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Introduction: Electromyogram-based pattern recognition (EMG-PR) has been widely

considered an essentially intuitive control method for multifunctional upper limb

prostheses. A crucial aspect of the scheme is the EMG signal recording duration (SRD)

from which requisite motor tasks are characterized per time, impacting the system’s

overall performance. For instance, lengthy SRD inevitably introduces fatigue (that

alters the muscle contraction patterns of specific limb motions) and may incur high

computational costs in building the motion intent decoder, resulting in inadequate

prosthetic control and controller delay in practical usage. Conversely, relatively

shorter SRD may lead to reduced data collection durations that, among other

advantages, allow for more convenient prosthesis recalibration protocols. Therefore,

determining the optimal SRD required to characterize limb motion intents adequately

that will aid intuitive PR-based control remains an open research question.

Method: This study systematically investigated the impact and generalizability of

varying lengths of myoelectric SRD on the characterization of multiple classes of

finger gestures. The investigation involved characterizing fifteen classes of finger

gestures performed by eight normally limb subjects using various groups of EMG

SRD including 1, 5, 10, 15, and 20 s. Two different training strategies including

Between SRD and Within-SRD were implemented across three popular machine

learning classifiers and three time-domain features to investigate the impact of SRD

on EMG-PR motion intent decoder.

Result: The between-SRD strategy results which is a reflection of the practical

scenario showed that an SRD greater than 5 s but less than or equal to 10 s (>5

and < = 10 s) would be required to achieve decent average finger gesture decoding

accuracy for all feature-classifier combinations. Notably, lengthier SRD would incur

more acquisition and implementation time and vice-versa. In inclusion, the study’s

findings provide insight and guidance into selecting appropriate SRD that would aid

inadequate characterization of multiple classes of limb motion tasks in PR-based

control schemes for multifunctional prostheses.

KEYWORDS

electromyogram (EMG), finger gestures, pattern recognition (PR), prostheses, signal
recording duration (SRD)
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1. Introduction

Upper limb loss precludes amputees from full exploration of
their environment especially in accomplishing tasks that require their
arm functions (Cordella et al., 2016; Wheaton, 2017). The varied
setbacks faced by amputees during daily life activities have spurred
the development of intelligent prosthetic limbs meant to intuitively
restore their limb functions. At the forefront of this technology
are myoelectric pattern recognition (PR) based prostheses that use
decoded motion intent from surface electromyogram (EMG) signals
for their control (Cordella et al., 2016; Vujaklija et al., 2016; Parajuli
et al., 2019). In an archetypal PR-based prosthetic control pipeline,
EMG signals of coordinated muscle activities of specific limb motion
are recorded, processed, and motor tasks are decoded via machine
learning algorithms which serve as control inputs to the device (Li
et al., 2010; Asogbon et al., 2020a; Nsugbe et al., 2021a).

A number of confounding factors that impede the clinical and
commercial relevance of PR-based prostheses in practical settings
have been well studied with solutions proposed in recent years
(Fougner et al., 2010; Lorrain et al., 2010; Tkach et al., 2010; Young
et al., 2011; He et al., 2013; Qing et al., 2021). For instance, electrode
shift (Young et al., 2011), muscle contraction force variation (Lorrain
et al., 2010; Tkach et al., 2010), abrupt alteration in limb position
(Fougner et al., 2010), and variability arising from long-term EMG
recordings (He et al., 2013), etc., are confounding factors that have
been researched with potential solutions proposed. Despite these
advances, an essential aspect that the above factors and many others
rely upon is the EMG signal recording duration (SRD) per time that
may impact the characterization of finger gestures. To the best of
the author’s knowledge, EMG SRD has not been studied to date.
For instance, when the EMG SRD is relatively lengthy, phenomena
such as muscle fatigue is inevitable and may alter the muscle
contraction patterns of specific limb motions; which may undermine
the decoding of finger movements and, by extension, degrades the
prosthesis control performance. In addition, long SRD often leads to
relatively larger volume features, and classifier training time and may
result in computational complexity and increased controller delay in
real-time usage. On the other hand, somewhat shorter SRD may lead
to reduced data collection durations that, among other advantages,
allow for more convenient prosthesis recalibration protocols. On the
other hand, signals acquired using short SRD may result in poor
motion gesture recognition if sufficient/adequate neural information
is not contained in the signal, especially if it is collected from amputee
patients.

