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Introduction: The gold standard for identification of the epileptogenic

zone (EZ) continues to be the visual inspection of electrographic changes

around seizures’ onset by experienced electroencephalography (EEG) readers.

Development of an epileptogenic focus localization tool that can delineate

the EZ from analysis of interictal (seizure-free) periods is still an open question

of great significance for improved diagnosis (e.g., presurgical evaluation) and

treatment of epilepsy (e.g., surgical outcome).

Methods: We developed an EZ interictal localization algorithm (EZILA)

based on novel analysis of intracranial EEG (iEEG) using a univariate

periodogram-type power measure, a straight-forward ranking approach, a

robust dimensional reduction method and a clustering technique. Ten patients

with temporal and extra temporal lobe epilepsies, and matching the inclusion

criteria of having iEEG recordings at the epilepsy monitoring unit (EMU)

and being Engel Class I ≥12 months post-surgery, were recruited in this

study.

Results: In a nested k-fold cross validation statistical framework, EZILA

assigned the highest score to iEEG channels within the EZ in all patients (10/10)

during the first hour of the iEEG recordings and up to their first typical clinical

seizure in the EMU (i.e., early interictal period). To further validate EZILA’s

performance, data from two new (Engel Class I) patients were analyzed in a

double-blinded fashion; the EZILA successfully localized iEEG channels within

the EZ from interictal iEEG in both patients.

Discussion: Out of the sampled brain regions, iEEG channels in the EZ were

most frequently and maximally active in seizure-free (interictal) periods across

patients in specific narrow gamma frequency band (∼60–80 Hz), which
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we have termed focal frequency band (FFB). These findings are consistent

with the hypothesis that the EZ may interictally be regulated (controlled)

by surrounding inhibitory neurons with resonance characteristics within this

narrow gamma band.

KEYWORDS

epilepsy, epileptogenic focus, interictal localization, seizure onset zone (SOZ),
resonance, surround inhibition, spectral analysis, long-term sEEG

Introduction

At least 80 million people (1% of the population)
worldwide are afflicted by epilepsy, one-third of whom are
refractory (resistant) to antiseizure drugs (Dua et al., 2006).
For selected patients with drug-resistant (refractory) epilepsy,
surgical resection or ablation of the epileptogenic zone (EZ),
conceptualized as the brain region(s) whose obliteration or
disconnection is necessary and sufficient to achieve seizure
freedom, is an effective therapeutic option (Schmidt, 2009).
However, identifying the EZ pre-operatively is challenging
as it requires concordance between multiple imaging and
electrophysiological investigations (Mégevand and Seeck, 2018).
Only if seizure freedom is achieved after surgery, we can
conclude that the EZ was within the resected area (Rosenow
and Lüders, 2001; Jehi, 2018). Consequently, surgical success is
contingent upon accurate localization of the EZ. To this end,
the current standard of care includes electrophysiologic source
localization from seizures recorded in the Epilepsy Monitoring
Unit (EMU) (Shorvon, 2011; Nemtsas et al., 2017). This
typically is first attempted via scalp EEG (phase I evaluation).
However, in certain cases, EZ localization requires invasive
EEG recordings (phase II evaluation) via depth stereo-EEG
electrodes or subdural grids (Gelẑiniene et al., 2008). The
yield of a singular EMU evaluation is contingent upon the
recording of sufficient number of seizures in the EMU and can
be inconsistent. Furthermore, prolonged stay in the EMU not
only increases cost but also patient’s morbidity (Asano et al.,
2005; Kanchanatawan et al., 2014).

On the other hand, a growing body of evidence suggests
that the interictal (seizure free) state itself may provide
valuable complementary information about the EZ. In
previous studies, the EZ is localized by investigating interictal
epileptiform discharges (e.g. spikes) as well as non-epileptiform
abnormalities like focal slowing (Brodbeck et al., 2011; Englot
et al., 2016; Baldini et al., 2020; Conrad et al., 2020). Also,
other features of neural activity, ranging from DC shifts,
to skew (Mooij et al., 2020), and kurtosis (Akiyama et al.,
2012) of signals in pre-defined frequency bands, to high
frequency oscillations (HFOs), have been used for localization
of the EZ (Modur et al., 2012; Geertsema et al., 2017; Hyde

et al., 2019; Thomschewski et al., 2019; Xiang et al., 2020;
Stovall et al., 2021). However, it is unclear to what extent the
inclusion of interictal epileptiform or other abnormal activity
in specific frequency bands can affect the EZ localization’s
accuracy. Indeed, in most studies, such feature selection
for mapping the EZ is made a priori. Herein, we overcome
these parameter selection biases by implementing a big-data
analytical approach using multichannel (median of 170 active
intracranial EEG [iEEG] channels), long-term (median of
5 days) recordings per patient from phase II evaluation in
the EMU, within a broad frequency range (1–500 Hz). This
approach employs power ranking, dimension reduction, and
clustering techniques.

