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Introduction: Electroencephalogram (EEG) acquisition is easily affected

by various noises, including those from electrocardiogram (ECG),

electrooculogram (EOG), and electromyogram (EMG). Because noise

interference can significantly limit the study and analysis of brain signals,

there is a significant need for the development of improved methods to

remove this interference for more accurate measurement of EEG signals.

Methods: Based on the non-linear and non-stationary characteristics of

brain signals, a strategy was developed to denoise brain signals using

a time-frequency denoising algorithm framework of short-time Fourier

transform (STFT), bidimensional empirical mode decomposition (BEMD),

and non-local means (NLM). Time-frequency analysis can reveal the signal

frequency component and its evolution process, allowing the elimination

of noise according to the signal and noise distribution. BEMD can be

used to decompose the time-frequency signals into sub-time-frequency

signals for noise removal at different scales. NLM relies on structural self-

similarity to locally smooth an image to remove noise and restore its main

geometric structure, making this method appropriate for time-frequency

signal denoising.

Results: The experimental results show that the proposed method can

effectively suppress the high-frequency components of brain signals, resulting

in a smoother brain signal waveform after denoising. The correlation

coefficient of the reference signal, a superposition average of multiple

trial signals, and the original single trial signal was determined, and

then correlation coefficients were calculated between the reference signal

and single trial signals processed by time-frequency denoising, ensemble

empirical mode decomposition (EEMD)-independent component analysis

(ICA), EEMD-canonical correlation analysis (CCA), and wavelet threshold

denoising methods. The correlation coefficient was highest for the signal

processed by the time-frequency denoising method and the reference signal,

indicating that the single trial signal after time-frequency denoising was most
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similar to the waveform of the reference signal and suggesting this is a feasible

strategy to effectively reduce noise and more accurately determine signals.

Discussion: The proposed time-frequency denoising method exhibits

excellent performance with promising potential for practical application.

KEYWORDS

event-related potential (ERP), bidimensional empirical mode decomposition (BEMD),
non-local means (NLM), time-frequency denoising, signal processing

Introduction

Electroencephalogram (EEG) is used to measure the
synchronous changes of postsynaptic potential produced by
pyramidal neurons with similar orientation in the brain. Almost
all sensory, motion, or mental events can cause transient
changes in spontaneous EEG activity, for time locked and
phase locked event-related potential (ERP) (Mouraux and
Iannetti, 2008). Currently, the cross-trial averaging method
is the most widely used method to detect event-related
brain response. This method requires that event-related brain
response signals are stable and unchanged in different trials,
specifically, that the latency, amplitude, and waveform remain
unchanged. However, characterization of the phase-locked
ERP response revealed independent variation in the latency,
amplitude, and waveform in different trials. Use of a cross-
trial averaging method can improve the signal noise ratio
(SNR) of brain response signals, but this approach result in
the loss of information about cross-trial dynamic variation of
event-related brain response signals. Overall, it is necessary
to accurately estimate event-related brain response signals and
their characteristics at the single-trial level. This approach can’t
only help us to better analyze EEG data, but can also help
exploration of the physiological and psychological functions
of brain response signals. The amplitudes of almost all event-
related brain response signals are far less than the amplitude
of spontaneous EEG activity, and other physiological signals
or non-physiological signals such as spatial electromagnetic
noise can interfere with these signals (Ting et al., 2014; Huang
et al., 2015; Haider et al., 2019). This interference increase
the difficulty of reading EEG signals, thus impeding research,
analysis, and application of these important brain function
signals. Therefore, the development of advanced methods to
remove noise interference from EEG signals and effectively
improve the SNR of event-related brain response signals
is a critical challenge for single-trial analysis and feature
extraction.

The regression method is a traditional EEG denoising
technique (Hillyard and Galambos, 1970; Whitton et al.,
1978; Klados et al., 2011). Its basic assumption is that EEG
and various noise components are additively superimposed

(Sweeney et al., 2012). The regression analysis first defines the
amplitude relationship between the reference channel and the
EEG channel by the transmission factor, and then subtracts
the estimated artifacts from the EEG to obtain clean EEG
data. However, the need for one or more good regression
reference channels limit their capacity for removing noise in
EEG (Urigüen and Garcia-Zapirain, 2015). Filtering method
is another commonly used EEG noise elimination technology,
which generally includes three types: adaptive filtering, Wiener
filtering and sparse decomposition. Adaptive filtering method
makes the denoised EEG signal close to the reference signal
by estimating the filtering parameters (Marque et al., 2005).
However, adaptive filtering method is difficult to deal with
sudden noise, such as some electromyography and continuous
vibration artifacts (He et al., 2004). The idea of Wiener
filtering is to minimize the power spectral density of the
target signal and the measured signal (Somers et al., 2018).
The problem is that the power spectral density of the target
signal is generally unknown (Izzetoglu et al., 2005), which
makes it difficult for Wiener filtering to be used for online
filtering of EEG signals. The idea of sparse decomposition
denoising is to sparsely represent the noisy signal on the over-
complete atomic library, reconstruct the original signal with
only several large representation coefficients, and shield the
noise components contained in some small coefficients, so as to
realize the denoising of the signal (Donoho, 2001; Li et al., 2013,
2014).