To date, several existing studies have arbitrarily employed varied
myoelectric SRD for decoding targeted limb motions in the context
of PR-based prostheses without taking into consideration whether
or not they would yield optimal characterization of the motor tasks.
For instance, Cengiz and Demir (2020) acquired myoelectric and
gyroscopic signals of multi-class finger gestures with SRD of 5 s
and Al-Timemy et al. (2015) investigated the influence of muscle
contraction force variation on the classification performance of the
EMG-PR system using SRD in the range of 8–12 s. In addition, Li
et al. (2021) used an SRD of 4 s in a study aimed at enhancing the
motion classification accuracy of the EMG-PR system and Samuel
et al. (2018b) utilized an SRD of 5 s in a study aimed at improving the
EMG-based features for prostheses control. While we acknowledge
that several efforts have been made toward tackling pertinent issues
in the field of PR-based prostheses technology (Cordella et al., 2016;

Bates et al., 2020; Nsugbe et al., 2021b), the investigation of
the optimal myoelectric SRD remains an open research question.
Hence, it is essentially necessary to investigate and determine the
optimal myoelectric SRD that would aid adequate characterization
of amputees’ limb motion intents and by extension the intuitive
control of multifunctional prostheses. Also, the investigation should
provide researchers and developers in the field with proper insight
and guidance on the selection of appropriate SRD when conducting
research or developing a requisite solution.

Therefore, this study systematically examined the impact of
varied lengths of myoelectric SRD on the characterization of
motor intents associated with multiple classes of fine-finger gestures
performed by recruited subjects. More specifically, the experiments
involved eight normally limb subjects (including six males and two
females with no muscular or neurological disorder history), and each
subject elicited fifteen classes (single and combined classes) of finger
gestures under varying durations of EMG-SRD including 1, 5, 10, 15,
and 20 s. Afterward, each SRD was pre-processed, notable feature
extraction methods were applied for feature vector construction, and
the feature vector was employed to build three distinct machine
learning classification algorithms for the decoding of the finger
gestures based on Within-SRD and Between-SRD strategies, which
are described in the methodology section. Benchmark performance
metrics were applied to evaluate the gesture pattern characterization
and their corresponding decoding performance for each SRD.

2. Materials and methods

2.1. Data collection and processing

The myoelectric dataset utilized in this study was acquired from
an online EMG datasets repository (OneDrive). The signal was
collected using BagnoliTM EMG Acquisition System (manufactured
by Delsys Inc.). The equipment setup and electrode placement
scheme is shown in Figures 1A, B. Prior to the data collection
process, a total of eight normally limb subjects including six males
and two females with no history of muscular or neurological
disorders were recruited and informed about the study’s objectives
(Khushaba and Kodagoda, 2012). Before their inclusion in the
experiment, written informed consent was obtained from each
subject, indicating their willingness to participate in the study.
Afterward, eight EMG signal sensors were placed over the forearm
muscles of each subject and a dual-slot adhesive skin interface was
applied to firmly fix the electrodes to the skin to prevent undesirable
displacement that may affect the quality of the signals. Besides, a
reference electrode was placed on the wrist of each of the participants
as shown in Figure 1B.

For the data recording task, the participants were instructed to sit
down on a chair in a comfortable manner with their arms supported
and fixed at a specific position (to ensure consistent arm position
throughout the experiment). And fifteen classes of finger gestures
were elicited as shown in Table 1 where each motion class lasted for a
period of 20 s and was followed by a rest period of 5 s. Meanwhile,
EMG recordings of three experimental trials were utilized in this
study (Khushaba and Kodagoda, 2012).

The recorded EMG signals were amplified using a Delsys Bagnoli-
8 amplifier to a total gain of 1000 while the signal was sampled at
the rate of 4000 Hz. A bandpass filter between 20 and 450 Hz and a
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FIGURE 1

(A) EMG data acquisition system (Delsys Inc.) setup; (B) electrodes placements on the anterior and posterior on the participant’s right arm (Khushaba and
Kodagoda, 2012).

notch filter was applied to the signal to process and eliminate power
line interference.

2.2. Feature extraction

To investigate the impact of SRD on the characterization of the
multiple classes of figure motions, different lengths of EMG signal
recordings (1, 5, 10, 15, and 20 s), as conceptualized in Figure 2
were examined. Each SRD data was analyzed by partitioning each
motion duration into a series of analysis windows with a length
of 150 and 100 ms increments via an overlapping segmentation
scheme, which has been commonly applied in the field of EMG

TABLE 1 Fifteen classes of finger motions with their respective codes.