The discovery of neuronal inductive impedance elucidated
a novel mechanism by which neurons are granted frequency
preferences (i.e., resonance) (Cole, 1941; Das et al., 2017; Lee
et al., 2019). Within these narrow resonant frequencies, neurons
generate intrinsic lasting membrane voltage fluctuations and
show a heightened response to inputs (Hutcheon and Yarom,
2000; Pike et al., 2000). Increasingly electrophysiological
studies have confirmed the existence of similar neuronal
resonance frequencies within the EZ, and its pathological
role in generating intrinsic frequency-specific epileptiform
neural activity (Walton, 1968; Reyes-Garcia et al., 2018).
Since seizures (ictal states) are brief paroxysmal events,
epileptogenic foci activity in the much longer interictal state
is assumed to be constrained from transitioning to the
ictal state by nearby inhibition (Prince and Wilder, 1967;
Trevelyan et al., 2006; Tsakalis and Iasemidis, 2006; Schevon
et al., 2012; Cammarota et al., 2013; Liou et al., 2018).
Based on this premise, we hypothesize that the population
activity in the EZ during the interictal state should exhibit
more intense (time-wise and amplitude-wise) resonance with
inhibitory interneurons than those outside the EZ. Thus,
an algorithm to localize the EZ during the interictal state
could be developed by identifying brain regions that exhibit
sustained maximal activity (power) within a narrow band in
the frequency domain of inhibition. Our study investigated the
existence of such a frequency band across epilepsy patients
that also led to identification of brain sites (i.e., iEEG
contacts) within the EZ from the interictal period independent
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of the presence (or absence) of any particular interictal
epileptiform activities.

Materials and methods

Subject selection

Patients with medically refractory epilepsy undergoing
iEEG monitoring for presurgical evaluation provided informed
written consent for analysis of their data. University of
Alabama Institutional Review Board approved this study. From
a total of 45 patients enrolled in the study between 2016
and 2021 (NeuroNEM database – see Data Availability), 10
patients (six males and four females with a median age of
26.5 ± 15.9 years) met the following inclusion criteria and
were included in the training/testing portion of the study (two
more patients eventually met the inclusion criteria in 2022
and were thus included in the small, double blinded testing
portion of the study): (1) resective surgery was performed
to remove the seizure focus and (2) patients were seizure-
free for ≥12 months post-surgery (i.e., Engel’s class I). All
patients had stereo-EEG electrodes implanted except one patient
(PT110) who had subdural grids. Patient selection for invasive
EEG monitoring, electrode implantation strategy, duration
of recordings, and tapering of antiseizure medications to
record seizures were based solely on clinical need and were
determined by the independent team of clinicians. Of the
10 patients, eight were diagnosed with mesial temporal lobe
epilepsy (TLE) and 2 with extra-TLE (insula and anterior
cingulate); the two additional patients also tested had TLE.
The 10 patients’ demographics and clinical details are shown
in Table 1. Overall, a total of 1,029 h of interictal period
from each of 1,400 iEEG channels were analyzed from the
10 patients. A total of 98 seizures were recorded from
these patients.

Data acquisition and pre-processing

Long-term continuous iEEG signals were recorded by a
Natus Quantum EEG machine (Natus Medical Inc. Pleasant,
CA, USA) with a sampling rate of 2,048 Hz. iEEG channels with
visually identified artifact for an extended period (longer than
6 h of continuous iEEG) due to electrode or amplifier problems
were discarded from subsequent analysis (Only 9 out of 1,409
channels, in 4 out of the 10 patients, were thus contaminated
with artifact and were excluded from further analysis). The iEEG
data from each patient were then divided into consecutive, non-
overlapping T-second epochs. The data in each epoch were
pre-processed by detrending and applying a bandpass filter with
cutoff frequencies of 1 and 500 Hz, and a notch filter at 60 Hz
and its harmonics. We used T of 3 s in the estimation of
the univariate periodogram and 10 s for the estimation of the
multivariate auto-spectra measures.