Blind source separation (BSS) is the most well-known
method in EEG denoising field. This method can estimate
the mixed signal without prior information (or with little
information) of the source signal and during the mixing
process. BSS has been widely used in the processing and
analysis of EEG signals (Roy and Shukla, 2019; Zou et al.,
2020; Desjardins et al., 2021). Independent component analysis
(ICA) and canonical correlation analysis (CCA) are two classical
BSS methods. Raw EEG data collected from the scalp are
the sum of signals and artifacts. Signals and artifacts are
considered to be independent of each other, and ICA is
considered to be an effective method for artifact separation.
ICA decomposes multi-channel observation signals into several
independent components through an optimization algorithm
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that assumes the statistical independence of source signals. After
the decomposition of original EEG data by ICA, the separated
independent components can be divided into artifact-related
and neural activity-related components. The artifact-related
components are removed, and the other data are reconstructed
data that should retain the real EEG signal. Due to its high
efficiency in BSS, ICA has been widely used in steps of EEG
signal processing, including noise cancelation, ERP component
extraction, and single trial ERP analysis (Mcmenamin et al.,
2011; Urigüen and Garcia-Zapirain, 2015; Lee et al., 2016).
CCA is another effective method for BSS. Using the original
EEG as the first data set and the time-delayed version as
the second data set, CCA utilizes second-order statistics to
identify sources that are maximally autocorrelated and mutually
uncorrelated. CCA then selects representative comprehensive
indicators (linear combinations of variables) from two groups of
random variables, and uses the correlation relationship of these
indicators to represent the correlation relationship between
the original two groups of variables. Compared with the true
EEG signal, an artifact signal exhibits a wider spectrum. This
results in a relatively low autocorrelation, which is then used by
CCA to isolate artifacts from EEG signals. Several studies have
demonstrated the efficacy of CCA for artifact removal from EEG
signals (Sweeney et al., 2013; Chen et al., 2014, 2016).

In addition to the above methods, the researchers also
proposed a hybrid strategy combining signal decomposition
and BSS to process EEG signals. Both ICA and CCA are
multi-channel signal analysis methods. However, healthcare
systems are evolving from hospital-centered to ambulation-
based care, fewer channels are typically used for ambulatory
EEG (Minguillon et al., 2017). Given this, there is significant
interest in the development of single-channel techniques
for EEG preprocessing. To use these methods for single-
channel signal analysis, the single-channel signal must first be
decomposed into multi-dimensional signal components using
wavelet transform or ensemble empirical mode decomposition
(EEMD). Next, BSS methods (e.g., ICA and CCA) are used
to further decompose the generated multi-dimensional signal
components into meaningful sources. These approaches have
been implemented in the proposed wavelet ICA (WICA)
(Mammone et al., 2012) and EEMD-ICA (Mijovi et al., 2010)
methods. EEMD is an adaptive decomposition method that
can decompose a one-dimensional signal into several intrinsic
mode functions (IMF) according to its characteristics. However,
with no prior knowledge of the signal of interest, it is
difficult to select the optimal wavelet for wavelet transform.
A comparison between EEMD-ICA and WICA found EEMD-
ICA performed best for separating mixed EEG, electromyogram
(EMG), and electrocardiogram (ECG) signals under a single-
channel scenario (Mijovi et al., 2010). In a recent study, Chen
et al. proposed EEMD-CCA for the removal of artifacts from

single-channel EEG signals, and demonstrating that EEMD-
CCA is a more reliable approach than EEMD-ICA (Chen et al.,
2014, 2016, 2018). In addition to EEMD-ICA and EEMD-CCA,
wavelet threshold denoising method is also applied as a single-
channel brain signal noise cancelation method.

EEG signals have typical non-linear and non-stationary
characteristics, and it is difficult to obtain all the statistical
characteristics of EEG signals from only the time or frequency
domains. Time-frequency analysis provides s one-dimensional
signal in the form of a bidimensional time-frequency density
function to reveal the signal frequency component and its
evolution process. This will allow the elimination of noise based
on the distribution of signal and noise. The bidimensional time-
frequency signal can also be analyzed as an image, and then
artifacts in the EEG signal can be effectively removed using
an advanced image denoising method. Therefore, the goal of
this study was to design a time-frequency analysis method for
single-channel EEG denoising.

Short time Fourier transform (STFT) is a common time-
frequency analysis method with inverse transform, allowing
the transformation of a denoised time-frequency signal into
a time-domain signal for subsequent analysis. Here, STFT
was used to transform a one-dimensional EEG signal into a
bidimensional time-frequency signal, which can be analyzed
as an image. Bidimensional empirical mode decomposition
(BEMD) is an adaptive decomposition method for non-linear
and non-stationary data and has been widely used for image
enhancement and denoising (Liu and Chen, 2019). In this study,
BEMD was used to decompose time-frequency signals, and each
bidimensional intrinsic mode function (BIMF) obtained can
be analyzed as sub-images. Non-local mean (NLM) is another
effective image denoising technique (Arabi and Zaidi, 2020). In
NLM, the pixels in the image do not exist in isolation, but the
pixels at a single point are related to other pixels elsewhere.
Similar pixels are not limited to a certain local area, and
natural images may contain abundant redundant information.
Therefore, image blocks that describe the structural features
of the image can be used to search for similar blocks within
the whole image, to maximally maintain the detail features of
the image while denoising. The time-frequency signal describes
the energy density or intensity of the signal at different times
and frequencies. The energy density of both the effective signal
and the noise are distributed over the whole timeline with a
certain correlation and similarity between the energy density
at a specific timespoints and other timespoints. Thus, the
characteristics of time-frequency signal are highly consistent
with the image characteristics required by NLM. Therefore,
in this study, the obtained BIMFs were filtered by NLM to
achieve noise cancelation at different scales. The BIMFs were
then averaged after denoising to obtain the reconstructed time-
frequency signal. The denoised EEG time domain signal can