Motion
group

SN Motion classes Code

Flexion of each
individual
fingers

1 Thumb T

2 Index I

3 Middle M

4 Ring R

5 Little L

Combined
fingers motions

6 Thumb-index TI

7 Thumb-middle TM

8 Thumb-ring TR

9 Thumb-little TL

10 Hand close HC

11 Index-middle IM

12 Middle-ring MR

13 Ring-little RL

14 Index-middle-ring IMR

15 Middle-ring-little MRL

signals processing (Englehart and Hudgins, 2003; Menon et al., 2011;
Asogbon et al., 2020b). The segmentation process is often carried
out to enhance the performance and response time of the PR-based
myoelectric control scheme in practical settings (Asogbon et al.,
2020b).

From each analysis window segment of the EMG signal, three
different features whose mathematical expressions are presented in
(Eqs 1–3) were extracted individually to build a machine learning
classifier for decoding the different classes of finger motions. It
should be noted that the feature extraction methods have been
widely applied for characterizing multiple classes of targeted limb
motions and they include the Hudgins’ time-domain feature set
(mean absolute value: MAV, number of zero crossings: ZC, waveform
length: WL, and number of slope sign changes: SSC), Novel Time-
Domain Feature (NTDF, proposed by our research team), and the
Root Mean Square (RMS) (Hudgins et al., 1993; Englehart and
Hudgins, 2003; Samuel et al., 2018a; Asogbon et al., 2020a,b).

MAV =
1
k

k∑
n=1

|xn|

WL =
k − 1∑
n=1

[(|xn+1 − xn|)] (1)

ZC =
k − 1∑
n=2

[(xn − xn − 1) ∗ (xn − xn+1)]

SSC =
k − 1∑
n=1

[
sgn (xn ∗ xn+1) ∩ (xn − xn+1) ≥ Thr.

]
Where xnis the nth sample in a given segment of the EMG

recordings of length k. Briefly, the MAV represents an estimate of
the mean absolute value of x in a given segment of the signal which
is of length k, WL provides information regarding the wavelength
characteristics in a given segment of the signal, ZC represents a
frequency measure of the number of times the waveform crosses
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FIGURE 2

Conceptualized diagram of varying signal recording lengths considered in the study for three trials.

zero (baseline), and SSC denotes an alternative but complementary
measure of the number of times the slope changes sign (Hudgins
et al., 1993; Englehart and Hudgins, 2003). And an aggregation of
these descriptors forms the TD4 feature set that was adopted in the
subsequent section of the manuscript (Hudgins et al., 1993; Englehart
and Hudgins, 2003). Meanwhile, the Thr. (with a value of 0.01)
represent the threshold upon which the SCC value is computed.

SIS =
N − 1∑
n=0

x[n]2

normRSD1=
1
N

N − 1∑
n=0

dx1[n]2

normRSD2 =
1
N

N − 1∑
n=0

dx2[n]2

normLogDet. = norm(e
1
N
∑N − 1

n=0 log(x[n])) (2)

mMSR =
1
k

k∑
n=1

(xn)
1/2

mASM =

∣∣∣∣∣
∑k

n=1 (xn)
exp

k

∣∣∣∣∣
exp =

{
0.50, if

(
n ≥ 0.25 ∗ k && n ≤ 0.75

)
0.75, otherwise

Where SIS the denotes the simple integral square which captures
the energy content in a segment of EMG signal (x[n]/xn) and N
denote the total length of the signal in a segment, the normRSD1
and normRSD2 represent the normalized form of the first and

second order of the root squared descriptors, which captures the
spectral information in a given EMG signal segment, and the mMSR
and mASM descriptors capture an estimate of the power of the
signal per segment (Asogbon et al., 2020a). And an aggregation of
these descriptors forms the NTDF feature set that was employed
subsequently (Asogbon et al., 2020a).

RMS=

√√√√1
k

k∑
n=1

xn2 (3)

Where RMS denote the square root of the average power of EMG
recordings (xn) in a given segment of the signal whose length is
denoted by k.