Spectral power techniques

In 1897, A. Schuster proposed the periodogram, a non-
parametric method of estimating the spectrum in a noisy
environment (Schmidt, 1897). He applied the periodogram to
find the “hidden periodicities” of the sunspot phenomena, in
1906 (Schmidt, 1906). A parametric method for this application
was developed by G. Yule in 1927 (Udnye, 1927) when he
fitted the sunspot’s time series with linear regression (i.e.,
autoregressive – AR model) to detect periodicities in the
data. Both of these main methods for estimating spectral
power assume white Gaussian noise either superimposed to the
data (periodogram method) or driving a recursive harmonic
process (autoregressive method). Although, the two methods
are computed differently, they both estimated the same intrinsic
frequency in the sunspot phenomena (Porat and Marple, 1988).
We used both methods of spectral power estimation from the
iEEG to investigate the existence of an intrinsic frequency of
iEEG sites within the EZ across the two methods. In particular,
we estimated the periodogram via discrete Fourier Transform
(DFT) per iEEG channel, and the auto-spectra via multivariate
autoregressive (MVAR) model fitted to the multi-channel iEEG
data.

Univariate spectral power measure
(periodogram; S)

The periodogram was estimated per sliding, non-
overlapping 3 s epochs per pre-processed multichannel
iEEG record. For each epoch, the DFT for the periodogram was
estimated by the short-time Fast Fourier Transform (stFFT) per
consecutive 250 ms Hamming windows (M) with 50% overlap
(hop size = 125 ms). The estimated stFFT matrix of a signal x(t)
is given by X

(
f
)
= [X1

(
f
)
,X2

(
f
)
, ...,Xk

(
f
)
] such that the

mth element of this matrix is:

Xm
(
f
)
=

∑∞

n=−∞
x (n) g (n−mR) e−j2πfn (1)

Xm(f ) is the DFT of windowed x(t) data centered around
time mR, g(n) is the Hamming window function of length M,
andR is the hop size between the successive DFTs. This was done
using the stft function in MATLAB R2019b (MathWorks Inc.,
Natick, MA, USA). To determine the periodogram, the average
of the squared magnitude of the successive DFTs per frequency
was finally computed per epoch.

Multivariate autoregressive-based spectral
power measure (auto-spectra; SKK)

Let y(n) =
[
y1 (n) , y2 (n) , ..., yK (n)

]T be a K-dimensional
vector at time t = n 1

fs
, where fs is the sampling frequency of the

data, and with its components being zero mean time series yi(n).
Then, for y(n), a K-variate (i.e., K-dimensional) MVAR model of
temporal order p (that is, each present value of y(n) depends on
p past values of the observed time series yi(n)), is constructed as:

y (n)=
∑p

τ=1
A (τ) y (n−τ)+ε (n) (2)
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TABLE 1 Patient clinical and intracranial EEG (iEEG) information.

Subject/Sex/Age # of iEEG channels Total iEEG duration
(hours)

# of seizures Up-to-1st seizure
(hours)

Clinically assessed EZ

PT103 | M | 20 years 122 103.69 5 67.33 Right TLE

PT105 | M | 21 years 168 111.61 11 30.33 Right anterior cingulate

PT108 | F | 65 years 150 58.29 5 22.86 Right TLE

PT110 | F | 21 years 79 39.92 4 11.67 Right TLE

PT114 | M | 24 years 134 61.09 12 39.41 Right TLE

PT118 | F | 52 years 142 121.95 22 9.87 Right TLE

PT126 | M | 29 years 174 150.58 17 59.46 Left TLE

PT132 | M | 48 years 234 104.51 13 14.75 Right insula

PT135 | M | 24 years 196 122.01 3 12.69 Right TLE

PT143 | F | 39 years 101 155.71 6 58.01 Right TLE

where the order p is determined through criteria from
information theory; in our case, using the final prediction
error (FPE) method, we estimated p = 25 and kept it at this
value across all epochs and patients. The matrices A(τ) contain
the model’s (K×K) coefficients (i.e., model parameters) at lag
τ
(
τ = 1, ..., p

)
and were estimated using minimization of the

residual noise ε(n) using the Vieira–Morf partial correlation
method (Morf et al., 1978). If the model fits the data well,
and assuming that each vector component yi(n) is at least a
weakly stationary time series within each epoch here of 10 s, the
noise (innovation) vector ε (n) = [ε1 (n) , ..., εK (n)]T follows
a multivariate standard white noise process having zero mean

and covariance matrix 6e =


σ11 · · · σ1K
...