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.991136
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-991136 November 21, 2022 Time: 18:11 # 4

Yan and Wu 10.3389/fnins.2022.991136

then be obtained as the inverse STFT of the reconstructed
time-frequency signal.

This study proposes a novel denoising method for brain
signals in the time-frequency domain and applies the image
denoising method to the denoising of time-frequency signals.
We compared the similarity of ERP waveforms processed by
the proposed method, EEMD-ICA, EEMD-CCA and wavelet
threshold denoising methods with the superposition average
waveform of multiple trial signals. The results show that
the ERP waveform processed by time-frequency denoising
method is more similar to the waveform after multi-trial
superposing and averaging, demonstrating the effectiveness of
the proposed method for brain signal denoising. Additionally,
this new approach to time-frequency analysis of brain signals
has potential value for use in the denoising of other types
of signals such as those producted by thermography, X-ray
imaging, electrocardiography, electromyography, and others.

The organization of this study is as follows. In section
“Materials and methods,” the data and methods used in this
study are introduced. Section “Results” compares the denoising
results of the proposed method, EEMD-ICA, EEMD-CCA,
and wavelet threshold methods, followed by discussions and
suggestions for future work in section “Discussion.” Finally, we
conclude the work in section “Conclusion.”

Materials and methods

Data used in this study and data
pre-processing

The ERP dataset used in this study is comprised of
target image detection tasks, and the dataset is freely
available at https://doi.org/10.6084/m9.figshare.12824771.v1.
The stimulation was presented by a 24.5-inch liquid crystal
display (LCD) monitor with a resolution of 1920 × 1080 pixels
and a vertical refresh rate of 60 Hz. Street scene images were
presented at 10 Hz (10 images per second) in the center of the
screen within a 1200× 800-pixel square. The images containing
humans were regarded as target images and the subjects were
asked to press keys immediately after they detected a target.
The dataset includes 14 healthy subjects and the sample rate
is 1000 Hz. For each subject, the experiment consisted of three
blocks. Each block contained 56 target image stimulus trials. For
more information about the dataset, please refer to Reference
(Zheng et al., 2020).

The data obtained 1 s after target image stimulation were
extracted as the data for analysis. Data preprocessing was
performed as follows. The EEG data were first down-sampled to
250 Hz. Next, the data were band-pass filtered within 2–30 Hz.
For the analysis of EEG characteristics, the EEG data were re-
referenced to the average of all electrodes [i.e., common average
reference (CAR) (Mcfarland et al., 1997)].

Ensemble empirical mode
decomposition-independent
component analysis and ensemble
empirical mode
decomposition-canonical correlation
analysis methods

Ensemble empirical mode decomposition
Based on instantaneous frequency analysis, Huang et al.

proposed an empirical mode decomposition (EMD) method
to decompose one-dimensional signal into a series of IMFs
(Huang et al., 1998). However, “mode mixing” can occur during
EMD decomposition, where, under some conditions, different
time scales are classified as the same IMF or signals of the
same time scale are cut into multiple different IMF. To address
this problem, Wu et al. proposed EEMD, an improved EMD
algorithm (Wu and Huang, 2009). EEMD adds white noise
with uniform frequency distribution and zero mean value to
the analysis signal. This provides even distribution of the
extreme points of the whole frequency band of the signal,
which effectively avoids the problem of sparse distribution of
low-frequency components and dense distribution of high-
frequency components in the signal, thus ensuring the time-
domain continuity of each IMF and alleviating the mode mixing
problem. The EEMD process of a signal x(t) can be described as
follows:

(1) Add a series of random white Gaussian noise n(t)
with normal distribution and constant variance to the one-
dimensional observation signal x(t) :

x′(t) = x(t)+ n(t) (1)

(2) Decompose the noise-added signal x’(t) into IMFs using
the EMD method.

x′ (t) =
k∑

i = 1

ci,j (t)+ rj (t) (2)

where cij is the ith IMF obtained by the jth decomposition,
and rj(t) is the residue obtained by the jth decomposition.

(3) Repeat steps (1) and (2) l times, and add new random
Gaussian white noise each time.