After each of the above-mentioned features has been extracted,
three widely utilized machine learning classification algorithms
with simple and intuitive structure, high accuracy, and fast
computation characteristics including the Linear Discriminant
Analysis (LDA), K-Nearest Neighbor (KNN), and Random Forest
classifiers (Boughorbel et al., 2017; Asogbon et al., 2021) were applied
to classify the motion classes for the considered SRD groups. Thus,
we examined the impact of varied SRD on finger movement pattern
characterization using a fixed set of features and machine learning
classifiers using two approaches described below.

2.3. Data analysis and performance
evaluation

The effect of SRD on EMG-PR motion intent decoding was
systematically investigated based on two varied types of training and
testing strategies, namely Within-SRD Group (which is represents
the commonly adopted approach) and Between-SRD Approach
described as follows:
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(a). Within-SRD Group Scenario: In this approach, the EMG-PR
scheme’s performance was investigated when the training and
testing feature vectors were constructed from EMG recordings
of the same SRD group. Specifically, in this approach, the
requisite feature vector is constructed from the first two trials
(Trial 1 + Trial 2) of the recordings (designated as the training
set) while the corresponding test set feature vector is obtained
from the third trial (Trial 3).

(b). Between-SRD Group Scenario: In this approach, the EMG-PR
scheme’s performance was examined when the feature vector
constructed from a specific EMG SRD group (say 1 s) is used
for training the classifier while the feature vector obtained from
all the SRD groups (1, 5, 10, 15, and 20 s) is used for testing
the classifier’s decoding performance. In addition, it should be
noted that the training set is constructed from all the trials while
the test set is also obtained based on all the trials.

For each of the approaches described above, evaluation metrics
including classification accuracy (CA) and Mathew Correlation
Coefficient (MCC) were considered and their descriptions are given
as follows. The CA, a commonly used evaluation metric that
represents the number of correctly classified samples over the sum
of all samples [Eq. (4)] was utilized. The MCC metric which has
been widely applied in multiclass problems was also adopted for
evaluation in the study [Eqs (5, 6)]. MCC is considered to be a
highly informative metric for assessing classification tasks since it is
considered to be a balanced ratio amongst the four confusion matrix
parameters (false positives, true positives, true negatives, and false
negatives) (Liarokapis et al., 2014; Asogbon et al., 2020a).

CA=
Number of correctly classified samples

Total number of testing samples
∗100% (4)

MCCj =
(TP ∗ TN)− (FP ∗ FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

MCCave=

∑n
j=1 MCCj

nclass
(6)

Where j = 1,2,3. . .. . .number of classes (n, nclass), TP is the count
of true positives, TN represents the count of true negatives, FP is the
number of false positives, and FN is the number of false negatives as
obtained from a confusion matrix. Meanwhile, the MCC value was
computed using the macro-averaging technique.

Furthermore, the statistical significance test between the SRD
groups was performed using the Friedman test with a confidence level
set to p < 0.05. The statistical analysis was carried out in MATLAB.

3. Results

3.1. Within-SRD group scenario

3.1.1. Performance evaluation of varying signal
length on EMG-PR classifier across finger gesture
tasks

Utilizing different classifiers and feature sets, Figure 3 presents
the average classification accuracies across the fifteen-finger motion
tasks across eight subjects. The aim here is to examine the impact
of individual SRD (1, 5, 10, 15, and 20 s) on the classification

performance EMG-PR system. It can be observed from the result
presented in Figure 3 that the average classification accuracy varies
across the features and classifiers. For instance, 5 s SRD achieved the
highest CAs across subjects and finger gestures with an increment
ranging from 0.01 to 3.86% for the LDA classifier when compared
with the performance of the other SRD groups. Similarly, some worth
different phenomenon was observed when KNN and RF classifiers
were employed. The 10 s (for RF) and 20 s (for KNN) outperformed
other SRD groups with an increment in the classification accuracies
ranging from 0.22 to 8.26% and 0.33 to 7.99%, though with an
insignificant difference with the other SRD groups except for 1 s
SRD. In terms of feature performance, the NTDF achieved the highest
average accuracies while RMS has the lowest accuracies for all the
classifiers.