. . .
...

σK1 · · · σKK

. If we denote the

(K × K) identity matrix as IK , the MVAR model can be
transformed to the frequency domain, as: E

(
f
)
= B

(
f
)

y
(
f
)
,

where E(f ) is the Fourier transform of the residual noise vector
and B

(
f
)
= IK−

∑p
τ = 1 A (τ) e−j2πf τ, that is, B(f ) essentially

results from the Fourier transform of the augmented matrix
A of the coefficients of the model (setting A(0) = IK). Then,
assuming that ε (n) is the input signal to the model and y(n)
the output signal from the model, the transfer function matrix
of the model is H(f ) = B−1(f ). Taking advantage of the
spectral factorization theorem (Gevers and Anderson, 1981), the
complex power spectral matrix Sij(f ) can be calculated directly
from H(f ) as:

Sij
(
f
)
=H

(
f
)
6eHH (f ) (3)

where, the superscript H represents the Hermitian operator.
The pre-processed multichannel iEEG data within

consecutive, non-overlapping epochs of 10 s in duration –
short enough for the data to be considered statistically
stationary and long enough so that we have enough data points
for a reliable estimation of the coefficient matrices in the MVAR
model – were fitted by MVAR model to compute the complex
spectral matrix Sij

(
f
)

from (3). Finally, the modulus of the

diagonal elements of the matrix (i.e., the auto-spectral power
Skk) were computed per channel K and frequency f .

Statistical framework

Reduction techniques
The periodogram (S) and auto-spectra (Skk) methodology

yield huge three dimensional matrix of (channel × frequency
× time) per patient. Dimensionality reduction techniques were
employed in the following order.

Spatial-domain

We applied our statistical ranking approach in order
to reduce the spatial dimensionality of the matrix (i.e.,
ci × frequency× time) by selecting only the channel ci(t, f ) that
exhibits maximum power at each frequency and time point.

Time-domain

To decrease the dimensionality in the time domain, we then
estimated the percentage of time (PoT) the ci channels were
identified per frequency within a larger non-overlapping sliding
window of 10 min in duration (i.e., each window was composed
of 200 epochs of 3 s each in the case of the periodogram or 60
epochs of 10 s each in the case of auto-spectra) then divided
by the total number of epochs (200/60). Thus, we end up with
the estimation of PoT values for channels that are spatially
maxima in power per frequency component (1–500 Hz) every
10 min of the iEEG recording (i.e., ci × frequency × 10 min
non-overlapping windows).

Employing the above ranking and time-domain reduction
techniques for the periodogram S and auto-spectra Skk power
measures, we show in Figure 1 the channel(s) with the highest
rate of occurrence (i.e., highest PoT) of maximum power per
frequency component (1–500 Hz) throughout the whole EMU
recording period (∼103 h) for patient PT103. If the channels
selected by this methodology were also clinically assessed focal
channels, we denote them by (∗) on the plots. In Figure 2, we
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FIGURE 1

Time-frequency plots of the highest percentage of time (PoT) channels that exhibited maximum power within the non-overlapping 10 min
window from the two proposed measures [i.e., periodogram (S) – (top) and auto-spectra (Skk) – (bottom)]. Each channel is denoted with a
different color. If this methodology selected clinically assessed focal channels for patient PT103, we denote them by (∗) in the colorbar. Dashed
black lines indicate the timing of the seizures.

display the PoT values of only clinically assessed focal channels
of the same patient as a heatmap in the time-frequency grid.