(4) Calculate the ensemble mean of the corresponding IMF
of each decomposition, and obtain final IMFs:

c′i (t) =
l∑

j = 1

ci,j (t) (3)

r′ (t) =
l∑

j = 1

rj (t) (4)
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After EEMD decomposition, the observation signal x(t) can
be expressed as the sum of multiple IMFs:

x (t) =
k∑

i = 1

c′i + r′ (t) (5)

A multichannel signal X(t) = [c1’, c2’,..., ck’, r’(t)] can be
reconstructed by multiple IMFs and final residuals r’(t) of
the one-dimensional signal x(t) decomposed by EEMD. BSS
algorithms (i.e., ICA and CCA) suitable for multi-channel
analysis can then be applied to the reconstructed signal X(t).

Independent component analysis
Independent component analysis is a method based on

higher-order statistics, and it can be described as:

X(t) = AS(t) (6)

Where X(t) = [x1(t), x2(t),..., xn(t)] is the n-dimensional
observation signal, S(t) = [s1(t),s2(t),...,sm(t)] is the
m-dimensional source signal, and A is the unknown signal
mixing matrix. The goal of BSS is to recover the unknown
m-dimensional source signal (n >m) from the n-dimensional
observation signal. Equation (6) can be rewritten as:

S′(t) = WX(t) = WAS(t) (7)

Independent component analysis is applied to find the
reversible separation matrix W, and then the output source S’
can be obtained by a linear transformation on the signal X(t).
Many objective function construction methods could be used
to estimate the source signal by ICA. The fixed-point algorithm
based on negative entropy maximization (FastICA algorithm)
has fast convergence speed and high precision, so this method
was selected for use in this study.

Canonical correlation analysis
Canonical correlation analysis is a statistical method that

is used to study the linear relationship between two groups
of multi-dimensional variables. Let X1(t) be the observed data
matrix X(t) with n channels and T temporal samples, and let
X2(t) be a temporally delayed version of the original data matrix
X2(t) = X(t-1). Using the two sets of signals X1 and X2, CCA
then finds two linear projection vectors W1 and W2 so that
the two groups of linear combination signals W1

T X1 and
W2

T X2 have the largest correlation coefficients. This leads to
the following objective function that maximizes the correlation
between the linear combinations of the components in X1 and
X2:

maxW1,W2
WT

1 X1XT
2 W2√

WT
1 X1XT

1 W1

√
WT

2 X2XT
2 W2

(8)

Equation (8) can be solved by constructing Lagrange
function and performing eigenvalue decomposition. The typical

correlation variables can be calculated by solving the projection
vector:

V = W1
TX1 (9)

The dimension of canonical correlation variable V is n × T,
where the first line is called the first canonical correlation
variable, or the component that can best represent the set
of signal characteristics. In this study, the first canonical
correlation variable was selected as the signal denoised by CCA.

Ensemble empirical mode
decomposition-independent component
analysis

A multichannel signal, X(t) ∈ n × T, is reconstructed from
IMFs and residue signals and used as the input to the FastICA,
so ICA can decomposed X(t) into multiple independent source
components. The source components obtained from ICA
decomposition usually require further analysis to screen out
effective signal components from the source components. In
this study, the performance of the denoising algorithm was
evaluated by comparing the similarity of the denoising signal
waveform and the superposition average waveform of multiple
trials. To do this, we calculated the similarity between the source
components obtained by ICA decomposition and the multiple
trial superposition average waveform, and then took the source
component with the greatest similarity as the signal component
after EEMD-ICA denoising.

Ensemble empirical mode
decomposition-canonical correlation analysis

The multi-channel signal X(t) and its delay signal X(t-1)
were, respectively, denoted as X1(t) and X2(t). X1(t) and X2(t)
were taken as the inputs of the CCA algorithm. The canonical
correlation variable V was calculated using the projection
vector W1 as obtained by equation (8) and the first canonical
correlation variable was taken as the signal denoised by EEMD-
CCA.

Wavelet threshold denoising method

The wavelet coefficients are generated by the observation
signal x(t) through the wavelet transform and contain
important information about the signal. The wavelet
coefficients corresponding to the active component of the
signal are relatively larger, while those corresponding to the
noise component are relatively smaller, with smaller wavelet
coefficients of the noise components than for the signal
component. By selecting an appropriate threshold, wavelet
coefficients larger than the threshold are retained and those
below the threshold are considered generated by noise, so are
set to zero for denoising. In this study, a one dimensional signal
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x(t) was denoised based on wavelet threshold by using the
MATLAB library functions ddencmp and wdenencmp.

Our proposed time-frequency
denoising method

Short-time Fourier transform
EEG has typical non-linear and non-stationary

characteristics, with a spectrum that changes greatly with
time. A single dimension of time or frequency is not sufficient
to effectively summarize the characteristics of the whole signal.
Time-frequency analysis provides distribution information of
both the time and frequency domains and clearly describes
the relationship between signal frequency and time, which
can be used to eliminate noise. Here, transforming the time
domain signal to the time-frequency domain was applied
for denoising. Because STFT has inverse transform and its
calculation is simple, STFT was used to transform the one-
dimensional observation signal x(t) into the two-dimensional
time-frequency signal X(t, f ). This can be regarded as an image
for analysis, where t and f represent the time axis and frequency
axis of the time-frequency signal, respectively.