Overall, the combination of LDA + NTDF recorded the highest
average classification accuracy rate compared to KNN, RF, and other
features. Specifically, the 1 s SRD can be observed to be the least
accuracy while the other SRDs achieved higher but similar accuracies
compared to 1 s SRD for the LDA-NTDF combination. Analyzing the
effect of the signal recording length based on classification accuracies
reported in Figure 4 for all the classifiers and features, it can be seen
that the classification accuracy of 1 s SRD is significantly (p > 0.05)
lower than the other SRDs while 5 s has the highest accuracy though
with almost the same decoding performance with 10, 15 and 20 s
SRD (p > 0.05). It is worth noting that in this study, an increase in
SRD incurs increased training and testing time, which may introduce
some sort of delay in the performance of the prostheses in practical
deployment. In other words, the longer the recording duration the
higher the computational cost and vice-versa. One possible reason
for the poor performance of the 1 s SRD could be due to a lack of
adequate neural information in the signal length. This result indicates
that an appropriate selection of crucial parameters/methods (such
as signal recording length and feature-classifier combination) would
greatly impact the overall performance of the EMG-PR-based motion
intent decoding strategy employed in the control of multifunctional
prostheses. Across all the classifiers, statistical analyses via Friedman’s
test show no significant difference in decoding accuracies for the SRD
groups for NTDF: p = 0.11 and TD4: p = 0.10, though with substantial
increment between 1 s and the other SRDs. Meanwhile, there is a
significant difference for RMS: p = 0.043.

3.2. Between-SRD group scenario

3.2.1. Effect of signal recording duration on
EMG-PR classification performance

The Within-SRD Scenario has been used in many existing works;
however, it may be difficult to utilize this approach to select the
optimal SRD for motion intent characterization because it is not
practicable in real-life situations. Hence to determine the optimal
SRD, we employed the Between-SRD Approach to systematically
investigate the generalizability of each SRD group for movement
intent decoding. In this scenario, the machine learning classifiers
were trained with data concatenated across all the trials for a
specific SRD (say, 1 s) and tested using data from all trials of
all the SRD groups (1, 5, 10, 15, and 20 s) and the obtained
results is shown in Figures 4A–C. This Figure depicts the average
CA across the 15 classes of finger gesture and participants, and it
could be seen that the CA decreased for all SRDs, features, and
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FIGURE 3

Average classification accuracies of the different groups of signal recording length based on the Within-SRD Group Scenario using (A) LDA, (B) KNN, and
(C) RF for NTDF, TD4, and RMS features across finger gestures and participants.

Features
NTDF TD4 RMS

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

30

40

50

60

1s
5s
10s
15s
20s

Features
NTDF TD4 RMS

Features
NTDF TD4 RMS

 LDA  KNN  RF

A B C

FIGURE 4

Average classification performance across finger gestures and participants based on Between-SRD Approach using the NTDF, TD4, and RMS for (A) LDA,
(B) KNN, and (C) RF when each of the SRD was used as a training data and tested with all SRD dataset.

classifiers compared to the result presented for within-SRD scenario
in Figure 3 (where the training and testing data are from the same
SRD). Besides, for the Between-SRD scenario, the highest decoding
performance was achieved by 15 s, followed by 10 s SRD (though
with insignificant difference), while 1 and 20 s yielded the lowest
CA for all features-classifier combinations. Examining the classifiers
performance further, RF (Figure 4C) outperformed LDA (Figure 4A)
and KNN (Figure 4B) for all the SRDs and features except for 1 s
SRD for the combination of LDA + NTDF. For instance, for the most
performing feature (NTDF) across motion classes and participants,
RF achieved an increment of up to 7.09 and 4.71% compared to
LDA and KNN, respectively, for 10 s SRD. In a similar manner,
RF achieve an increment of 8.82 and 5.79% compared to LDA and
KNN, correspondingly for 15 s SRD. Besides, across classifiers, the
NTDF feature outperformed the other features for all the SRDs.
Amid the classifiers, there are statistical significances among the SRDs
for NTDF (p = 0.021), TD4 (p = 0.017), and RMS (p = 0.017).
Similarly, significant differences occurred among the SRDs across
features. From the statistical significance result, 10 and 15 s SRD

achieved similar performance with no substantial difference when
compared with each other. Furthermore, performance comparison
between the results reported in Figure 4 for each SRD reveals that the
Between-SRD Approach would significantly influence the decoding
performance of the EMG-PR system.

It is worth mentioning that observations during the EMG-
PR scheme’s implementation revealed that the computational cost
generally increase with an increase in SRD, and this may necessitate
us to consider an SRD that is greater than 5 s but less than or equal to
10 s (>5 s and < = 10 s).