Frequency-domain

In order to reduce the frequency domain, we need to
average across an optimal frequency band that renders accurate
localization outcomes. Thus, to statistically identify such a
band and then validate it for the localization of the EZ, first
we introduced the term “focal frequency band” (FFB) as the
set of frequency components at which clinically assessed focal
channel(s) exhibit the highest PoT. Second, we applied a nested
k-fold cross-validation approach to statistically validate the
usefulness of FFB in the localization of the EZ, as follows:

1. Apply the Leave-one-patient-out technique to evaluate the
success of the localization algorithm, that is, select one
patient to leave out for testing and use the remaining nine
patients for training of EZILA (e.g., find the optimal /
common FFB across all nine patients) and then average
across this FFB and (test) the localization algorithm on the
10th patient and see if the iEEG channels thus identified
are within that patient’s clinically assessed EZ. Since there
is a total of 10 different patients to leave-out, the following
steps in training/testing were repeated 10 times, each time
for every patient that was left out at this step.

2. In order to increase the statistical power, we use folding
in the training set. In particular, select data from a k-fold
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FIGURE 2

Time-frequency heatmap plot of only focal channels from patient PT103 with the highest occurrence rate [highest (PoT)] for the periodogram
(left) and auto-spectra (right). Color depth represents the PoT value. Vertical dashed black lines denote the timing of the seizures.

FIGURE 3

(A) A histogram of the intersected focal frequency band (FFB) per subset. (B) FFB after averaging histograms (AH) and applying the K-medoid
clustering technique as the outliers’ statistics to pinpoint the range of the FFB for one of the “leave-out” 10th patients using the auto-spectra
(Skk) measure of power. Red bars represent the selected FFB, and it is (61–83 Hz) for this “leave-out” patient.

of the patients in the pool of nine patients (we selected
k = 5) to serve as multiple training datasets.

3. Apply the analysis below for each possible subset (fold).
Since the order in each subset of patients is not relevant, the
number of subsets is given by the combinatorial formula

C (9, 5) (i.e.,

(
9
5

)
= 9!/5!4! = 126 subsets of 5 patients

each.
4. Identify the FFB profile (frequency over time), estimated

every 10 min (i.e., the PoT matrix), for each of the five
patients in a subset.

5. Find each subset’s FFB by computing the intersection
∩
k
i=1FFBi across its patients every 10 min.

6. Reduce the time dimension in FFB by creating a histogram
of the overlapped FFBs per subset (see Figure 3A).

7. Take the average histogram (AH) across all 126 subsets,
then apply K-medoid clustering algorithms to AH, via the
kmedoids function in MATLAB R2019b (MathWorks Inc.,
Natick, MA, USA), to select the range of the FFB (see
Figure 3B). Figure 4 displays the FFB derived from the
above process for each 10th patient that was left out using
the auto-spectra measure of power. It is also noteworthy
that the intersection of the thus identified FFBs was almost
the same by using either the periodogram or auto-spectra

measures of power, that is, (64–76 Hz) and (61–82 Hz),
respectively.

8. Average over FFB to reduce the dimension of the PoT
matrix to (ci × 10 min non-overlapping windows) for
testing the “leave-out” 10th patients.

Clustering technique and candidate score in
testing stage

Data clustering is an unsupervised classification method
that aims to create groups (clusters) of objects so that objects
in the same cluster are alike and objects in different clusters
are significantly distinct (Everitt and Spath, 1985; Arthur and
Vassilvitskii, 2007). The number of clusters is determined in
advance. Therefore, in the testing stage of the 10th patient, we
partitioned the channels in the FFB-averaged PoT matrix into
two clusters with the goal of classifying the iEEG channels into
either EZ or non-EZ candidate clusters, with the EZ candidate
cluster containing channel(s) with high PoT values. The two
clusters exhibited a significant gap between them. Note that the
EZ candidate cluster could be composed of several channels or
just one channel. Then, the candidate score, (range between 0
and 1), of each channel in the EZ candidate group is assigned
based on its cumulative presence, within either short or long
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FIGURE 4

Focal frequency band (FFB) per patient using auto-spectra (Skk)
measure of power.

pre-determined periods, that is, during the first hour of the EMU
recording or up to the first typical clinical seizure. Figure 5
provides a flowchart of the aforementioned main steps of
EZILA.

Results

Testing of “leave-out” 10th patient
result

The main outputs of EZILA per patient in the cohort of
10 patients were the five-fold leave-one-out nested process with

the clustering and scoring computations. Per the “leave-out”
patient, the EZ candidate channels and their scores identified
from short and long time periods (i.e., the first hour and up-to-
first typical clinical seizure), using the periodogram (S) and the
auto-spectra (Skk) measures of power, are shown in Figures 6
and 7, respectively.

