11 scalp blood oxygenations were simulated for every brain
oxygen saturation. As shown in Figure 5, the algorithm can estimate
cerebral oxyhemoglobin and deoxyhemoglobin with high accuracy
despite significant changes in scalp blood oxygen saturation. The
reliability of the method under a variety of ECL conditions bodes well
for its use in cardiac surgery and other high-risk procedures, since
the brain is considered an index organ for oxygen supply to other
organs; compromised cerebral oxygen supply may be indicative of
larger systemic issues (Murkin, 2011).

To further explore the impact of different baseline concentrations
on the accuracy of Phase 2, the method was tested using the extremes
of our simulated scalp and brain oxygen saturations; cerebral oxygen
saturations of 40 and 80%, and scalp oxygen saturations of 50 and
70%. The analysis revealed only minor deviations with the trends
remaining unchanged, and all the tested scenarios resulted in the
same Pearson’s correlation coefficient of 0.99 for the recovered
cerebral oxygen saturations (Figure 8). Further, a two-way ANOVA
was conducted and did not reveal any statistically significant
differences between the four datasets (p = 0.50 for the brain,
and p = 0.49 for the scalp), showing that the fraction of optical
contamination from the ECL does not significantly change with scalp
or cerebral blood oxygen saturation for a given geometry within the
tested range.

A major benefit of the method introduced in this report is that
the exact ECL thickness does not need to be known precisely, as the

fitting algorithm estimates (in Step 4) the ECL thickness within 10%
of the initial guess. This could be beneficial during emergencies when
there is not sufficient time for patients to receive an MRI or CT scan
that would be used to estimate the ECL thickness. In such a scenario,
the initial guess of the ECL thickness could be set to an average adult
value as the algorithm will estimate it within 10% of the initial guess.
Additionally, the relaxed requirement for the a priori knowledge
of the ECL thickness reduces the impact of potential errors in its
estimation from medical images on the accuracy of the method, as
minor variations in ECL thickness are accounted for by the algorithm.

To improve robustness and reduce crosstalk, we assumed a
cerebral water concentration of 80%. Since the water concentration
in our simulations was 80% as well, we conducted additional analyses
by assuming cerebral water concentrations of 70 and 90%. The
analysis revealed that such error, which is ± 10% of the true
water concentration, has a negligible impact on the accuracy of the
recovered oxyhemoglobin and deoxyhemoglobin.

To reduce computational burden, Phase 1 uses a sparse spectrum
(10 nm spectral resolution) instead of the dense spectrum (2 nm
spectral resolution) used in Phase 2. The sparse sampling had
negligible effects on accuracy; however, accuracy decreased when
the spectral sampling was further reduced (i.e., more than 10 nm
separation between consecutive wavelengths). Furthermore, the
algorithm can be modified to recover other chromophores by
increasing the number of chromophores in the fitting parameters
and changing the wavelength region of interest to cover the spectral
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range of the target chromophores. Notably, future work will include
adapting the algorithm to monitor the redox state of Cytochrome C
Oxidase (CCO), a key biomarker of cerebral oxidative metabolism
(Rajaram et al., 2018, 2022; Lange et al., 2019).

A potential limitation of this work is that it did not include the
effects of the IRF in the Monte Carlo simulations. When analyzing
trNIRS measurements, the IRF can be easily measured and its effects
accounted for by convolving it with the analytical model. Note that
for hyperspectral trNIRS measurements, the IRF of each wavelength
must be measured as it has been shown that both the shape and
temporal position of the IRF change with wavelength (Ioussoufovitch
et al., 2021).

Furthermore, the initial rough estimates of the chromophores’
concentrations in the ECL were obtained by assuming that 2 cm SDD
mainly probed the ECL. To investigate the validity of this assumption
we determined the partial pathlength of all the photons detected at
the 2 cm SDD in the brain and ECL, for the four extreme cases of scalp
and brain oxygenation (i.e., brain oxygenation at 40 and 80% and
scalp oxygenation at 50 and 70%). The analysis revealed that more
than 80% of the optical pathlength of the photons detected at the
2 cm SDD are in the ECL. Therefore, the optical properties obtained
by analyzing the 2 cm SDD data with a semi-infinite homogeneous
model are heavily weighted toward the ECL parameters and should
provide a good initial guess of the ECL optical properties.