3.2.2. Evaluating signal duration effect based on
MCC metric

The effect of the different groups of SRD on the characterization
of the motor intent for the Between-SRD strategy was further
examined using the MCC metric defined in section “2.3. Data analysis
and performance evaluation” of the paper. Notably, the MCC is a
highly informative evaluation method for estimating classification
tasks mainly due to its ability to balance the ratio among the four
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confusion matrix parameters effectively. Thus, the corresponding
MCC values for each group of signal length were computed from their
respective confusion matrices.

Using the same number of classifiers and features, the obtained
average MCC value across all the finger motion tasks and subjects is
shown in Figures 5A–D using horizontal dot plots. Inspecting each
of the classifier-feature combinations (Figures 5A–C) for all the SRD
groups, NTDF yielded the highest MCC values for LDA and similar
values with TD4 for KNN and RF. Meanwhile, the RMS feature has
the lowest MCC values for the different groups of signal recording
lengths investigated.

Observing the performance of the SRDs from Figures 5A–C, an
overlap of symbols could be seen for 5, 10, and 15 s for LDA, and 10
and 15 s symbols overlap for KNN and RF, respectively, indicating
similar MCC values. For all the classifiers and features, 1 s achieved
the lowest MCC value, followed by 20 s, while 10 and 15 s SRD
obtained the highest MCC values, indicating consistency with the
CA results described in section “3.2.1. Decoding performance for
between-SRD scenario.” Compared to other classifiers, RF recorded
the best values for RMS, TD4, and NTDF features. A similar
performance trend of the classifiers and features for the SRD groups
could be observed in the result presented in Figures 4A–C (see
section “3.2.1. Decoding performance for between-SRD scenario”).
And Figure 5D depicts classifier-wise computation of the mean
MCC values across all features, motion tasks, and subjects. It can
be seen that the RF classifier achieved the best MCC values of 0.36,
0.60, 0.65, 0.67, and 0.52 for 1, 5, 10, 15, and 20 s signal recording
lengths, respectively. Furthermore, statistical analyses via Friedman’s
test show a significant difference (p = 0.007) in decoding accuracies
across SRDs and features for LDA, KNN, and RF classifiers. Also,
statistical significance occurs between the SRD groups (0.017) across
classifiers.

3.2.3. Effect of signal recording length on
individual finger gesture decoding

In this section, the recognition rate of each class of finger motion
for individual signal recording length was examined across subjects
using the combination of the NTDF feature and the RF classifier
based on their performance in the Between-SRD. Utilizing line
and scatter plots with error bars, the obtained result is shown in
Figures 6A–F. It should be noted that the standard deviation across
the subjects is shown with error bars in the plot. From the results, it
can be seen that there are variations in the error bars for all finger
gestures across the SRDs (1, 5, 10, 15, and 20 s). Specifically, in all
the SRD groups, the thumb-index class (denoted by TI) recorded the
highest decoding accuracies of 37.44, 60.51, 69.28, 72.36, and 60.68%
for 1, 5, 10, 15, and 20 s, respectively. Also, for all the SRDs, this
gesture (TI) has the highest standard error compared to other finger
gestures, signifying performance variation across the participants.

On the other hand, the thumb-little (TL) finger gesture recorded
the least performance for 1 s, class ring (I) for 5 s, hand close (HC) for
10 s, and thumb middle (TM) for 15 and 20 s SRD.

Comprehensively, the performance comparison between the
groups revealed that the 15 s SRD group achieved the highest average
recognition followed by the 10 s SRD group across all the classes
of finger gestures compared to other SRDs. Meanwhile, for a clear
comparison of the characterization of the motor intent across the
groups, Figure 6F depicts the results obtained for all the groups of
signal recording length. Careful analyses revealed that most classes
achieved the best performance at 10 and 15 s signal recording length

with most classes’ symbols overlapping with one another. This result
reveals that some finger gestures’ decoding performance may depend
on relatively longer SRDs while 1 s SRD can be seen to achieve the
least decoding performance followed by 20 s SRD.