One important contribution of the EZILA is to identify
channels from all recorded iEEG contacts that are likely within
the EZ. Each spectral measure contributes toward selecting a few
iEEG channels that are probably within EZ. The overall mean
and standard deviation of the spatial (channel) reduction across
patients was (95.78%; ±2.053) and (96.20%; ±1.593) for S and
Skk measures, respectively. This means that EZILA characterized
no more than 5% of the available contacts to be within the
EZ. This metric of spatial reduction performance, as well as the
metric of the percentage of correctly identified focal channels
from the reduced channels (i.e., EZ candidate group) taken from
the second period (i.e., up-to-first clinical seizure) are shown in
Table 2 for both spectral measures.

Retrospectively, to further assess the robustness of the
EZILA’s performance over time via the periodogram method,
each 10 min window of the EZ candidate cluster was classified
into one of three classes based on our prior knowledge from
clinical assessment of the actual focal channels per patient: Focal
time window if only focal channel(s) compose the EZ candidate
cluster, non-Focal time window if only non-focal channel(s)
are involved, and Mix time window when the EZ candidate
cluster is composed of a mixture of both channel types. The
outcome of the above analysis is illustrated for all patients
in Figure 8. We note substantial presence of the non-Focal
window class in PT105, PT132, and PT143. Interestingly, the
former two patients were the only extra-TLE patients (PT105

FIGURE 5

Flowchart of the EZ interictal localization algorithm (EZILA). Steps in the rounded corner rectangles are per patient, the step denoted by the oval
shape requires information from a training set of patients as described in section “Frequency-domain” in the main text, and the final step in the
diagonal rounded rectangle represents the main output of the algorithm per patient.
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FIGURE 6

The output of the EZ interictal localization algorithm (EZILA) per the (10th) patient via the periodogram (S) measure when applied at two time
periods: first hour (blue) and up-to-first seizure (brown). Red tick(s) in the channel label axis denote clinically assessed focal channel(s). EZILA
was successful in assigning the highest candidate score to one of the clinically assessed focal channel in all the 10 patients at both time periods.
Legends: RAH, right anterior hippocampus; RPH/RPHC, right posterior hippocampus; LAH, left anterior hippocampus; LPH, left posterior
hippocampus; RAO/RAOF, right anterior orbitofrontal; RPO/RPOF, right posterior orbitofrontal; LAO/LAOF, left anterior orbitofrontal; LPO/LPOF,
left posterior orbitofrontal; LAT, left anterior temporal; RMF, right mesial frontal; RA, right amygdala; RPIN, right posterior insula; RPL, right
posterior lesion; SG, left temporal Spencer grid; MG, minigrid; PHC, parahippocampus strip; AH, anterior hippocampus; OF, orbitofrontal; PP,
posterior parietal; HC, hippocampus; RMC, right mesial cingulate; RMIN, right mesial insula; RaMC, right anterior mid cingulate; RpPC, right
posterior posterior cingulate; LFP, left frontal pole; LpPC, left posterior posterior cingulate; AMG, amygdala; LH, left hippocampus.
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FIGURE 7

The output of the EZ interictal localization algorithm (EZILA) per the (10th) patient via the auto-spectra (Skk) measure when applied at two times
periods: first hour (blue) and up-to-first seizure (brown). Red tick(s) in the channel label axis denote clinically assessed focal channel(s). EZILA
was successful in assigning the highest candidate score to one of the clinically assessed focal channel in all the 10 patients at the long time
period. Legends: see Figure 6.

frontal; PT132 insula) in our cohort and the persistent channel
in their non-Focal window class corresponds to the ipsilateral
to the focus hippocampal structures. The occurrence of high
and frequent power in the gamma range of frequencies in the
ipsilateral hippocampus even if the focus is extra-temporal may
indicate that the “normal” hippocampus is also involved in

the epileptogenic network, which may be more pronounced
if hippocampus itself is also pathological, as in the rest of
our TLE patients. For PT143, the superficial depth electrode
contact (#10) of the focal right anterior hippocampus (RAH)
consistently shows up in the non-Focal window class while the
focus is more mesial in the right temporal lobe. This constitutes

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.993678
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-993678 December 9, 2022 Time: 12:37 # 10

Alamoudi et al. 10.3389/fnins.2022.993678

TABLE 2 Performance metrics of spatial reduction and EZ localization using S and Skk.

