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Multivariate classification analysis for event-related potential (ERP) data is

a powerful tool for predicting cognitive variables. However, classification is

often restricted to categorical variables and under-utilises continuous data,

such as response times, response force, or subjective ratings. An alternative

approach is support vector regression (SVR), which uses single-trial data

to predict continuous variables of interest. In this tutorial-style paper, we

demonstrate how SVR is implemented in the Decision Decoding Toolbox

(DDTBOX). To illustrate in more detail how results depend on specific toolbox

settings and data features, we report results from two simulation studies

resembling real EEG data, and one real ERP-data set, in which we predicted

continuous variables across a range of analysis parameters. Across all studies,

we demonstrate that SVR is effective for analysis windows ranging from 2 to

100 ms, and relatively unaffected by temporal averaging. Prediction is still

successful when only a small number of channels encode true information,

and the analysis is robust to temporal jittering of the relevant information in

the signal. Our results show that SVR as implemented in DDTBOX can reliably

predict continuous, more nuanced variables, which may not be well-captured

by classification analysis. In sum, we demonstrate that linear SVR is a powerful

tool for the investigation of single-trial EEG data in relation to continuous

variables, and we provide practical guidance for users.

KEYWORDS

multivariate pattern analysis, support vector regression, event-related potentials,
electroencephalography, toolbox

Introduction

Multivariate analysis techniques for non-invasively acquired neuroimaging data
with a high temporal resolution, such as electroencephalography (EEG) and
magnetoencephalography (MEG) data, have become increasingly popular in cognitive
neuroscience research. The use of classifiers by means of multivariate pattern analysis
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(MVPA) in particular has the advantage that it can potentially
extract more information from the signal at a given point in time
than would be possible using classical univariate approaches.
This can lead to insights about what information or cognitive
process is represented in brain activity patterns at very short
timescales and can shed light on the dynamic development
of neural representations over time (King and Dehaene, 2014;
Contini et al., 2017; Carlson et al., 2020).

In recent years, several toolboxes have been published
that allow researchers to apply these techniques to EEG/MEG
data, including ADAM (Fahrenfort et al., 2018), CoSMoMVPA
(Oosterhof et al., 2016), DDTBOX (Bode et al., 2019), FieldTrip
(Oostenveld et al., 2011), MNE-Python (Gramfort et al., 2013),
MVPA-Light (Treder, 2020), and the neural decoding toolbox
(Meyers, 2013), complementing similar toolboxes for functional
magnetic resonance imaging (fMRI; e.g., Hanke et al., 2009;
Schrouff et al., 2013; Hebart et al., 2015). In addition, several
tutorial-style papers have been published that provide practical
advice for users (e.g., Grootswagers et al., 2016; Fahrenfort et al.,
2018; Bode et al., 2019; Carlson et al., 2020; Treder, 2020).

An important constraint of multivariate pattern classifiers,
as they are most frequently implemented, is that they are
restricted to predicting categorical variables, because they
use multivariate signals to assign trials to distinct classes.
Recently, there has been a growing interest in the prediction
of continuous variables from multivariate M/EEG signals for
which classification analyses are therefore not well-suited. For
example, researchers have attempted to discriminate between
high and low values of a continuous variable using median splits
(e.g., Korjus et al., 2015), however, this approach often suffers
from reduced statistical power (additional issues are discussed
in MacCallum et al., 2002).

An alternative approach is support vector regression (SVR),
which can be used to predict continuous variables of interest
from single-trial data, such as response times, response force,
subjective ratings (e.g., emotional state, valence, etc.), and any
other variable that can be associated with EEG patterns (e.g.,
Bode et al., 2014; Lan et al., 2016; Siswandari et al., 2019;
Schubert et al., 2020). This approach is particularly useful if one
is interested in decoding behaviourally meaningful continuous
variables that cannot easily (or without loss of nuanced
information) be divided into distinct classes (e.g., Sabbagh et al.,
2020; for applications using Magnetoencephalography (MEG)
data see e.g., Trübutschek et al., 2017; and for applications with
EEG data beyond the prediction of cognitive variables see, e.g.,
Li et al., 2008; Jach et al., 2020; Sato et al., 2008).

In this article, we will describe the implementation of
SVR in the Decision Decoding Toolbox (DDTBOX), which
has increasingly been used to decode different cognitive
processes, ranging from low-level vision to higher level abstract
representations, from EEG amplitude data (Bode et al., 2019).
The aim of this paper is to first provide potential users with
background information about what types of questions have

been (and can be) addressed using SVR followed by practical
guidance on how to implement such analyses in the toolbox. We
note that there are other implementations of this and similar
approaches (e.g., Li et al., 2008; Sato et al., 2008; Lan et al.,
2016). Note that our paper is not intended as a comprehensive
comparison between different multivariate approaches (e.g.,
linear discriminant analysis, random forest classification), nor to
demonstrate superiority of one approach over another. Instead,
we focus on one specific implementation in DDTBOX here,
which is designed to provide users with code that is easy to
adapt to new research questions. We further note that there
are many aspects and variants of SVR (and parameters in
DDTBOX) which will also not be covered (e.g., the use of non-
linear kernels), and users will be referred to our extensive online
Wiki. The chosen parameters and features of data, however, map
onto to the most frequently encountered analytical decisions in
cognitive neuroscience research, and we believe that users will
benefit most from the overview and the analyses we provide
here.

We first explain the general principles of conducting SVR
in DDTBOX, including a brief overview of some analysis
parameters, which can be adjusted by the user. These include
a) the features included in the analysis, i.e., whether a spatial
or a spatiotemporal analysis is conducted; and b) the choice of
an appropriate window width for the analysis window that is
moved through the trial to capture potential information in the
signal. This section serves to provide users with a guide on how
to best utilise the toolbox. We then briefly review the types of
cognitive processes that have been investigated using SVR. Note
that to maximise comparability with the approach, rather than
providing a comprehensive review of all multivariate regression
studies, we again focus on studies that have used DDTBOX.