4. Discussion

Pattern recognition (PR)-based myoelectric system has been
widely studied primarily because of its capability to provide control
schemes that could aid seamless realization of multiple degrees of
freedom functions in upper limb prosthetic technology (Cordella
et al., 2016; Kuiken et al., 2016; Samuel et al., 2019; Mereu et al., 2021).
In an ideal PR-based scheme, it is anticipated that repeatable muscle
contraction patterns should be generated for specific limb motion
tasks across trials from which feature vector of requisite motor intent
is constructed and applied to build machine learning algorithms that
decipher the motion intentions of amputees (Li et al., 2010; Asogbon
et al., 2020a; Nsugbe et al., 2021a). Besides, various factors could
affect the repeatability of muscle activation patterns even for the same
limb motion task, which may dampen proper characterization of
motion intent and its decoding. One of such factor that has rarely
been investigated to date is the EMG-SRD employed to build the
machine learning classifier meant to decode the motion task. In
an attempt to gain proper insight into how EMG-SRD dynamically
impacts the characterization of multiple patterns of elicited limb
motion tasks, this study systematically investigated different groups
of SRD (1, 5, 10, 15, and 20 s) based on the Within-SRD and Between-
SRD strategies using the dataset of eight able-bodied subjects who
performed fifteen classes of simple and combined finger gestures.
The outcome of the investigation showed that decoding performance
across subjects and finger gestures would vary depending on the
EMG SRD employed regardless of the feature extraction methods and
machine learning classification algorithms utilized.

The Within-SRD has been one of the popularly utilized
methods for gesture recognition/classification in myoelectric- PR
based systems. Through this method, several studies have reported
satisfactory or high classification accuracy for either forearm or finger
motion tasks using an average of ≤ 6 s SRD. Unfortunately, the high
accuracies reported in all these studies have not translated into robust
or intuitive prostheses control schemes that could be widely adopted
in clinical and commercial settings. One possible reason may be that
the commonly adopted Within-SRD approach in the existing works
may not reflect what is obtainable as it relates to practical deployment
of the prostheses, which led us to investigate the Between-SRD
scenario in the current study. Comparing the performance of the
Within-SRD (Figures 3A–C) and Between-SRD (Figures 4A–C), it is
obvious that the selection of optimal EMG-SRD should be based on
using a more realistic/practical approach (such as the Between-SRD)
that will accommodate changes in real-life situations rather than the
Within-SRD scenario that has been widely adopted.

Specifically, in the Within-SRD scenario (Figure 3), the average
classification accuracies for motion intent decoding were mostly
observed to increase with a corresponding increase in EMG signal
length for all the features except for a few instances, where the
performance either remains approximately the same or declines.
Besides, this phenomenon was less obvious when the same set
of features were employed on KNN and RF classifiers except for
the NTDF feature. Unlike the RMS and TD4 features, the NTDF
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FIGURE 5

Average MCC values of the motion duration groups across finger gestures and participants based on Between-SRD Strategy using NTDF, TD4, and RMS
for (A) LDA, (B) KNN, and (C) RF, (D) average MCC value using all the features, for LDA, KNN, and RF classifiers.

feature recorded relatively higher average classification accuracies
especially for the LDA and KNN classifiers, demonstrating its
consistency and stability capabilities. Examining the Between-SRD
scenario results (Figures 4A–C), a relatively similar performance
trend is seeable with the Within-SRD approach for the features
(NTDF, TD4, and RMS) and Classifiers (RF, KNN, LDA) except where
LDA + NTDF achieved better performance than KNN + NTDF and
RF + NTDF (Figures 3A–C). However, for these two scenarios, this
trend is different for the SRD groups suggesting that EMG-SRD
will influence the control performance of the prosthesis system in
practical applications. In Figures 4A–C, the CA increased as the EMG
SRD increased and dropped significantly after 15 s for all the features
and classifiers. One potential explanation for the poor performance of
1 s SRD could be that the SRD is too short, and the contained motor
information in this short signal recording cannot adequately provide
motor information for characterization of the finger gestures. And
performance degradation in 20 s SRD could result from fatigue or
lack of generalizability of relatively lengthy EMG signal recordings.

In addition to the classification accuracy metric, we investigated
the impact of signal recording length on the characterization of the
finger motions using the MCC metric and found that the different
groups of signal length would result in the varied characterization
of the corresponding classes of finger motions (Figures 5A–D).
Precisely similar to the result in Figures 4A–C for the Between-SRD

scenario, the MCC values increase with a corresponding increase
from 1 to 15 s SRD and declined for 20 s SRD. From the plots
in Figure 5, overlaps were noticeable for the MCC values of 10
and 15 s SRD, that achieved the best MCC values. Meanwhile,
the 1 and 20 s SRD recorded the lowest values. And these results
further substantiate the Between-SRD decoding accuracies presented
in Figures 4A–C.