Patient # of iEEG
channels

EZILA Output

# of identified % of spatial # of correctly % of correctly
focal channels reduction identified focal channels identified focal channels

S Skk S Skk S Skk S Skk

PT103 122 7 5 94.26 95.90 2 2 28.57 40.00

PT105 168 12 9 92.86 94.64 1 1 8.33 11.11

PT108 150 4 6 97.33 96.00 2 3 50.00 50.00

PT110 79 3 4 96.20 94.94 3 4 100.00 100.00

PT114 134 3 3 97.76 97.76 1 1 33.33 33.33

PT118 142 4 4 97.18 97.18 4 4 100.00 100.00

PT126 174 7 5 95.98 97.13 6 5 85.71 100.00

PT132 234 9 6 96.15 97.44 3 3 33.33 50.00

PT135 196 4 4 97.96 97.96 2 2 50.00 50.00

PT143 101 8 7 92.08 93.07 4 3 50.00 42.86

FIGURE 8

EZ interictal localization algorithm (EZILA) results overtime via non-overlapping 10 min windows per patient using the periodogram measure.
Each time-window is classified as either a focal (red), non-focal (blue), or mix (violet) window based on channel(s) involvement.

a good example of a more localized identification of the EZ that
EZILA could provide us with within the broader area of seizure
onset that is presently considered as the EZ.

Since EZILA is developed as an assistive tool for the EZ
localization process in a phase II EMU setting, we consider
both the Focal and Mix windows as instants of true positives
for localizing at least one site within EZ from the interictal
period. In Figure 9 we show the overall percentage of how much
assistance can our algorithm provides in the localization process

of at least one of the clinically assessed focal channels at any
10 min during phase II EMU recordings per patient.

Double-blinded testing of patients

We report the results from two patients (PT1 and PT2), who
were only recently recognized as Engel class I, and were not
included in previous k-fold training and testing. The FFB used
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FIGURE 9

The EZ interictal localization algorithm (EZILA) robustness in %
per patient is measured by the probability of successfully
identifying at least one channel within the clinically assessed EZ
at any 10 min interictal period of the patient’s (phase II) epilepsy
monitoring unit (EMU) recording.

was the intersection of the FFBs across the previous 10 patients
(see Figure 4), that is, 64–76 Hz for the periodogram and 61–
82 Hz for the MVAR-based measure. The EZILA successfully
assigned the highest candidate score to channels within the EZ
in both patients The total number of iEEG channels are 102
and 252 for PT1 and PT2, respectively. The performance metric
values for these two patients were: 97.06% and 98.41% spatial
reduction; and 66.67% and 50% of correctly identified focal
channels using the periodogram measure, respectively. In the
case of the auto-spectra, the spatial reduction was 96.08% and
98.02; and the percentage of correctly identifying focal channel
were 50% and 20% for PT1 and PT2, respectively.

Thus, EZILA correctly assigned the highest score to
channels in the EZ from interictal iEEG data analysis in all 12
patients at the (phase II) EMU. It is noteworthy that correctly
identifying the EZ in 12 out of 12 patients corresponds to a
Jeffrey’s 95% confidence interval of (81.47, 100%) (Brown et al.,
2001).

Discussion

Our novel algorithm, EZILA, reliably produces a
spatiospectral biomarker of sites in the putative EZ from
interictal iEEG data. From hundreds of sampled iEEG contacts,
EZILA assigns the highest score to epileptogenic brain regions
utilizing their most frequently occurring high power in
particular gamma frequency band interictally. This resonance
frequency band, common in 10 patients with temporal and
extra-temporal epilepsy, ranged from 65 to 75 Hz.

Numerous studies have shown abnormal spontaneous
gamma activity during the interictal period. In humans, a scalp
EEG study has shown that patients with epilepsy exhibit up to
seven times higher gamma power compared to healthy controls
(Willoughby et al., 2003). A 2011 study quantified gamma

band activity from local field potentials (LFPs) in patients with
epilepsy during interictal (1–14 h before seizures) and ictal
periods and concluded that there are distinctive bursts of gamma
activity in all patients. In addition, a 100-fold increase in gamma
power was observed in EZ brain regions (Medvedev et al., 2011).