Bi-dimensional empirical mode decomposition
Bi-dimensional empirical mode decomposition is

an effective adaptive multi-scale analysis method that is
appropriate for the analysis and processing of non-linear and
non-stationary signals. Here, BEMD was used to decompose
the time-frequency signal X(t, f ) into sub-time-frequency
signals at different scales. BEMD can adaptively decompose a
two-dimensional signal into a set of bi-dimensional intrinsic
mode functions (BIMFs) with a residue. In the first BIMF, the
highest instantaneous frequency component or the highest local
spatial scale is extracted, and in the last BIMF, the lowest local
frequency component is extracted. The residue describes the
longer period duration, which reflects the trend of the signals.
The general procedure of the BEMD can be described as follows:

(1) Identify all extremum of the original 2D signal X(t, f )
through field comparison;

(2) Utilize all extremum to construct the maximal envelope
emax and the minimal envelope emin, and compute the envelope
mean E1(t, f ) using the following equation:

E1 (t, f ) =
emax + emin

2
(10)

The cubic spline interpolation was used as a surface-
fitting method.

(3) Compute the difference between X(t, f ) and E1(t, f ):

h1
(
t, f
)
= X

(
t, f
)
− E1

(
t, f
)

(11)

h1(t, f ) is an intermediate calculated value. The above
process is repeated p times until h1,p(t, f ) meets the BIMF
decomposition condition, where:

h1,p
(
t, f
)
= h1,(p−1)

(
t, f
)
− E1

(
t, f
)

(12)

(4) Set c1(t, f ) = h1,p(t, f ), and c1(t, f ) denotes the first
separated BIMF. Then c1(t, f ) can be separated from the original
data to obtain the remainder r1(t, f ):

r1
(
t, f
)
= X

(
t, f
)
− c1

(
t, f
)

(13)

(5) The residue r1(t, f ) is then treated as the new data subject
of the sifting process. The procedure is then repeated N times
until the standard deviation is less than a predefined threshold:

X∑
t = 0

Y∑
f = 0

[hN,p−1(t, f )− hN,p(t, f )]2

h2
N,p−1(t, f )

< ε (14)

where X,Y is the field size of X(t, f ). The BEMD criterion
to stop the sifting process is based on the residues of two
consecutive BEMD processes. Thus, the value of ε determines
the number and property of the BIMFs. In general, the threshold
ε is set at 0.25.

(6) The sifting process allows the decomposition of the
signal X(t, f ) into N BIMFs and a residue as:

X
(
t, f
)
=

N∑
i = 1

BIMFi
(
t, f
)
+ rN

(
t, f
)

(15)

where rN(t, f ) represents the overall trend of the data and the
BIMFs are the decomposed detailed information. BIMFs and
rN(t, f ) can be regarded as sub-images for analysis.

Non-local means
The NLM method considers the self-similarity property of

the image, and the estimated value of the current pixel in the
image is obtained by the weighted average of the pixels with
similar neighborhood structure. For time-frequency analysis,
the time-frequency signal represents the evolution of signal
energy density with time, and the energy density at the current
moment is similar or correlated with that at other moments,
which is consistent with the algorithm idea of NLM. Here,
NLM filter was used to denoise BIMFs and rN(t, f ). The NLM
algorithm assumes that the noise model is:

F = X0 + N0 (16)

Where X0 is the original image, N0 is the Gaussian white
noise with mean of 0 and variance of σ 2, and F is the image
polluted by noise. In this study, F is the BIMF and rN(t, f ) is
obtained by BEMD decomposition of time-frequency signal X(t,
f ). For a given noisy image:

F = {F(i)|i ∈ I} (17)
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FIGURE 1

The time-frequency denoising algorithm flow.

Where I represents the coordinate range of the whole image.
For any pixel F(i) in I, NLM uses the weighted average of all
pixels in the whole noisy image to obtain the estimated value of
this pixel:

NLF (i) =
∑
j∈I

w
(
i, j
)
F
(
j
)

(18)

The value of w(i, j) depends on the similarity between pixel
F(i) and F(j), and this is measured by the Gaussian weighted
Euclidean distance d(i, j) of the neighborhood matrices N(i) and
N(j) centered on F(i) and F(j), and d(i, j) can be expressed as:

d(i, j) =
∣∣∣∣N (i)− N

(
j
) ∣∣∣∣2

2,a (19)

d(i, j) represents the L2 norm of the Gaussian weighted distance
between the domain matrices N(i) and N(j), and a is the
standard deviation of the Gaussian function. In Gaussian
weighting, the discrete Gaussian function template is used to
weight the Euclidean distance. The pixels closer to the center
have higher weight and the pixels farther from the center have
lower weight. The weight w(i, j) is defined as:

w
(
i, j
)
=

1
c (i)

fk
(
d
(
i, j
))

(20)

fk = exp

(
−
d
(
i, j
)

h2

)
(21)

c (i) =
∑
j∈I

exp

(
−
d
(
i, j
)

h2

)
(22)

Where c(i) is the standardization coefficient, and the
parameter h is the attenuation coefficient of the exponential
function. The signal processed through equation (18) is the
image signal after denoising.