In the subsequent section, we present an analysis of
simulated EEG data to showcase the changes in results if the
key parameters are varied. For this, we created a dataset for
N = 37 simulated participants (this N corresponded to our own
recent EEG study, which is also analysed here) with 100 trials
each (simulating noisy amplitude data, sampled at 500 Hz),
time-locked to an event-of-interest (as is common for ERP
analyses). In each trial, we injected signal into random activity
for a circumscribed number of channels during a small time-
window (as it typically occurs in ERP studies investigating
brief cognitive processes). The signal scaled with a simulated
continuous cognitive variable in each trial (which could be e.g.,
rating scale values, response times, or any other variable that can
meaningfully be measured at interval levels). We subjected this
data to the SVR function of DDTBOX and used all combinations
of spatial and spatiotemporal analyses with separate analyses
using analysis time windows of 2, 10, 20, 50, and 100 ms.
We show that across all combinations, the information could
be reliably decoded. The results further revealed that there
was no strong advantage for using the (computationally more
demanding) spatiotemporal analysis over the simpler spatial
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analysis (which neglects temporal information within the
analysis time window). Furthermore, it was found that some
temporal smearing (i.e., a forward projection) of information
occurred with larger time windows (50 and 100 ms width).

Next, we present the results of a second simulation study in
which we focussed on spatial SVR using the same analysis time
window widths as before. This time, we systematically varied
a) the temporal jitter (i.e., the variance) with which the signal
was present in the data, and b) the number of channels that
contained any signal. This served to showcase the impact of
two variations of signal that can be expected from real data on
the decodability of the information. These analyses showed that
more temporal variability in information and less informative
channels led to the expected drop in decodability; however,
information could still be recovered from the data in each case.

Notably, the simulation studies constituted an idealised,
simplistic case of information representation: there was always
signal in each trial, and the signal always scaled with the
variable-of-interest. Additionally, the way that the variable was
“represented” in the signal was simplified as it was present
in all signal-carrying channels alike, which does not take into
account more complex multivariate coding schemes that may
be present in real signal patterns. We therefore demonstrate
that SVR can also recover information from real data for which
we do not know exactly how information is represented. For
this, we reanalysed data from a recent study (Schubert et al.,
2021) that was comparable in size to the simulated data. In
this study, in each trial participants rated the tastiness and
healthiness of a visually presented food item. We again used
spatial and spatiotemporal SVR in combination with all analysis
window widths to decode both ratings in separate analyses,
demonstrating highly similar results to the simulated data.

Finally, we summarise the findings, discuss limitations of
these studies, and end with recommendations for users on how
to tailor SVR in DDTBOX for their purposes, and a short
discussion on the use of SVR in general.

Support vector regression analysis in
Decision Decoding Toolbox

Implementation of support vector regression
analyses in Decision Decoding Toolbox

The latest version of DDTBOX (Version 1.0.5) allows users
to perform either support-vector machine (SVM) classification,
interfacing with LIBSVM (Chang and Lin, 2011) or LIBLINEAR
(Fan et al., 2008), or support vector regression (SVR; interfacing
with LIBSVM) to analyse EEG amplitude data (note that it
can also be used to analyse other formats, such as spectral
power data; e.g., Jach et al., 2020; but this option is not
yet routinely integrated). The epsilon-insensitive linear SVR
method as implemented by default in DDTBOX confers many
of the advantages of SVMs to perform regression based on

multivariate patterns of EEG data. In contrast to standard linear
regression, in epsilon SVR any residuals (errors) of less than a
set value of epsilon are ignored, and only residuals larger than
this value determine the structure of the regression model (for
further details see Hastie et al., 2009).

Before running the SVR analysis, the data is pre-processed
in the same way as for a classical ERP analysis. It has been
suggested that data cleaning can be less stringent for MVPA
given that, for example, noisy and non-informative channels
and unsystematic artefacts would not hurt the classifier, because
low weights will be assigned to those features during the
classification (Grootswagers et al., 2016; Carlson et al., 2020);
however, we prefer applying the same strict artefact rejection
procedures to the data as for ERP analyses. This will also
allow for making the data fully comparable to results from
classical ERP analyses, which are often reported alongside the
MVPA results. Users may potentially choose to perform current
source density (CSD) analyses as a final pre-processing step.
This method will not be reviewed in detail here (and is not
performed for the reported data). In short, for CSD analysis,
a Laplacian filter is applied to re-reference the data to the
surrounding electrodes. This has the advantages that the data
becomes independent from a specific reference channel, and
the unique contributions from each channel are amplified while
redundancies in the data are attenuated (Perrin et al., 1987;
Pernier et al., 1988). The use of similar Laplacian filters has
been suggested to improve classification (Bai et al., 2007). The
resulting higher topographical accuracy of the CSD signals
(Gevins, 1989), due to the reduction of redundancies in the
signals from adjacent electrode sites, could indeed be beneficial
also for pattern classification analysis using SVR (Bode et al.,
2012).

For the SVR, the pre-processed data (time-locked to an
event of interest) is then exported into a MATLAB data matrix
with the format: channels x data points x trials. A second matrix,
in the form of a single column containing the variable of interest
for each trial (corresponding to the trials included in the EEG
data matrix), is also generated. Each participant’s matrices serve
as the input for a within-participant SVR to predict the variable-
of-interest from distributed patterns of EEG amplitude data.

DDTBOX uses a moving-window approach in which the
trial data (usually containing a baseline period epoched and
truncated, depending on the individual research question) is
analysed within an analysis time window, which is moved
through the entire trial in small (overlapping or non-
overlapping) steps, each time containing the next step’s data. It is
also possible to use a pre-defined time-period of interest instead
(e.g., Billing et al., 2018), but we will focus on the moving-
window approach in this paper. Each analysis step/window
is treated as an independent analysis. In DDTBOX, a cross-
validation procedure is applied for which the trials are randomly
divided into different sets (e.g., ten sets for a ten-fold cross-
validation). All sets but one are used for training, and the
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independent left-out data set is used for testing how well
the trained regression model generalises to unseen data (for
further details see Bode et al., 2019). This procedure is repeated
for each fold of the cross-validation by using each data set
once for testing while independently training on all other
sets. In addition, DDTBOX allows for implementing multiple
iterations of the entire cross-validation procedure, each time
with a fresh, random re-sorting of trials into new sets (the
default in DDTBOX is ten of such iterations of a ten-fold
cross-validation). This step increases the overall time and
computational processing costs, but it substantially decreases
the probability of any false positive results that might by chance
result from the initial sorting of data. The SVR outputs a Fisher-
Z transformed correlation coefficient for the correlation between
the real “labels” (i.e., the value of the variable-of-interest in each
trial) and the predicted “label” (i.e., the predicted value of the
variable-of-interest). The average result of all iterations of all
cross-validation steps is the final output and assigned to the
respective analysis time window. An identical analysis is then
repeated for the data from each analysis time window until
the end of the trial (i.e., the last analysis window) is reached
(Figure 1).