Local field potential amplitude and frequency depend on
the proportional contribution of multiple sources and various
properties of the neuronal populations in close proximity to the
recording intracranial electrode (Buzsaki et al., 2012). The active
membrane property (e.g., intrinsic membrane oscillations) of
neurons dictates the generation of the LFP signal (Reimann
et al., 2013) and can significantly contribute to its power
spectral density (Ness et al., 2016). Furthermore, resonant
membrane oscillations must occur synchronously in nearby
neurons in order to significantly contribute to the recorded
LFP signal, which is a feature that occurs most often in
inhibitory interneurons (Buzsaki et al., 2012). A prime example
of neurons that exhibit such behavior is GABAergic fast-
spiking interneurons (FSIs). They can intrinsically generate and
maintain gamma activity of 30–90 Hz (Cardin et al., 2009).
Moreover, studies have shown that under a constant tonic input
(e.g., epileptiform interictal activity), self-inhibiting populations
of interneurons and reciprocally connected pyramidal neuron
populations can naturally generate gamma-frequency network
oscillations (Whittington et al., 1995, 2000; Börgers and Kopell,
2005).

Based on the inhibitory restraint hypothesis, the EZ is
surrounded by a powerful inhibitory drive (i.e., surrounding
inhibition), the collapse of which yields an inhibition-excitation
imbalance and is believed to produce ictal events (Prince and
Wilder, 1967; Treiman, 2001; Tsakalis and Iasemidis, 2006;
Tsakalis et al., 2006; Chakravarthy et al., 2007, Chakravarthy
et al., 2009; Schevon et al., 2012; Alamoudi, 2022). Surrounding
inhibition, as a neural mechanism that creates an inhibitory
zone around a central core of activation, has also been reported
in the human motor system (Sohn and Hallett, 2004b; Beck
and Hallett, 2011; Márquez et al., 2018), movement disorders
(Sohn and Hallett, 2004a), cognitive studies (Kiyonaga and
Egner, 2016; Shi et al., 2021), and other neurodegenerative
disorders (Shin et al., 2007; Belvisi et al., 2021). Our findings
are consistent with the inhibitory restraint hypothesis. We
observed abnormally sustained gamma resonance-like activity
within the EZ during the interictal period, which can represent
an emergent property of the pathological firing of inhibitory
surrounding interneurons. We hypothesize that because the
overall homeostasis of inhibitory-excitatory mechanism in
epileptogenic brain regions is defective, “resonating” inhibitory
neurons contain the activity of seizure generators, thereby
maintaining the seizure-free interictal state. The results from
research groups that have considered the interictal EZ-
localization problem through directed connectivity analysis
from iEEG and magnetoencephalography (MEG) also lead
to a containment by a control mechanism in the interictal
state (Korzeniewska et al., 2014; Krishnan et al., 2015;
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Vlachos et al., 2017; Narasimhan et al., 2020). Moreover,
Grinenko et al. identified a unique spectro-temporal biomarker
of the EZ during the transition from interictal to ictal states
irrespectively, of the anatomical location of the focus (Grinenko
et al., 2018), which also supports the notion of localization
of the EZ based on the dynamical characteristic (sustained)
and spectral preference (resonance) of some of its inhibitory
constituents independent of its anatomical location.

Reproducing our findings in a bigger cohort of patients
would further establish the underlined mechanistic framework.
It is noteworthy that electrodes are implanted based upon
clinical assessment of EZ for each patient. Therefore, the results,
extracted from these electrodes inevitably provide an incomplete
picture due to partial coverage of brain activity. Future studies
within the presented analytical framework and possibly via
noninvasive with more global coverage (e.g., high density scalp
EEG, fMRI, MEG) could address this concern.

Conclusion

Analysis of interictal intracranial EEG recorded from
patients with focal epilepsy can provide insight into EZ
localization. Pathologically increased and sustained activity
within a narrow gamma frequency band (65–75 Hz) is
consistently observed in epileptogenic regions during the
interictal state. By leveraging this property, our novel EZILA
correctly identifies channels within the EZ and may thus be
used as an assistive tool for early EZ localization during phase
II evaluation of patients with epilepsy at the EMU.
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