In contrast to Steps 4 and 5, wherein all the DTOFs were fit
simultaneously, Steps 1, 2, and 3 were not spectrally constrained. The
authors acknowledge that spectrally constrained approaches such as
the method reported by D’Andrea et al. (2006) could be used in
Steps 1, 2, and 3. However, given that these estimates were only used
to obtain an “educated” initial guess of the concentration of light
absorbers in the ECL, which were refined in Step 4, it is reasonable
to assume that applying the spectrally constrained method would not
significantly alter the accuracy of the algorithm.

Another potential limitation of this work is that the simulations
were conducted on one octant of the full head due to GPU
memory limitations. To assess the potential impact of this approach,
we randomly picked 20 simulations and analyzed the photons’
trajectories. We found that no detected photons reached the
boundaries of the octant in the period of interest; thus, it is reasonable
to treat the volume used in the simulations as an optically semi-
infinite medium.

An additional limitation is that all validations were conducted
in a single geometry. While the oxygen saturations in the scalp
and brain were varied extensively, the medium was kept constant
throughout. Nevertheless, we expect the algorithm to work with
other ECL thicknesses since this parameter is estimated in Step
4 and thus does not need to be precisely known. Future work
will include further validation in tissue-mimicking phantoms with
various top layer thicknesses and in a pig model of an adult head
before human applications.

In summary, this report introduces a multi-step hyperspectral
trNIRS data analysis method that allows for accurate estimation
of cerebral hemoglobin content and blood oxygenation in adults.
Importantly, the approach does not require a priori knowledge
of the ECL thickness, which increases robustness and usability.
Further, the method can provide rapid estimates of cerebral oxygen
saturation and total hemoglobin content once the baseline values
are known, enabling real-time neuromonitoring. It is anticipated
that this method would be valuable in a wide range of applications

for continuous adult neuromonitoring, including cardiac surgery
and intensive care.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

DC conducted the Monte Carlo simulations used for the
validation and was the lead contributor to the development of the
analysis method described. NL helped develop Phase 2 of the analysis
method. SI provided feedback during the development of Phase 1.
MD was the primary investigator for this project, providing insight
and guidance throughout, as well as securing funding. All authors
contributed to the article and approved the submitted version.

Funding

This work was supported by NSERC Discovery Grant
(RGPIN/06337-2017), NSERC Discovery Horizons (DH-2022-
00545), the National Research Council Canada [Quantum Sensing
Program (QSP) collaborative project, QSP-19-2], and Western
University, and Lawson Health Research Institute.

Acknowledgments

We would like to thank Dr. Vladislav Toronov for his insight
and useful discussion. An earlier version of this work can be found
in David Cohen’s 2021 Master of Science thesis at the University of
Western Ontario, titled “Rapid Recovery of Cerebral Blood Content
and Oxygenation in Adults from Time-Resolved Near-Infrared
Spectroscopy”.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1020151
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1020151 February 11, 2023 Time: 14:31 # 11

Cohen et al. 10.3389/fnins.2023.1020151

References

Abdalmalak, A., Milej, D., Cohen, D. J. F., Anazodo, U., Ssali, T., Diop, M., et al.
(2020a). Using fMRI to investigate the potential cause of inverse oxygenation reported in
fNIRS studies of motor imagery. Neurosci. Lett. 714:134607. doi: 10.1016/j.neulet.2019.
134607

Abdalmalak, A., Milej, D., Yip, L. C. M., Khan, A. R., Diop, M., Owen, A. M., et al.
(2020b). Assessing time-resolved fNIRS for brain-computer interface applications of
mental communication. Front. Neurosci. 14:105. doi: 10.3389/FNINS.2020.00105

Auger, H., Bherer, L., Boucher, É., Hoge, R., Lesage, F., and Dehaes, M. (2016).
Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical
exercise using time-domain near infrared spectroscopy. Biomed. Opt. Express 7:3826.
doi: 10.1364/boe.7.003826

Baker, W. B., Balu, R., He, L., Kavuri, V. C., Busch, D. R., Amendolia, O., et al.
(2019). Continuous non-invasive optical monitoring of cerebral blood flow and oxidative
metabolism after acute brain injury. J. Cerebr. Blood Flow Metab. 39, 1469–1485. doi:
10.1177/0271678X19846657