Note that to perform the SVR, DDTBOX interacts with
LIBSVM (Chang and Lin, 2011). It possible to choose different
kernels for the SVR, but we will focus on the default setting,
which is used in a great majority of cognitive neuroscience
research of this kind, the linear kernel. LIBSVM further allows
the user to change various other settings, such as the epsilon and
cost parameters, which will not be considered here in detail.

Participants’ individual results are then submitted to
group-level statistical testing. The default option in DDTBOX is

to test the results of each analysis time window independently
against an empirical chance distribution for the same time
window, obtained by repeating an identical number of iterations
of the same cross-validation procedure for each participant,
with exactly the same data and the same labels, the only
difference being that the assignment of labels to data is
randomised (and again freshly randomised for each iteration
of the cross-validation procedure). This constitutes a more
conservative approach than testing against theoretical chance
level (Combrisson and Jerbi, 2015), and it allows for controlling
for any biases inherent in the data (for details see Bode et al.,
2019). Decoding results from each analysis time window can
then be tested for statistical significance using either paired-
samples t-tests or a group-level analysis method (Allefeld et al.,
2016) based on the minimum statistic (Friston et al., 1999).
Several options for corrections for multiple comparisons can be
used, some of which exploit the temporal autocorrelation of the
classification results across analysis time windows to preserve
statistical power, e.g., cluster-based permutation tests (Bullmore
et al., 1999; Maris and Oostenveld, 2007).

Specific parameter settings for support vector
regression in Decision Decoding Toolbox

To initially set up the SVR analysis, DDTBOX first
requires the user to modify a MATLAB script that defines
all input parameters for the specific data set (including the
location of data on the computer, the number of channels, the
sampling rate, etc.) as well as the parameters for the analysis
to be performed.

The first decoding analysis parameter requires users to
choose between a spatial, temporal, or spatiotemporal SVR

FIGURE 1

Schematic overview of support vector regression. At each timestep, EEG data and continuous responses from 90% of trials are used to train a
support vector regression, which is then tested using the remaining 10% of trials. This procedure is then repeated such that each subset of trials
is tested once.
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analysis. We will neglect the temporal analysis here as it does
not make use of the full spatial pattern of signal (see Bode et al.,
2019 for details). The difference between the spatiotemporal and
spatial analysis is that the spatiotemporal method extracts all
available data points within the analysis time window for all
(or all specified) channels as features (e.g., if data was recorded
at 500 Hz, and the analysis time window width is 10 ms, and
the data set contains 64 channels, this results in: 5 × 64 = 320
features). The spatial analysis, on the other hand, first averages
across the data points for each channel within this analysis
time window, resulting in only one feature per channel that
represents the average signal for each channel for the respective
window (e.g., 1 × 64 = 64 features for the same 10 ms analysis
time window).

Next, the user is required to specify the width of the analysis
time window and the step size with which the analysis time
window is moved through the trial. If both are the same, then the
analysis time window is moved in non-overlapping steps, while
if the step size is smaller than the window width, overlapping
analysis time windows are used that sample from partly the same
data. This, in turn, has to be considered for the interpretation;
but for the sake of this paper, we will simply use a step size of
10 ms. The most commonly used analysis time window widths
range from 1 data point (2 ms for 500 Hz, or 1 ms for 1,000 Hz)
to 100 ms windows, and we will systematically explore these
window widths here.

There are multiple other settings the user can change,
including whether the data should be normalised before
decoding (the default setting is to normalise the data;
normalising can also substantially reduce computation time),
and whether feature weights should be extracted. We will
not cover these here but refer to the toolbox Wiki for more
details.1 The group-level analysis script also allows choosing
different options for statistical tests, as mentioned above,
but we will solely focus on standard group-level statistical
tests using a series of paired-samples t-tests, corrected for
multiple comparisons using cluster-based permutation tests
based on the cluster mass statistic (Bode et al., 2019; see
Bullmore et al., 1999; Maris and Oostenveld, 2007).

Research examples for support vector
regression analyses using Decision
Decoding Toolbox

Several published studies have successfully used SVR to
decode behaviourally meaningful continuous variables from
EEG data. One possibility is to predict continuous aspects of
behaviour, for example aspects of response force. Siswandari
et al. (2019) asked their participants to produce a specific

1 https://github.com/DDTBOX/DDTBOX/wiki

force pulse in each trial to match a given target range. Instead
of only decoding whether the target range would be hit
or not, they used linear spatiotemporal SVR to predict the
specific force parameters (i.e., the peak force and time-to-
peak) from EEG data recorded in the lead-up to response
execution. Their results demonstrate that the neural signals
during the early preparation period already contained specific
information about the subsequently unfolding force response,
beyond a simple error-signal. In another study, Bode et al.
(2014) have used SVR to predict post-experiment ratings of
object attributes during passive viewing. Similarly, Schubert
et al. (2020) have used linear SVR to predict the success ratings
for different emotion regulation strategies from ERP signals,
extracted from the anticipation phase and the implementation
phase of an emotion regulation task. Another study by Schubert
et al. (2021) reported results from two experiments in which
linear SVR was used to predict ratings of the healthiness and
tastiness of visually presented snack food items. In the first
experiment (from which the data were re-analysed for the
present paper), participants gave the ratings immediately after
being exposed to the items. In the second experiment, these
ratings were given before the experiment, and EEG data was
analysed from the subsequent phase of making consumption
decisions.

Taken together, these examples provide evidence that SVR
is a powerful tool for the prediction of (even abstract) aspects
of processed stimuli, detailed assessments of one’s own mental
states, as well as fine-grained aspects of unfolding motoric
responses. It is important to note that there is no one-size-fits-
all approach, because different cognitive processes will require
slightly different parameters to be uncovered, and hence the
cited studies have used different parameters for the reported
analyses. Some cognitive processes of interest might occur early
and are brief, while others occur later and are sustained. These
processes will, in turn, have a variety of different neural drivers,
and might be reflected by very different ERPs in space and time.
In the following sections, we will experimentally explore some
of these aspects and show how different parameter settings, as
well as variations in the signal, may impact the SVR results.

Materials and equipment

All SVR data analyses were conducted using DDTBOX
version 1.0.5 (Bode et al., 2019). For the food attribute decoding
study, data preprocessing was conducted first using EEGLab
v13.4.4b (Delorme and Makeig, 2004). Both toolboxes were run
in Matlab 2018b (Mathworks). Please see the Methods section
below for details.

Electrophysiological activity for the food attribute decoding
study was recorded using a BioSemi Active II system, with 64
channels, a sample rate of 512 Hz, and recording bandwidth
DC-102 Hz. All details are reported in the Methods section
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below. SVR analyses were conducted as for Simulation Study 1
and 2 (see below).