Time–Frequency denoising algorithm
Figure 1 shows the flowchart of the designed time-frequency

denoising algorithm. The main steps of this algorithm are as
follows:

(1) Performing STFT on the observation signal x(t) to obtain
the time-frequency signal X(t, f );

(2) Decomposing X(t,f ) by BEMD to obtain a series of
BIMFs (including residue signals);

(3) Applying NLM filter to each BIMF;
(4) Superimposing and averaging the BIMFs processed by

NLM to obtain the reconstructed time-frequency signal X ’(t, f );
(5) Obtaining the denoised time-frequency signal x’(t) by

obtaining the inverse STFT on the time-frequency signal X
’(t, f ).

Results

Analysis of modal decomposition
results of time-frequency signals by
bidimensional empirical mode
decomposition

After transforming the observation signal x(t) into the
time-frequency signal X(t, f ), BEMD was used to decompose
the time-frequency signal X(t, f ). We then verified the
successful decomposition of X(t, f ) into sub-time-frequency
signals of different scales by BEMD. Figure 2 shows the
BEMD decomposition of the time-frequency signal X(t, f )
into five BIMFs. The series of BIMFs time-frequency diagrams
show that the signal frequency component from BIMF1 to
BIMF5 gradually decreased. BIMF1 contained the highest signal
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frequency component and BIMF5 contained the lowest signal
frequency component. Next, the inverse STFT was generated
for individual BIMFs to observe the decomposition results
of time-frequency signals by BEMD in the time domain. As
shown in Figure 2, the frequency of the time-domain signal
gradually decreased from xBIMF1(t) to xBIMF5(t), with the
main components of the signal concentrated in xBIMF1(t) 8

xBIMF2(t) and xBIMF3(t). Clearly, xBIMF5(t) can be regarded as
residue signal. This result indicates that BEMD can adaptively
decompose EEG time-frequency signals into a series of sub-
time-frequency signals of different scales. In the next step
of analysis, denoising the sub-time-frequency signals can be
performed to eliminate the noise in the time-frequency signals
at different scales, thus enhancing the SNR of the event-related
brain response signals.

Performance analysis of sub
time-frequency signal denoising by
non-local means

Non-local means was next used to denoise the BIMFs
obtained by BEMD decomposition of the time-frequency
signals X(t, f ). We analyzed the denoise performance of NLM
processing of BIMFs as shown in Figure 3. Comparison of the
time-frequency signals for BIMFi and denoised signal BIMFi
“show the greatest denoising effect of NLM on high-frequency
components. After denoising, the energy was more concentrated
for BIMF1,” “BIMF2,” and “BIMF3,” with good suppression of
side band energy. BIMF4 “ and BIMF5” represent the low
frequency components, and exhibited little change compared
with the original signals BIMF4 and BIMF5.

The inverse STFT of the denoised time-frequency signal
BIMFi“ was generated to evaluate the denoising result of NLM
from the perspective of the time domain. The signal xBIMFi(t)
shown in Figure 2 corresponds to the denoised signal xBIMFi” (t)
presented in Figure 3. Compared with “xBIMFi(t) and xBIMFi”(t),
NLM significantly denoised the high-frequency component
signals [xBIMF1“ (t) and xBIMF2” (t)]. After denoising, the time-
domain waveform was smoother with good suppression of the
high-frequency components. The low frequency components
[xBIMF4“ (t) and xBIMF5” (t)] exhibited little change compared
with those before denoising.

The denoising results of NLM method were also analyzed
from the perspective of frequency domain. Figure 4A shows the
spectrum of BIMF1 and BIMF2 and their spectra after denoising
by NLM. As shown, there were significant high-frequency
interference components in BIMF1 and BIMF2 (indicated by the
black box in Figure 4A), while the high-frequency components
of BIMF1 and BIMF2 were significantly suppressed after NLM
treatment. Figure 4B shows the spectrum of the original
signal and the signal after time-frequency denoising. As can
be seen from this comparison, the high-frequency component

of the original signal was effectively eliminated after time-
frequency denoising. The BIMFs decomposed by BEMD contain
the local features of the original signal at different scales,
where the high-order BIMF components represent the high-
frequency components of the signal and the event-related brain
response signals are mainly low-frequency components. These
experimental results indicate that NLM significantly inhibits the
high frequency components, so NLM application will enhance
the low frequency components of the event-related brain signals
for improved SNR of the ERP component of brain signals.

Performance analysis of
time-frequency denoising method

As shown in Figure 2, among the five BIMFs decomposed
from time-frequency signal X(t, f ), the fifth BIMF contained
almost no effective signal component and only represents
the signal residue decomposed by BEMD. For this reason,
the decomposition number of BEMD in the time-frequency
denoising method was set to five, without further decomposition
of the fifth BIMF. Figure 5 presents an original single trail signal
and the signal after denoising of three electrode channels from a
single subject (subject 2). As can be seen from the figure, the
signal after time-frequency denoising effectively fit the trend
of waveform of the original signal, the denoised signal was
smoother, and the high-frequency component in the original
signal was effectively suppressed. ERP refers to the positive or
negative potential at a specific time after the appearance of the
target stimulus. As can be seen from Figure 5, there was a lot of
noise in the original signal, making it difficult to determine the
effective ERP component. After time-frequency denoising, the
variation trend of the time-domain waveform can more easily
be observed. For example, the P300 component that appears in
300–400 ms was effectively enhanced.