Brown, D. W., Picot, P. A., Naeini, J. G., Springett, R., Delpy, D. T., and Lee, T. Y.
(2002). Quantitative near infrared spectroscopy measurement of cerebral hemodynamics
in newborn piglets. Pediatr. Res. 51, 564–570. doi: 10.1203/00006450-200205000-00004

Chance, B., Leigh, J. S., Miyake, H., Smith, D. S., Nioka, S., Greenfeld, R., et al. (1988).
Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in
brain. Proc. Natl. Acad. Sci. U. S. A. 85, 4971–4975. doi: 10.1073/pnas.85.14.4971

D’Andrea, C., Spinelli, L., Bassi, A., Giusto, A., Contini, D., Swartling, J., et al. (2006).
Time-resolved spectrally constrained method for the quantification of chromophore
concentrations and scattering parameters in diffusing media. Opt. Express 14:1888. doi:
10.1364/OE.14.001888

D’Errico, J. (2021). Fminsearchbnd, fminsearchcon. MATLAB central file exchange.
Available online at: https://www.mathworks.com/matlabcentral/fileexchange/8277-
fminsearchbnd-fminsearchcon (accessed on May 5, 2021).

Denault, A. Y., Shaaban-Ali, M., Cournoyer, A., Benkreira, A., and Mailhot, T.
(2018). “Chapter 7—near-infrared spectroscopy,” in Neuromonitoring techniques, ed. H.
Prabhakar (Amsterdam: Elsevier), 179–233. doi: 10.1016/B978-0-12-809915-5.00007-3

Diop, M., and Lawrence, K. S. (2013). “Deconvolution improves the accuracy
and depth sensitivity of time-resolved measurements,” in Proceedings of SPIE - the
international society for optical engineering, (Washington, DC: SPIE), 426–430. doi: 10.
1117/12.2004850

Diop, M., Tichauer, K. M., Elliott, J. T., Migueis, M., Lee, T. Y., and Lawrence, K. S.
(2010). Comparison of time-resolved and continuous-wave near-infrared techniques for
measuring cerebral blood flow in piglets. J. Biomed. Opt. 15:057004. doi: 10.1117/1.
3488626

Diop, M., Wright, E., Toronov, V., Lee, T. Y., and Lawrence, K. S. (2014). Improved
light collection and wavelet de-noising enable quantification of cerebral blood flow and
oxygen metabolism by a low-cost, off-the-shelf spectrometer. J. Biomed. Opt. 19:057007.
doi: 10.1117/1.JBO.19.5.057007

Durduran, T., Zhou, C., Buckley, E. M., Kim, M. N., Yu, G., Choe, R., et al.
(2010). Optical measurement of cerebral hemodynamics and oxygen metabolism in
neonates with congenital heart defects. J. Biomed. Opt. 15:037004. doi: 10.1117/1.342
5884

Elliott, J. T., Diop, M., Tichauer, K. M., Lee, T. Y., and Lawrence, K. S. (2010).
Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-
resolved near-infrared spectroscopy. J. Biomed. Opt. 15:037014. doi: 10.1117/1.3449579

Fang, Q., and Boas, D. A. (2009). Monte carlo simulation of photon migration in
3D turbid media accelerated by graphics processing units. Opt. Express 17:20178. doi:
10.1364/oe.17.020178

Farzam, P., Buckley, E. M., Lin, P. Y., Hagan, K., Grant, P. E., Inder, T. E., et al. (2017).
Shedding light on the neonatal brain: Probing cerebral hemodynamics by diffuse optical
spectroscopic methods. Sci. Rep. 7:15786. doi: 10.1038/s41598-017-15995-1

Firbank, M., Hiraoka, M., Essenpreis, M., and Delpy, D. T. (1993). Measurement of the
optical properties of the skull in the wavelength range 650-950 nm. Phys. Med. Biol. 38,
503–510. doi: 10.1088/0031-9155/38/4/002

Gagnon, L., Gauthier, C., Hoge, R. D., Lesage, F., Selb, J., and Boas, D. A. (2008).
Double-layer estimation of intra- and extracerebral hemoglobin concentration with a
time-resolved system. J. Biomed. Opt. 13:054019. doi: 10.1117/1.2982524

Gerega, A., Milej, D., Weigl, W., Kacprzak, M., and Liebert, A. (2018). Multiwavelength
time-resolved near-infrared spectroscopy of the adult head: Assessment of intracerebral
and extracerebral absorption changes. Biomed. Opt. Express 9:2974. doi: 10.1364/boe.9.
002974