Methods

Simulation Study 1: SVR analysis type
and analysis window width

Data
All code and data used in the Simulation studies will be

made available2 at the time of publication. For each condition,
we simulated 37 datasets (matching the sample size of the study
by Schubert et al. (2021) that was reanalysed using identical
procedures and is reported below), consisting of 100 epochs
(corresponding to a rather typical-to-large number of trials in
real experiments) spanning -100 to 1,000 ms relative to event
(i.e., simulated stimulus) onset. The number of channels was
64, and the sampling rate was 500 Hz. To generate noise in
the EEG signal, for each channel and each trial we summed
together multiple sinusoids with periodicities ranging between
1 and 40 Hz (in steps of 0.1 Hz) with randomised phases.
The amplitude of each sinusoid was scaled so that higher
frequencies were of smaller amplitude (multiplied by [1/the
sinusoid frequency in Hz]). The first 100 ms of the epoch were
treated as a pre-stimulus baseline, and the resulting epochs were
baseline-corrected using the average amplitude of this 100 ms
baseline interval. This approach was used to impose a degree of
temporal autocorrelation as found in real EEG data; however,
similar results could also be obtained by generating Gaussian
noise independently at each time point.

In addition to the noise, we systematically added “signal”
to 8 channels during a specific time period. The signal was
generated by adding a Gaussian-shaped curve to the noise for
each of the 8 specified channels. The peak (i.e., time point of
maximum amplitude) of the Gaussian was located at 400 ms
from stimulus onset. The Gaussian standard deviation was
20 ms, meaning that 95% of the added signal was located

2 https://osf.io/ef4an/

within ± 40 ms of the peak time point. The peak amplitude of
the signal (i.e., the height of the Gaussian) scaled linearly with
the value of the continuous variable that comprised the SVR
condition label in each trial. This means that, in the absence of
noise and latency variability, the peak amplitude of the Gaussian
would be perfectly correlated with the SVR condition labels.
We note that the magnitude of the signal was equal across all
of the eight channels. While this is different from typical EEG
data (where signal magnitudes may differ across electrodes), it
was useful to derive a fixed signal magnitude in the simulations
here. We further varied the peak time points of the Gaussian-
shaped signals across trials according to a boxcar distribution,
in order to emulate temporal variability in EEG signals. We
chose a jitter of ± 30 ms, meaning that the peak of the signal
Gaussian in a given trial was equally likely to occur between 370
and 430 ms. Continuous values comprising the SVR condition
labels were generated by taking random draws from a Gaussian
distribution with a mean of 0 and a standard deviation of 1.
We used various settings of the SVR analysis in DDTBOX to
predict the continuous variable from the multivariate data as
described below.

Support vector regression analysis
Linear SVR in DDTBOX (Version 1.0.5) was used,

interfacing LIBSVM (using default settings: epsilon-insensitive
SVR algorithm; cost parameter C = 0.1). We analysed data
separately applying (A) spatial SVR, and (B) spatiotemporal
SVR. Within each of these analysis streams, we ran all analyses
separately with different analysis window width: 2, 10, 20, 50,
and 100 ms. The 2 ms analysis time window equates to one single
data-point. As this is the smallest possible analysis window
width, it naturally cannot contain temporal information within
the analysis window (and was therefore counted as a spatial
analysis only). Table 1 shows the different analysis conditions.

To simplify the parameter space, we always used the step
size of 10 ms with which we moved the analysis time window
through the epoch (note that the 2 ms analysis windows required
a 2 ms step size to avoid gaps in the resulting information time-
course).

We ran the standard ten iterations of a ten-fold cross-
validation. For statistical testing, we applied a cluster-based

TABLE 1 Data generation and decoding analysis settings used for simulation studies 1 and 2.

SVR type Temporal signal jitter Analysis window width [ms] Analysis window width [ms]

Study 1 8 informative channels

Spatial Small (± 30 ms) 2 10 20 50 100

Spatiotemporal Small (± 30 ms) 10 20 50 100

Study 2 8 informative channels 16 informative channels

Spatial Small (± 30 ms) 2 10 20 50 100 2 10 20 50 100

large (± 60 ms) 2 10 20 50 100 2 10 20 50 100
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permutation test at p < 0.05 based on the cluster mass statistic
(5,000 permutation iterations, cluster-forming alpha = 0.05),
as also used in Schubert et al. (2021). The group results
represent above-chance Fisher-Z-transformed correlations
between predicted label (i.e., the predicted expression of the
variable-of-interest) and the real label (i.e., the real expression
of the variable-of-interest); or in other words, the decoding
performance.

Simulation Study 2: Number of
informative channels and temporal
variance

Given that Simulation Study 1 produced similar results
(reported in Section 4.1) for spatial and spatiotemporal analyses
for this “ideal” dataset (which was characterised by a simple
encoding structure of enhanced signal at all informative
channels), we opted to only use spatial SVR for the next
simulation study. In real data, the precise spatial and temporal
location of signal is usually unknown. The second simulation
study therefore systematically tested the impact of a) including
smaller and larger numbers of information-carrying channels,
and b) the presence of smaller or larger temporal jitter in
information distribution across these channels.

Data
Datasets for each experimental condition were generated

in the same way as for Simulation Study 1, and we again
used N = 37 datasets with the same properties. In this study,
we tested four conditions, which incorporated the possible
combination of two experimental factors: (1) the number
of channels that contained signal (low: 8 channels; high:
16 channels) and (2) the jitter with which the signal was
distributed across time in these channels (small: 15 data
points/ ± 30 ms; large: 30 data points/ ± 60 ms using
boxcar distributions as in Simulation Study 1). Table 1 shows
all combinations of experimental conditions (note that the
condition [16 channels + jitter = ± 30 ms] corresponded to
the dataset generated for Simulation Study 1). We again applied
linear SVR in DDTBOX to analyse all experimental conditions
separately.

Support vector regression analysis
The analysis pipeline and parameters were identical to

Simulation Study 1. The only difference was that we only used
spatial SVR, again in combination with analysis time window
widths of 2, 10, 20, 50, and 100 ms (with a step size of 2 ms
for the smallest window width, and 10 ms step size for all
other window widths). Group-level statistical testing was again
conducted using cluster-based permutation tests at p < 0.05
(5,000 permutation iterations, cluster-forming alpha = 0.05) to
control for multiple comparisons.