Superimposing and averaging multiple trial signals is a
common method to extract ERP components and effectively
improve the SNR of ERP signals. We next compared the
performance of the proposed time-frequency denoising method
with the previously described methods of EEMD-ICA, EEMD-
CCA, and wavelet threshold denoising. To do this, the
superposition average of 56 trial signals was taken as the
reference signal, and then 56 single trial signals were separately
denoised by the time-frequency denoising method, EEMD-ICA,
EEMD-CCA, and wavelet threshold method. The correlation
coefficient between the denoised single trial signal and the
reference signal was calculated, and the performance of the
denoising method was measured by assessing the similarity
between the denoised signal and the reference signal waveform.

Figure 6 shows the analysis results of single trial signals
in three electrode channels from a single subject (subject 2).
Application of the EEMD-ICA method resulted in multiple
source signals after ICA, and the source signals that are most
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FIGURE 2

The modal decomposition results of time-frequency signals by bidimensional empirical mode decomposition (BEMD).

FIGURE 3

The denoise results of sub time-frequency signals by non-local means (NLM).

relevant to the reference signal are shown in Figure 6. As shown,
the performance of EEMD-CCA method was the worst. The
signal processed by EEMD-CCA completely failed to fit the

original signal waveform and differed greatly from the reference
signal. The signal processed by EEMD-ICA was also quite
different from the reference signal. The signal processed by the
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FIGURE 4

(A) The spectrum of BIMF1 and BIMF2 and their spectra after denoising by non-local means (NLM). (B) The spectrum of the original signal and
the signal after time-frequency denoising.

FIGURE 5

The original single trail signal and the signal after denoising.

wavelet threshold method was similar to the original signal,
but the high-frequency interference components in the original
signal were not removed effectively. The single trial signal
processed by the proposed time-frequency denoising method
showed strong waveform similarity with the reference signal,
with elimination of the high frequency component. The results
indicate that the time-frequency denoising method is a more
effective method for EEG denoising.

In this study, the signal processing results of 56 single
trials in all three blocks for each subject were superimposed
and averaged, and then the experimental results of 14 subjects
were superimposed and averaged. The mean correlation
coefficients are shown in Figure 7. The time-frequency
denoising method achieved the highest correlation coefficient
for the three electrode channels, and the EEMD-CCA method
exhibited the lowest correlation coefficient. The EEMD-ICA

and wavelet threshold denoising methods had close correlation
coefficients with the original signal. For CPz and Cz channels,
the performance of the time-frequency denoising method
significantly differed from that of EEMD-ICA and EEMD-CCA
methods (∗p< 0.05, ∗∗∗p< 0.0001).

Both ICA and CCA are applicable to multi-channel signal
analysis, and there is a strong correlation between each channel.
However, each IMF decomposed by EEMD belongs to a different
time scale, with only weak correlation between signals of
each scale. This may be why EEMD-ICA and EEMD-CCA
do not achieve effective noise elimination. Additionally, the
short length of the analyzed data may also explain the lower
performance of EEMD-ICA and EEMD-CCA methods. EEMD-
CCA is used to analyze the canonical correlation between
the original signal and its delay signal, and CCA is based
on Pearson correlation. However, because the ERP signal is
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FIGURE 6

The reference signal and the signal after denoising by the time-frequency denoising method, ensemble empirical mode decomposition
(EEMD)-independent component analysis (ICA), EEMD-canonical correlation analysis (CCA), and wavelet threshold method.

FIGURE 7

The average correlation coefficients between the original single trial signal and the reference signal and those between the single trial signal
processed by time-frequency denoising, ensemble empirical mode decomposition (EEMD)-ICA, EEMD-canonical correlation analysis (CCA),
and wavelet threshold methods and the reference signal. ∗p < 0.05, ∗∗∗p < 0.0001.

highly correlated with time, the delay will lead to the change
of signal phase and the shift of signal phase will lead to a
sharp decline of the Pearson correlation coefficient. Overall,
constructing new signals by time delay for CCA analysis cannot
enhance the correlation of the active components of signals,
and may even play a negative role. This may explain why

the EEMD-CCA method fails to achieve an effective denoising
effect for ERP signals. In conclusion, the above results indicate
that EEG signals processed using this new time-frequency
denoising method exhibit a higher similarity to the reference
signals, demonstrating that the proposed method allows better
denoising of event-related brain response signals.
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Discussion

The accurate estimation of event-related brain response
signals and their characteristics at the single trial level is required
to analyze EEG data and also to further explore the physiological
and psychological functions of brain response signals (Tu et al.,
2016). There is a significant interest in improved analysis
of single-channel signals for several reasons. First, with the
continuous development of science and technology, the medical
system has shifted from traditional hospital-centered care
to mobile phone-based systems. For greater mobility, EEG
collection devices are getting smaller and smaller, and some
devices utilize only a single channel. Second, single-channel
signal analysis is the basis of analysis of multi-channel signals
and brain functional networks, and the effective tools for single-
channel analysis can also be applied to the analysis of multi-
channel signals. EEG signals are typically very weak and subject
to noise interference (such as noise from ECG, ECG, EMG,
motion artifacts, and others), so the development of advanced
strategies for the denoising of single-channel signals has become
an important research topic.