Goldman, S., Sutter, F., Ferdinand, F., and Trace, C. (2004). Optimizing intraoperative
cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of
stroke for cardiac surgical patients. Heart Surgery Forum 7, 392–397. doi: 10.1532/HSF98.
20041062

Ioussoufovitch, S., Cohen, D. J. F., Milej, D., and Diop, M. (2021). Compressed sensing
time-resolved spectrometer for quantification of light absorbers in turbid media. Biomed.
Opt. Express 12:6442. doi: 10.1364/boe.433427

Jacques, S. L. (2013). Optical properties of biological tissues: A review. Phys. Med. Biol.
58:R37. doi: 10.1088/0031-9155/58/11/R37

Kanti, V., Bonzel, A., Stroux, A., Proquitté, H., Bührer, C., Blume-Peytavi, U.,
et al. (2014). Postnatal maturation of skin barrier function in premature infants. Skin
Pharmacol. Physiol. 27, 234–241. doi: 10.1159/000354923

Kienle, A., Glanzmann, T., Wagnières, G., and van den Bergh, H. (1998). Investigation
of two-layered turbid media with time-resolved reflectance. Appl. Opt. 37:6852. doi:
10.1364/ao.37.006852

Kikinis, R., Pieper, S. D., and Vosburgh, K. G. (2014). “3D Slicer: A Platform for
Subject-Specific Image Analysis, Visualization, and Clinical Support,” in Intraoperative
imaging and image-guided therapy, ed. F. Jolesz (New York, NY: Springer), 277–289.
doi: 10.1007/978-1-4614-7657-3_19

Lange, F., Dunne, L., Hale, L., and Tachtsidis, I. (2019). MAESTROS: A
multiwavelength time-domain nirs system to monitor changes in oxygenation and
oxidation state of cytochrome-C-oxidase. IEEE J. Select. Top. Quantum Electron.
25:7100312. doi: 10.1109/JSTQE.2018.2833205

Lewis, C., Parulkar, S. D., Bebawy, J., Sherwani, S., and Hogue, C. W. (2018). Cerebral
neuromonitoring during cardiac surgery: A critical appraisal with an emphasis on near-
infrared spectroscopy. J. Cardiothorac. Vasc. Anesth. 32, 2313–2322. doi: 10.1053/j.jvca.
2018.03.032

Li, N. C., and Diop, M. (2022). “Analysis of Near-Infrared Spectroscopy Measures of
Cerebral Oxygen Metabolism in Infants,” in Proceedings biophotonics congress: Biomedical
optics 2022 (translational, microscopy, OCT, OTS, brain), (Washington, DC: Optica
Publishing Group), doi: 10.1364/TRANSLATIONAL.2022.JM3A.60

Li, Z., Park, B. K., Liu, W., Zhang, J., Reed, M. P., Rupp, J. D., et al. (2015). A
statistical skull geometry model for children 0-3 years old. PLoS One 10:e0127322. doi:
10.1371/JOURNAL.PONE.0127322

Liebert, A., Wabnitz, H., Grosenick, D., Möller, M., Macdonald, R., and
Rinneberg, H. (2003). Evaluation of optical properties of highly scattering
media by moments of distributions of times of flight of photons. Appl. Opt. 42:
5785. doi: 10.1364/ao.42.005785

Luttkus, A., Fengler, T. W., Friedmann, W., and Dudenhausen, J. W. (1995).
Continuous monitoring of fetal oxygen saturation by pulse oximetry. Obst. Gynecol. 85,
183–186. doi: 10.1016/0029-7844(94)00353-F

Milej, D., Shahid, M., Abdalmalak, A., Rajaram, A., Diop, M., and Lawrence, K. S.
(2020b). Characterizing dynamic cerebral vascular reactivity using a hybrid system
combining time-resolved near-infrared and diffuse correlation spectroscopy. Biomed.
Opt. Express 11, 4571–4585. doi: 10.1364/BOE.392113

Milej, D., Abdalmalak, A., Rajaram, A., and Lawrence, K. (2020a). Direct assessment
of extracerebral signal contamination on optical measurements of cerebral blood
flow, oxygenation, and metabolism. Neurophotonics 7:045002. doi: 10.1117/1.nph.7.4.04
5002

Murkin, J. M. (2011). Cerebral oximetry: Monitoring the brain as the index organ.
Anesthesiology 114, 12–13. doi: 10.1097/ALN.0b013e3181fef5d2