Food attribute event-related potential
decoding experiment

Next, we reanalysed a previously published experiment in
which participants gave explicit ratings of how tasty and how
healthy they perceived visually presented food items to be, while
64-channel EEG was recorded (Schubert et al., 2021). From
the analyses reported in the original paper (Schubert et al.,
2021), we already learned that decoding was successful using
spatiotemporal SVR with 20 ms analysis windows. Here, we
reanalysed the data with the same parameters as in Simulation
Study 1, i.e., we used both spatial and spatiotemporal linear
SVR analyses in combination with 2, 10, 20, 50, and 100 ms
analysis time windows. This served to qualitatively compare the
simulation results with results from a real EEG study in which
the properties of the signal (e.g., the informative channels and
the extent to which the signal was jittered) were unknown.

Participants
Thirty-nine participants were recruited, all right-handed,

fluent in written and spoken English, having normal or
corrected-to-normal vision, and having no special dietary
restrictions or history of eating or feeding disorders. Two
participants’ data were excluded because of excessively noisy
data. The final sample consisted of 37 participants, ranging from
18 to 36 years old (M = 24.08 years, SD = 4.74; 29 females, 8
males). Participants gave written informed consent before the
task. The experiment was approved by the Human Research
Ethics Committee (ID1955772) of the University of Melbourne
and conducted in accordance with the Declaration of Helsinki.

Stimuli
Stimuli consisted of 174 images of food items from the

Food-Pics database (Blechert et al., 2019). Stimuli were selected
with the goal of representing a variety of food groups (fruit,
vegetables, chocolate, fish, meat, nuts, snacks/meals – sweet
and savoury) and a wide range of perceived tastiness. For the
full image selection procedure, and questionnaires, and a more
detailed description of the procedures, see Schubert et al. (2021).

Task structure
In the main task, each trial began with a fixation cross (1.5 s),

followed by a food image, which was displayed for 2 s (Figure 1
in Schubert et al., 2021). After that, the food image remained
on the screen, and in addition a question was displayed below
the image – either “How much do you enjoy the taste of this
food?” or “How healthy do you consider this food to be?”
Participants answered this question using a continuous sliding
scale from “Not at all” to “Very much,” with an underlying
range (not visible to participants) of 0–100. The end points of
the scale were randomly reversed (50% left or right side for
each end point) to prevent any motor preparation in the image
presentation phase. Participants were given 10 s to answer by
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moving the slider to the position that they believed appropriate
and clicking the mouse. Each food image was shown twice
throughout the experiment, once paired with each question.
There were twelve experimental blocks, and in each block only
one of the two questions was asked, alternating between blocks.
Whether the first block was a taste-rating or health-rating block
was randomised across participants. Taken together, the task
comprised 348 trials (for details see Schubert et al., 2021).

Electroencephalography preprocessing
Electrophysiological activity was recorded using a BioSemi

Active II system, with 64 channels, a sample rate of 512 Hz, and
recording bandwidth DC-102 Hz. 64 Ag/AgC1 electrodes were
attached to a fabric cap according to the International 10–20
system, with four additional electrodes beside and below the left
eye (recording the horizontal and vertical electrooculogram),
and above the left and right mastoids. Electrode offsets were
kept within ± 50 µV. Using EEGLab v14.1.2 (Delorme and
Makeig, 2004), the data were firstly re-referenced to the average
of the left and right mastoids, then high-pass (0.1 Hz) and
low-pass (30 Hz) filtered (EEGLab FIR Filter New, default
settings). They were segmented into epochs beginning 100 ms
before an image was presented and ending 1,000 ms after.
Epochs containing muscle and skin potential artefacts were
identified via visual inspection and removed. Excessively noisy
channels were removed and interpolated using spherical spline
interpolation, and an independent components analysis (ICA)
was used to identify and remove eye movements, saccades,
and blinks, using EEGLab functions (Delorme and Makeig,
2004). Epochs containing amplitudes at any channel that
exceeded ± 150 µV were excluded from analyses (for details see
Schubert et al., 2021).

Linear support vector regression
The linear SVR approach followed exactly the same

approach as outlined above, in separate analyses for perceived
taste and health. For each analysis, a multivariate regression
model was estimated using DDTBOX interfacing LIBSVM
(default settings: epsilon-insensitive SVR algorithm; cost
parameter C = 0.1) to predict the ratings from the neural data.
The average results from all ten iterations of the ten-fold cross-
validation procedure were Fisher-Z transformed correlation
coefficients for the correlation between the ratings (i.e., labels)
and the predicted labels.

As in Simulation Study 1, this analysis was conducted
separately using (a) spatial SVR and (b) spatiotemporal SVR.
We again used 2, 10, 20, 50, and 100 ms analysis time windows,
moved in steps of 10 ms through the trial (again, only for the
2 ms analysis time window, 2 ms steps were used).

Individual empirical chance results were again created for
each participant, obtained by using a shuffled-labels analysis
with an identical number of iterations of the same cross-
validation procedure with exactly the same data and the same

labels (see above). Results from each analysis time window
were then tested at group level for statistical significance
against the distribution of the empirical chance results by using
paired-samples t-tests, corrected for multiple comparisons using
cluster-based permutation tests.

Results

Simulation Study 1

The results of Simulation Study 1 showed that all spatial SVR
analyses using all analysis time window widths could be used to
successfully identify the time period over which the signal was
present (Figure 2). The same was true for all spatiotemporal
analyses using all time window widths. The results showed that
there was no meaningful advantage for using a spatiotemporal
over a spatial SVR analysis. The variable-of-interest could be
decoded using any analysis time window, including the shortest
window, which contained only one data-point per channel
per analysis window. The average decoding performance did
not differ between analysis approaches (note that the absolute
Fisher-transformed Z-value here is somewhat arbitrary and
depends on the signal-to-noise ratio (SNR) of the simulated
data). However, for both spatial and spatiotemporal SVR, there
was some temporal smearing, meaning that time windows
earlier in the trial became significant with increasing analysis
windows width (more so for the spatiotemporal SVR, where
the early informative time points were located as preceding
300 ms). Importantly, this does not reflect higher sensitivity
to information, but an artificial projection of information to
these early windows. This is due to the way that analysis
time windows are constructed: DDTBOX defines a window
by the earliest time point included, and it moves the window
through the epoch from the start of the epoch to the end of
the epoch. As a consequence, any analysis time window that is
moved through the epoch becomes significant when predictive
information is included at the tail-end of the window. This
means, for longer windows, which do not differentiate between
information within the window, the true information is, in
reality, located at the back (i.e., later time points) of the window,
but attributed to the entire window. This could in principle be
controlled for by analysing the detailed feature weight structure
(including both channels and time points as features); however,
as shown here, it can be entirely avoided by using shorter
analysis windows.