To understand how the SRD would impact the characterization
of the individual class of finger gesture based on the Between-SRD
strategy, we analyzed the fifteen classes of gestures performed across
subjects for each group of SRD and observed that signal length would
differently influence the classification of the gestures (Figure 6). For
all the SRD groups, the thumb-index (TI) finger gesture has the
highest accuracy, though with high error bars. From the further
examination, the high error bars was because of high-performance
variation among the subjects. For instance, participants 5, 6, and
7 recorded higher accuracies for all the SRDs except for 1 and 5 s
SRD where participant 5’s performance is like the others. Overall, the
decoding accuracies for most finger gestures were higher for 10 and
15 s SRD, with most classes CA overlapping each other. Again, the
performance of the SRD groups corroborates our earlier analyses.

Generally, for all the metrics considered in this study for
the Between-SRD scenario, the 15 s SRD achieved the highest
performance, followed by 10 s for the combination of RF + NTDF.
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FIGURE 6

Average decoding performance across subjects for individual finger gesture using the combination of NTDF feature and LDA classifier for (A) 1 s, (B) 5 s,
(C) 10 s, (D) 15 s, and (E) 20 s, (F) multiple splines curve lines and scatter plot showing performance comparison among the motion classes.

Nevertheless, it is noteworthy to state that the performance difference
in these two SRD groups (10 and 15 s) is not statistically significant
(p > 0.05), almost the same or slightly different (<1–2% for CA
and MCC metrics), and also increased SRDs would lead to increase
computational cost. Therefore, we would suggest a signal recording
length of greater than 5 s but less than or equal to 10 s (>5 and
≤ 10 s) as being potential considering the fact that the lengthier the
EMG recordings the more processing time it may require to build the
classifier. Findings from our study suggest that the may be a safe zone
in terms of the SRD.

Finally, the main strength of this study is that it provided a
proper insight into the impact of SRD on EMG classification accuracy
using three different time domain features and machine learning
classification algorithms and how to select the optimal SRD that
would be robust in practical situations. To the authors’ knowledge,
this has not been previously investigated. Moreover, it is essential to
mention the drawbacks of this study. Firstly, the dataset was acquired

from only healthy subjects with three trials for each class of finger
gestures. Secondly, the presented experimental results were based
on offline analysis. In our future work, we hope to recruit more
healthy subjects and amputees from which a wider range of gestures
(including finger, forearm, and wrist movements) will be obtained
to further validate our hypothesis. It also worth mentioning that our
future investigations shall be done in an online setting other than the
offline analysis carried out in the current study, employing real-time
evaluation metrics to further validate our hypothesis.

5. Conclusion

Pattern recognition-based electromyogram control method for
prostheses has been highlighted and demonstrated as a potential
control strategy that can aid the realization of multiple degrees of
freedom prosthetic functions in a dexterous manner. Besides, an

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1018037
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1018037 February 16, 2023 Time: 15:57 # 10

Asogbon et al. 10.3389/fnins.2023.1018037

important aspect of the framework that has rarely been investigated
is the myoelectric SRD upon which multiple classes of limb motion
tasks are characterized. Thus, this study systematically investigated
the impact of varying EMG-SRD on the characterization of motor
intents associated with multiple classes of finger gestures. The
investigation involved characterizing fifteen classes of finger gestures
performed by eight normally limb subjects under varying lengths
of EMG-SRD (1, 5, 10, 15, and 20 s). Thereafter, each group
of recordings was pre-processed followed by the extraction of
different feature sets, and machine learning classification algorithms
were employed for decoding the corresponding gestures based on
two strategies namely Between-SRD and Within-SRD scenarios.
Comparison between these scenarios revealed that EMG-SRD would
influence the performance of motion intent decoding. In the
experimental results for Between-SRD scenario, SRDs of 10 and 15 s
yielded reasonably decent performance compared to other SRDs in
terms of movement intent decoding across finger gestures, subjects,
feature sets, and classifiers. Considering the increased computation
complexity that comes with increased SRD and the fact that no
significant/substantial improvement was seen in the performance
of 10 and 15 s SRD, the study will recommend a longer SRD (>5
and ≤ 10 s) depending on the research objective. The optimal SRD
was determined based on the Between-SRD approach because it
is more realistic/practicable compared to the Within-SRD scenario.
More importantly, determining the optimal signal length is crucial to
adequately characterize multiple classes of targeted limb motions in
the context of EMG-PR-based control for multifunctional prostheses.
In our future work, further investigations will be conducted to
validate the findings of this study.
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