Oros-Peusquens, A. M., Loução, R., Abbas, Z., Gras, V., Zimmermann, M., and
Shah, N. J. (2019). A single-scan, rapid whole-brain protocol for quantitative water
content mapping with neurobiological implications. Front. Neurol. 10:1333. doi: 10.3389/
FNEUR.2019.01333

Patterson, M. S., Chance, B., and Wilson, B. C. (1989). Time resolved reflectance and
transmittance for the noninvasive measurement of tissue optical properties. Appl. Opt.
28:2331. doi: 10.1364/ao.28.002331

Rajaram, A., Bale, G., Kewin, M., Morrison, L. B., Tachtsidis, I., Lawrence, K.,
et al. (2018). Simultaneous monitoring of cerebral perfusion and cytochrome
c oxidase by combining broadband near-infrared spectroscopy and diffuse
correlation spectroscopy. Biomed. Opt. Express 9:2588. doi: 10.1364/boe.9.00
2588

Rajaram, A., Milej, D., Suwalski, M., Kebaya, L., Kewin, M., Yip, L., et al. (2022).
Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm
infants during the first 3 days after birth. Sci. Rep. 12:181. doi: 10.1038/s41598-021-
03830-7

Scholkmann, F., Kleiser, S., Metz, A., Zimmermann, R., Mata, P. J., Wolf, U., et al.
(2014). A review on continuous wave functional near-infrared spectroscopy and imaging
instrumentation and methodology. Neuroimage 85, 6–27. doi: 10.1016/j.neuroimage.
2013.05.004

Selb, J., Ogden, T. M., Dubb, J., Fang, Q., and Boas, D. A. (2014b). Comparison of
a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-
infrared spectroscopy data of the adult head. J. Biomed. Opt. 19:016010. doi: 10.1117/1.
JBO.19.1.016010

Selb, J., Boas, D. A., Chan, S. T., Evans, K. C., Buckley, E. M., and Carp,
S. A. (2014a). Sensitivity of near-infrared spectroscopy and diffuse correlation
spectroscopy to brain hemodynamics: Simulations and experimental findings
during hypercapnia. Neurophotonics 1:015005. doi: 10.1117/1.NPh.1.1.01
5005

Selb, J., Stott, J. J., Franceschini, M. A., Sorensen, A. G., and Boas, D. A. (2005).
Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated
optical system: Analytical model and experimental validation. J. Biomed. Opt. 10:011013.
doi: 10.1117/1.1852553

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1020151
https://doi.org/10.1016/j.neulet.2019.134607
https://doi.org/10.1016/j.neulet.2019.134607
https://doi.org/10.3389/FNINS.2020.00105
https://doi.org/10.1364/boe.7.003826
https://doi.org/10.1177/0271678X19846657
https://doi.org/10.1177/0271678X19846657
https://doi.org/10.1203/00006450-200205000-00004
https://doi.org/10.1073/pnas.85.14.4971
https://doi.org/10.1364/OE.14.001888
https://doi.org/10.1364/OE.14.001888
https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://doi.org/10.1016/B978-0-12-809915-5.00007-3
https://doi.org/10.1117/12.2004850
https://doi.org/10.1117/12.2004850
https://doi.org/10.1117/1.3488626
https://doi.org/10.1117/1.3488626
https://doi.org/10.1117/1.JBO.19.5.057007
https://doi.org/10.1117/1.3425884
https://doi.org/10.1117/1.3425884
https://doi.org/10.1117/1.3449579
https://doi.org/10.1364/oe.17.020178
https://doi.org/10.1364/oe.17.020178
https://doi.org/10.1038/s41598-017-15995-1
https://doi.org/10.1088/0031-9155/38/4/002
https://doi.org/10.1117/1.2982524
https://doi.org/10.1364/boe.9.002974
https://doi.org/10.1364/boe.9.002974
https://doi.org/10.1532/HSF98.20041062
https://doi.org/10.1532/HSF98.20041062
https://doi.org/10.1364/boe.433427
https://doi.org/10.1088/0031-9155/58/11/R37
https://doi.org/10.1159/000354923
https://doi.org/10.1364/ao.37.006852
https://doi.org/10.1364/ao.37.006852
https://doi.org/10.1007/978-1-4614-7657-3_19
https://doi.org/10.1109/JSTQE.2018.2833205
https://doi.org/10.1053/j.jvca.2018.03.032
https://doi.org/10.1053/j.jvca.2018.03.032
https://doi.org/10.1364/TRANSLATIONAL.2022.JM3A.60
https://doi.org/10.1371/JOURNAL.PONE.0127322
https://doi.org/10.1371/JOURNAL.PONE.0127322
https://doi.org/10.1364/ao.42.005785
https://doi.org/10.1016/0029-7844(94)00353-F
https://doi.org/10.1364/BOE.392113
https://doi.org/10.1117/1.nph.7.4.045002
https://doi.org/10.1117/1.nph.7.4.045002
https://doi.org/10.1097/ALN.0b013e3181fef5d2
https://doi.org/10.3389/FNEUR.2019.01333
https://doi.org/10.3389/FNEUR.2019.01333
https://doi.org/10.1364/ao.28.002331
https://doi.org/10.1364/boe.9.002588
https://doi.org/10.1364/boe.9.002588
https://doi.org/10.1038/s41598-021-03830-7
https://doi.org/10.1038/s41598-021-03830-7
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1117/1.JBO.19.1.016010
https://doi.org/10.1117/1.JBO.19.1.016010
https://doi.org/10.1117/1.NPh.1.1.015005
https://doi.org/10.1117/1.NPh.1.1.015005
https://doi.org/10.1117/1.1852553
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1020151 February 11, 2023 Time: 14:31 # 12