Simulation Study 2

The results of Simulation Study 2 again demonstrate
that it was possible to decode the variable-of-interest for all
experimental conditions with all analysis window widths using
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FIGURE 2

Decoding performance in Simulation Study 1 when using (A) spatial SVR and (B) spatiotemporal SVR, with window widths of 2, 10, 20, 50, and
100 ms. Blue lines denote decoding performance using the original data, orange lines denote decoding performance using permuted data.
Shaded regions denote standard errors of the mean (SEMs). Magenta shaded regions denote time windows at which statistically significant
above-chance decoding accuracy was found.

spatial SVR (Figure 3 shows analysis window widths of 10 and
100 ms; see Supplementary Figures 1–3 for analysis window
width 2, 20, and 50 ms). The accuracy and temporal spread of

significant decoding results was again highly comparable for the
shorter analysis windows (2, 10, and 20 ms), which all accurately
recovered the underlying time-course of the informative signal.

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.989589
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-989589 October 29, 2022 Time: 14:50 # 10

Bode et al. 10.3389/fnins.2022.989589

FIGURE 3

Decoding performance in Simulation Study 2 when using spatial SVR, with window widths of (A) 10 ms and (B) 100 ms. Blue lines denote
decoding performance using the original data, orange lines denote decoding performance using permuted data. Shaded regions denote
standard errors of the mean (SEMs). Magenta shaded regions denote time windows at which statistically significant above-chance decoding
accuracy was found.

We observed the same temporal smearing of information to
earlier time points when using longer analysis time windows, in
particular for 100 ms analysis windows, as in the first simulation
study.

As expected, with fewer channels being informative,
there was a clear reduction in decoding accuracy; however,
it was still possible to significantly predict the variable-
of-interest above chance. Introducing a temporal jitter in
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information distribution for these channels additionally reduced
the decoding performance and led to the expected temporal
smearing of decoding results across time. Notably, the jitter
nevertheless did not prevent the detection of information for
any analysis time window.

Food attribute event-related potential
decoding experiment

The behavioural results and questionnaire results are
reported in the original study (Schubert et al., 2021) and are not
relevant here.

Taste ratings decoding
Using spatial SVR, taste ratings could be predicted

significantly above chance for all analysis time window widths
(Figure 4, left side). The general shape of the information time-
course was also very similar across all analysis time windows,
which confirms the robustness of the approach with real data.
The information time-courses for 2 and 10 ms windows looked
very similar, and the time-course was again smoothed with
larger window widths of 20–100 ms because the windows were
now moved in overlapping steps. This also meant that the
separate significant clusters merged into larger clusters with
increasing window width, which is expected since consecutive
analyses sampled from overlapping sections of data at larger
window width. In general, it can be seen in the figure that
the exact significant clusters varied slightly between analysis
window width settings. The onset was again systematically
propagated forward in time with larger window width, starting
at 540 ms for 10 ms analysis time windows (536 ms for 2 ms
window width) and at 470 ms for the 100 ms analysis time
windows. For the 100 ms window width, this window included
data from between 470 and 570 ms, which means that it is again
likely that the tail end of this window started to contain sufficient
signal for the analysis to become significant.

When using spatiotemporal SVR, taste ratings could again
be predicted significantly above chance for all analysis time
window widths (Figure 4, right side). The general shape of the
information time-course for all spatiotemporal analysis time
windows was highly similar to their spatial SVR counterparts,
and this similarity was strongest for small analysis time
windows, in particular at 10 ms (where the onset of the
information time-course was 550 ms). Interestingly, some of
the earlier clusters only became significant when a 10 ms
analysis time window was used, but missed the strict significance
threshold for larger analysis time windows. As observed for the
simulated data, there was no advantage of using spatiotemporal
over spatial analyses. Regardless of window width, the results
from the spatiotemporal SVR were slightly lower and more
variable across participant datasets than for the spatial SVR, as
reflected in fewer and smaller significant clusters in comparison.

Health ratings decoding
Using spatial SVR, the Health ratings could also be predicted

significantly above chance for all analysis time windows
(Figure 5, left side), although the overall information time-
course was noisier than for Taste ratings (which might be
due to the use of the rating scale). The general shape of the
information time-course was again similar between all analysis
time windows, and as before became smoother for larger
window widths, with the initial two separate significant clusters
merging into one for both 50 and 100 ms analysis windows.
It can again be seen that whether or not a cluster became
significant (after strict cluster-based correction was applied)
depended on the analysis time window width used. The same
effect of forward-propagating the onset of informative clusters
was seen for larger window widths with an onset of 640 ms for
10 ms analysis windows (638 ms for 2 ms) compared to 590 ms
for 100 ms analysis time windows (where the first informative
window included data from 590 to 690 ms).

For the spatiotemporal SVR, there were again no substantial
differences compared to the information time-courses from the
spatial SVR, in particular for the short 10 ms window width
(Figure 5, right side). With 20 ms analysis window width,
a larger significant cluster was revealed for spatiotemporal
SVR compared to spatial SVR, while with 50 ms windows,
it was the other way around, and a slightly larger significant
cluster emerged for spatial SVR compared to the spatiotemporal
SVR. With 100 ms analysis windows, the significant cluster
was substantially larger for spatiotemporal SVR compared to
spatial SVR. The shift in onsets of informative clusters again
mirrored closely the results from the spatial analysis (however,
not identical), showing the onset at 640 ms for 10 ms analysis
windows, moving to 520 ms for 100 ms analysis time windows
(containing data from 520 to 620 ms).

In summary, these results show that the findings for these
two stimulus dimensions were in general very similar. However,
with respect to specific time steps, in some cases a spatial SVR
was slightly better, while in other cases, a spatiotemporal SVR
was slightly superior – and these subtle differences were again
slightly different depending on the analysis time window width.