The human brain is a complex non-linear system, and EEG
signals are also non-linear, varying in space and time. As a
physiological signal, EEG has a relatively small range of potential
change (microvolt level), a very fast speed of change, strong
randomness, and large noise and background interference.
For signals with non-linear and non-stationary characteristics
such as EEG, it is necessary not only to pay attention to the
frequency of the signal, but also to characterize the frequency
of the signal at different times. Overall, the analysis of EEG
signals in the time-frequency domain is more consistent with
the characteristics of brain signals. The goal of this work was
to address the problem of strong noise interference of single-
channel signals by application of an effective time-frequency
noise elimination method.

We propose a new adaptive EEG signal denoising method by
converting a one-dimensional EEG signal to a two-dimensional
one from images in the time-frequency domains using STFT,
BEMD, and NLM approaches. Applying inverse transform of
STFT, the denoised time-frequency signal can be transformed
into the time domain for the time-frequency analysis of a
single channel signal. Before denoising the two-dimensional
time-frequency signal, BEMD was used to decompose the time-
frequency signal. BEMD is appropriate for the analysis of non-
linear and non-stationary signals. and can adaptively decompose
the time-frequency signal into a series of BIMFs of different
scales. The noise can then be eliminated at different scales
by denoising the BIMFs. Our results verified the feasibility of
decomposing time-frequency signals into sub-time-frequency
signals of different scales by BEMD. The sub-time-frequency
signal can be analyzed as an image, and we selected the NLM
method to denoise the sub-image signal. According to NLM,
images generally have the property of self-similarity, where

pixels at different positions in the image often show strong
correlation. NLM allows the local smoothing of an image based
on structural self-similarity, resulting in the denoising and
restoration of the main geometric structure of an image. The
assumption of an image feature in NLM is also consistent with
the feature of the time-frequency signal. The time-frequency
distribution of this kind of signal reflects the evolution of the
signal energy density with time, where the energy density at
the current time point is correlated with the energy density at
other timespoints, making NLM an appropriate tool for time-
frequency signal denoising. We tested the denoising of time-
frequency signals by NLM and observed an obvious inhibitory
effect on the high-frequency component of the signals, but
little effect on EEG signals in the low frequency band (i.e.,
the effective EEG signal frequency band), indicating that NLM
can effectively denoise time-frequency signals. Analysis of the
performance of the time-frequency denoising method showed
that the waveform variation trend of the signal after time-
frequency denoising fit well to the original signal, exhibited
a smoother waveform, and effectively suppressed the high
frequency component. Using the superposition average of
multiple trial signals as the reference signal, the correlation
coefficient was calculated between the reference signal and
the original single trial signal, and between the reference
signal and single trial signals after processing by the time-
frequency denoising method, EEMD-ICA, EEMD-CCA, and
wavelet threshold denoising methods. The results show the
highest correlation coefficient between the signal processed by
the time-frequency denoising method and the reference signal,
indicating that the single trial signal after application of this
time-frequency denoising method exhibited highest similarity to
the waveform of the reference signal.

In summary, the time-frequency denoising method
proposed in this study exhibits outstanding performance.
There are several potential directions for future work. For
example, time-frequency signals can be analyzed as images.
Previous studies proposed many effective image denoising
methods (Elad and Aharon, 2006; Dabov et al., 2007), and
deep learning methods continue to provide advances in the
field of image analysis (Kai et al., 2017; Zhang et al., 2018). All
of these methods can be tested for analysis of time-frequency
signals. Since time-frequency analysis may be appropriate
for the non-linear and non-stationary characteristics of brain
signals, feature extraction and feature classification of brain
signals should also be considered in time-frequency domain.
Spatial filtering may also improve brain signals analysis. After
transforming multi-channel brain signals into time-frequency
domain, an effective time-frequency signal fusion method can
be developed to extract the characteristics of multi-channel
brain signals. Overall, time-frequency analysis of brain signals
has broad application prospects and future work should explore
use of multiple strategies to decrease noise and improve SNR.
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Conclusion

To address the issues of strong noise interference and
weak features of brain signals that limit effective study and
interpretation of brain signals, a time-frequency denoising
algorithm framework combining STFT, BEMD, and NLM
was designed based on the non-linear and non-stationary
characteristics of brain signals. In this algorithm, BEMD is used
to decompose time-frequency signals into sub-time-frequency
signals of different scales, and NLM method is used to effectively
suppress the high-frequency components of signals for noise
elimination at different scales. The experimental results show
that the time-domain waveform of the brain signals after STFT-
BEMD-NLM processing well fits the trend of the original signal
waveform, and the waveform is smoother. We compared the
correlation coefficients between the original single trial signal
and the reference signal obtained by superposing and averaging
multiple trial signals and those between the single trial signal
processed by time-frequency denoising, EEMD-ICA, EEMD-
CCA, and wavelet threshold methods and the reference signal.
The results show that the brain signal after processing by
the proposed method is most similar to the waveform of the
reference signal, indicating that the proposed time-frequency
method has better denoising performance and can be considered
for practical brain signal analysis and processing.
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