Cohen et al. 10.3389/fnins.2023.1020151

Sharma, S. D., Park, E., Purcell, P. L., Gordon, K. A., Papsin, B. C., and Cushing,
S. L. (2020). Age-related variability in pediatric scalp thickness: Implications for auditory
prostheses. Int. J. Pediatr. Otorhinolaryngol. 130:109853. doi: 10.1016/J.IJPORL.2019.
109853

Steinbrink, J., Fischer, T., Kuppe, H., Hetzer, R., Uludag, K., Obrig, H., et al. (2006).
Relevance of depth resolution for cerebral blood flow monitoring by near-infrared
spectroscopic bolus tracking during cardiopulmonary bypass. J. Thoracic Cardiovasc.
Surg. 132, 1172–1178. doi: 10.1016/j.jtcvs.2006.05.065

Wojtkiewicz, S., Sawosz, P., Milej, D., Treszczanowicz, J., and Liebert, A.
(2014). “Development of a Multidistance Continuous Wave Near-Infrared
Spectroscopy Device with Frequency Coding,” in Biomedical optics 2014 Paper
BM3A.24, (Washington, DC: The Optical Society), doi: 10.1364/biomed.2014.
bm3a.24

Yan, S., and Fang, Q. (2020). Hybrid mesh and voxel based Monte Carlo algorithm for
accurate and efficient photon transport modeling in complex bio-tissues. Biomed. Opt.
Express 11:6262. doi: 10.1364/boe.409468

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1020151
https://doi.org/10.1016/J.IJPORL.2019.109853
https://doi.org/10.1016/J.IJPORL.2019.109853
https://doi.org/10.1016/j.jtcvs.2006.05.065
https://doi.org/10.1364/biomed.2014.bm3a.24
https://doi.org/10.1364/biomed.2014.bm3a.24
https://doi.org/10.1364/boe.409468
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Fast estimation of adult cerebral blood content and oxygenation with hyperspectral time-resolved near-infrared spectroscopy
	1. Introduction
	2. Materials and methods
	2.1. Phase 1: Estimation of baseline chromophore concentrations
	2.1.1. Step 1: Rough estimation of the concentrations of oxyhemoglobin and deoxyhemoglobin in the ECL
	2.1.2. Step 2: Rough estimation of the concentration of oxyhemoglobin and deoxyhemoglobin in the brain
	2.1.3. Step 3: Estimation of the reduced scattering coefficient
	2.1.4. Step 4: Refining the extracerebral concentrations
	2.1.5. Step 5: Refining the cerebral concentrations

	2.2. Phase 2: Rapid estimation of cerebral blood content and oxygenation
	2.2.1. Step 6: Estimation of the extracerebral contribution
	2.2.2. Step 7: Rapid estimation of deep tissue chromophore concentration

	2.3. Validation

	3. Results
	3.1. Phase 1: Baseline chromophore concentrations
	3.2. Phase 2: Rapid estimation of cerebral chromophore concentration

	4. Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