Discussion

Support vector regression (SVR) is a powerful but
underutilised multivariate analysis approach for M/EEG data
that still lacks a systematic validation and comprehensive
description to become more accessible to the research
community. Whereas classification techniques are restricted
to predicting categorical variables (i.e., classes), SVR as
implemented in DDTBOX (Bode et al., 2019) can predict
information about continuous variables from EEG data. Here
we used both real and simulated EEG data to demonstrate
its usefulness, and we discuss the results of these studies as a
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FIGURE 4

Results for SVR Taste rating decoding from the (A) spatial decoding analysis, and (B) spatiotemporal decoding analysis. Analysis time window
widths (from top to bottom): 2 ms (spatial decoding only), 10, 20, 50, and 100 ms. Windows were moved in 10 ms steps for all analyses (except
for the 2 ms analysis time windows where windows were moved in 2 ms steps). Blue lines are real decoding results (expressed as
Fisher-Z-transformed correlation coefficients for the predicted label and the real label, i.e., rating), and yellow lines are chance results from the
shuffled-label analyses. Shaded areas represent standard errors of the mean. The food item onset on the screen was at 0 ms (grey line).
Significant results after using cluster-corrections for multiple comparisons are highlighted in magenta.
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FIGURE 5

Results for SVR Health rating decoding from the (A) spatial decoding analysis, and (B) spatiotemporal decoding analysis. Analysis time window
widths (from top to bottom): 2 ms (spatial decoding only), 10, 20, 50, and 100 ms. Windows were moved in 10 ms steps for all analyses (except
for the 2 ms analysis time windows where windows were moved in 2 ms steps). Blue lines are real decoding results (expressed as
Fisher-Z-transformed correlation coefficients for the predicted label and the real label, i.e., rating), and yellow lines are chance results from the
shuffled-label analyses. Shaded areas represent standard error of the mean. The food item onset on the screen was at 0 ms (grey line).
Significant results after using cluster-corrections for multiple comparisons are highlighted in magenta.
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guide for future users to help with making decisions on how
to tailor SVR in DDTBOX for their specific research questions.
We note again that we do not attempt to compare SVR to
other classification methods, and a discussion on which specific
method might be better suited for specific research questions
is also beyond the scope of our paper. Our intention is rather
to provide an accessible introduction to SVR in DDTBOX,
accompanied with a demonstration of the effects of the most
important parameter settings.

The simulation studies allowed us to control the presence of
information in the data and showed that both spatiotemporal
and spatial analyses generally worked equally well. All analysis
time windows, ranging from 2 ms (1 data point per channel) to
100 ms (50 data points per channel), yielded accurate results.
When we varied the number of informative channels and the
temporal jitter of information for these channels in Simulation
Study 2, we observed drops in decoding performance for lower
numbers of channels and higher temporal jitter, as expected.
Overall, however, we could still recover the information in each
condition. We initially chose the parameters (and number of
data sets) for the simulation studies deliberately in a way that,
in effect, the resulting data was somewhat comparable (although
only qualitatively, not quantitatively) to real data.

We then used the EEG data from a recent study by Schubert
et al. (2021) in which participants rated food attributes to
show that the patterns of SVR results were highly similar when
predicting continuous taste and health ratings for which the
exact distribution of signal in time and space was unknown.
This study also showed high similarity between spatial and
spatiotemporal SVR (albeit not as similar as in the simulation
studies).

Spatial as compared to spatiotemporal
support vector regression

Simulation Study 1 showed that there was no advantage in
analysing the full spatiotemporal patterns over spatial patterns
for which an average over the data points within each analysis
time window was used. This was true for all analysis time
window widths, including the long 100 ms window. One
explanation for this is that there was no additional information
contained in the temporal patterns within windows that could
be exploited by spatiotemporal SVR, as we simply added
signal to each informative channel across the entire time-
period. This might be different in some real data sets, which
could potentially have a more complex set of correlations
between EEG amplitudes and SVR labels that might vary over
time. However, in our real data, we also did not see a clear
advantage of spatiotemporal over spatial SVR. This suggests
that the temporal information within an analysis time window
might only be well-exploited by spatiotemporal methods under
specific circumstances, for example, if fast, systematic amplitude

fluctuations occur within an analysis window that are not
captured by time window-averaged signals.

It should be noted, however, that there might be other
real EEG or MEG data sets for which a more fine-grained
spatiotemporal approach might be better, but it is difficult
to know beforehand if this is the case or not. Even in our
real data, it seems that spatial SVR was slightly superior for
Taste rating decoding, while spatiotemporal SVR was slightly
superior for Health rating decoding, and these differences were
additionally slightly more or less pronounced depending on the
analysis window width. At this point, it is unclear why such
small differences emerge. We therefore believe that it might
be premature to only recommend the use of spatial SVR, in
particular since previous studies obtained very good results with
a spatiotemporal approach (e.g., Bode et al., 2014; Siswandari
et al., 2019; Schubert et al., 2020, 2021). On the other hand,
there are some disadvantages of using spatiotemporal SVR that
should also be taken into account. Firstly, spatiotemporal SVR is
computationally more demanding and might require far longer
computation time, given the larger number of features that
constitute a pattern. Depending on available hardware, there
could be processing time advantages in choosing spatial SVR (as
we did in Simulation Study 2). Secondly, using spatiotemporal
patterns also increases the feature space and, as a side-effect,
the risk of overfitting. In particular, if rather large analysis
time windows are used (e.g., in our studies, 64 channels in
combination with 100 ms analysis window width equals 3,200
features), this can result in an unfavourable ratio between a
low number of exemplars (here: epochs) and a high number of
features.

Effects of changing the analysis
window width

While all analysis windows widths applied here led to
significant results, it was obvious that the choice of window
width can impact the exact outcomes. Reassuringly, standard
analysis window widths between 2 and 20 ms led to near-
identical results. However, in the real data, some clusters only
reached statistical significance (after cluster-based correction)
for some analysis window widths. This is likely due to some
analysis time windows not quite crossing the p < 0.05
cluster-forming threshold, rather than substantial differences in
decoding performance across window widths. One important
implication of this is that whether one obtains significant results
for the same data can change by choosing a slightly different
analysis window width. Instead of running analyses with all
possible window widths, it might therefore be advisable to
report the results of the uncorrected significance tests alongside
the corrected ones. Another factor influencing the number of
statistical tests performed is the length of the chosen epoch. This
is also often quite arbitrary and determined by the researchers
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(ideally informed by the research question). For some questions
a long epoch is appropriate, while for others a short epoch is
more appropriate. This illustrates that different choices can lead
to quite different outcomes – not for the information time-
course itself, but for the statistical results. Therefore, it is advised
to commit to using an appropriate analysis window width prior
to running analyses, and to explain the rationale for using this
particular window width.

Another consistent result in our studies was that for larger
window widths, such as the 100 ms windows, significant
effects were observed earlier in the epochs, leading to an over-
estimation of how early information was available. This is
because analysis time windows in DDTBOX are defined as the
time point that comprises the start of the window, meaning that
the time period used for analysis extends forward from this time
point. Consequently, if there is decodable information at the
tail-end of an analysis window (e.g., spanning 390–400 ms when
using an analysis window that spans 300–400 ms) then this may
still lead to above-chance decoding performance. One way to
avoid this is to redefine the analysis window time points as the
centre of the window, but even then, some unavoidable temporal
smearing would remain. The better solution might be to avoid
such large analysis windows altogether; this also makes sense
as the advantage of the excellent temporal resolution of EEG is
lost when such long windows are used. The same basic problem
emerges, of course, when the data is substantially down-sampled
first (which is basically the same as using a spatial SVR with large
analysis window width).

Interestingly, in our studies, it was possible to use analysis
time windows as small as 2 ms (containing only one data point
from each channel), or 10 ms (containing 5 data points) without
an obvious drop in decoding performance. This is encouraging
as it implies that one can indeed make use of the excellent
temporal resolution of EEG and derive quite precise information
time-courses. However, it should be kept in mind that in
real data, there might be differences in performance between
time analysis windows of different widths depending on the
underlying cognitive process (and the duration of a stable neural
pattern). Long duration analysis time windows might be ill-
suited to capture fast, short-duration neural processes, because
each analysis time window would include a short period of signal
intermixed with a larger period containing only noise. Whether
the reverse is also true, and short analysis time windows may
have problems capturing longer and sustained processes, is not
so clear. This might depend on the encoding of the cognitive
process in the neural pattern. Our results suggest that shorter
analysis time windows had no problem detecting signals that
were variable in their timing, both in the real data as well as
in Simulation Study 2 where a larger extent of temporal jitter
was used. In fact, the use of temporal generalisation matrices
(TGMs) in classification studies relies on the idea that relatively
short analysis windows can capture subsequent aspects of the
neural signature of the same sustained cognitive process. This

approach should further be sensitive to characterise changes
in these informative patterns over time, which can inform the
researchers that the nature of a representation has changed over
time (e.g., King and Dehaene, 2014; Blom et al., 2020, 2021). This
logic should also translate to SVR approaches.

However, very little is known about the nature of more
abstract neural representations of cognitive processes,
potentially encoded in prefrontal and parietal cortices,
compared to sensory-based representations or motor
representations. The few existing studies using linear SVR
have rarely reported systematic comparisons of analysis time
window widths. It therefore remains to be understood whether
there are more or less optimal window widths for specific
abstract representations, or other sustained cognitive processes,
which might not be associated with strong, sustained signals
over time (e.g., keeping an item in memory; or activating an
emotion regulation goal).

Limitations

It should be noted that this study was designed as a first
(and somewhat belated) proof-of-principle for the use of linear
SVR as a multivariate approach to analysing ERP data using
DDTBOX. As such, it captured the most important parameter
settings in DDTBOX, to give users a good idea about their effect,
but we did not attempt to provide a complete exploration of
the entire parameter space. DDTBOX (through LIBSVM) allows
users to deviate from standard SVR settings, for example, to
use non-linear kernels, which might be better suited for specific
problems. There are also a multitude of other settings, which
we did not explore here: we did not cover the entire range of
other possible analysis window widths; we did not compare the
effects of different cost parameters; and we did not compare
different approaches for the cross-validation procedure (nor the
number of iterations; nor nested cross-validation to optimise the
cost parameter). The main reason is that these settings are less
frequently used in the field. We also did not compare different
strategies to control for the multiple comparison problem for
group-statistical testing, but we provide an overview on our
Wiki. We also did not analyse the feature weights here which
can give some insights into the contribution of single channels
to the prediction (if controlled appropriately, see Haufe et al.,
2014) as this goes beyond the scope of this paper. There are
also alternative approaches to quantifying the outcome of the
regression analyses to the normalised correlations used here
(such as normalised mean absolute, or squared, errors) that
are not yet implemented in DDTBOX, but users might prefer
calculating themselves. However, the approach presented here is
most frequently used in the literature and has the advantage that
it is readily interpretable.

Regarding the simulated data, we also restricted our
simulation studies to two conditions, comparing the number
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of informative channels and the temporal jitter, respectively,
to provide some insight into their effects. Since the data
structure and information time-course of real EEG data is
usually unknown, there is scope for exploring much more
extreme conditions; however, in combination with the other
factors in our studies (e.g., SVR types and analysis window
widths), this would have led to a very high number of analyses
to report in a single paper (and results are less relevant for
typical users). Similarly, there are many other, unexplored
factors which are potentially of interest for future simulation
studies, including: the relationship between sample size, number
of exemplars/epochs, and statistical power to detect effects of
different sizes; the mapping of continuous variables of interest
to single-trial ERP amplitudes, and how different underlying
distributions of this variable might impact predictability; and the
impact of the SNR on predictive performance. We have further
refrained from comparing the SVR approach to other, related
multivariate approaches, such as support vector classification,
classification using other methods (such as linear discriminant
analysis; Carlson et al., 2003), extensions to these approaches
that extract a continuous output variable (such as the distance-
to-bound approach, Ritchie and Carlson, 2016), and other
multivariate regression approaches (e.g., Parra et al., 2005).
Such an exploration was beyond the scope of the current
paper. However, given the growing diversity of methods in
this space, this would indeed be a valuable exercise for the
future.

Conclusion

Multivariate classification approaches have become a
powerful tool in the toolbox of cognitive neuroscience, but a
key constraint of such approaches is that they are often used
to predict a categorical output variable (i.e., distinct classes).
Classifying between high and low values of a continuous variable
using median-splits, however, suffers from reduced statistical
power. Here, we present a guide for users on how to set up a
SVR analysis as implemented in DDTBOX for the prediction
of continuous variables of interest from multivariate patterns of
ERPs, as measured by EEG. To help users to better understand
the effects of different parameter settings, we conducted a series
of analyses. These demonstrate that SVR analysis can predict
a continuous variable in both simulated and real EEG data.
Results were highly similar for spatial and spatiotemporal SVR
and stable across a variety of analysis time window widths,
including very short analysis windows containing only one
data point per channel. Some temporal smearing occurred
with larger analysis time windows. SVR could successfully
predict the variables of interest even with a smaller number of
informative channels and larger temporal signal jitters. These
results, together with previously published demonstrations of
successful prediction of a variety of continuous variables,

suggest that SVR constitutes a useful data-driven analysis
approach, which allows for subtler variations of variables of
interest to be predicted from distributed patterns of neural
activity at high temporal resolution. One major strength of
this approach is that it can exploit relatively broad patterns
of amplitude differences distributed across channels, despite
such signals being most prominent at a smaller subset of
channels. We hope that, together with our previous publication
on DDTBOX (Bode et al., 2019), this paper will provide users
with a valuable resource to optimally conduct SVR analyses in
their own data.
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