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Introduction: Alzheimer’s disease and other forms of dementia are disease

that bring an increased global burden. However, the medicine developed to

date remains limited. The purpose of this study is to predict drug repositioning

candidates using a computational method that integrates gene expression

profiles on Alzheimer’s disease and compound-induced changes in gene

expression levels.

Methods: Gene expression data on Alzheimer’s disease were obtained from

the Gene Expression Omnibus (GEO) and we conducted a meta-analysis

of their gene expression levels. The reverse scores of compound-induced

gene expressions were computed based on the reversal relationship between

disease and drug gene expression profiles.

Results: Reversal genes and the candidate compounds were identified by

the leave-one-out cross-validation procedure. Additionally, the half-maximal

inhibitory concentration (IC50) values and the blood-brain barrier (BBB)

permeability of candidate compounds were obtained from ChEMBL and

PubChem, respectively.

Conclusion: New therapeutic target genes and drug candidates against

Alzheimer’s disease were identified by means of drug repositioning.

KEYWORDS

drug repositioning, gene expression, Alzheimer’s disease, meta-analysis, in silico

Introduction

Alzheimer’s disease is the most common cause of dementia, a common
neurodegenerative disease. Dementia is an escalating global burden disease, recently
estimated to affect 57.4 million people worldwide as of 2019, increasing to 153.8
million by 2050 (GBD 2019 Dementia Forecasting Collaborators, 2022). Although
the underlying mechanisms of Alzheimer’s disease remain not fully understood
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(Burns and Iliffe, 2009), currently Alzheimer’s disease is
characterized by initial forgetfulness and cognitive decline that
can affect behavior and the motor system finally (DeTure and
Dickson, 2019). The presence of extracellular beta-amyloid
deposition and intracellular neurofibrillary tangles consisting
of hyperphosphorylated tau are the neuropathological hallmark
features for an Alzheimer’s disease diagnosis (Long and
Holtzman, 2019).

Drugs can be an important part of Alzheimer’s disease
treatments. However, there is no treatment available to
cure Alzheimer’s disease, only those that can treat the
symptoms for a while or slow down their progression in
some patients (Folch et al., 2018). The most commonly used
medicines are cholinesterase inhibitors such as donepezil,
galantamine, and rivastigmine, and an N-methyl-D-aspartate
receptor antagonist, memantine (Scheltens et al., 2021).
Despite the fact that aducanumab, a monoclonal antibody
that reduces beta-amyloid deposits in the brain, was
approved in an accelerated manner by the U.S. FDA in
2021 (Mullard, 2021), there is still some argument against
its use (Whitehouse et al., 2022). The European Medicines
Agency rejected this drug’s approval for the treatment of
mild cognitive impairment due to Alzheimer’s disease and
mild Alzheimer’s dementia (Mahase, 2021). Therefore, it
remains necessary to discovery new drug targets and drugs
against Alzheimer’s disease due to the ambiguity in efficient
pathological targets or the adverse effects of previously
used drugs.

Drug repositioning refers to the application of established
drugs to new therapeutic indications (Langedijk et al., 2015),
accelerating the development process due to the reductions
in the time and costs involved in the progress of evaluating
preclinical safety. Publicly available transcriptomic data
generated from disease samples, as well as compounds,
provide an opportunity for understanding the pathologies
of diseases and the mechanisms of actions of drugs
and for discovering new applications for existing drugs
(Jarada et al., 2020). Recently, computational techniques
using genome-wide gene expressions, especially chemical-
induced or disease-specific differential gene expression
levels, network analyses, or deep-learning approaches,
have been applied for the identification of new therapeutic
targets and drug repurposing (Lamb et al., 2006; Dudley
et al., 2011; Chen et al., 2017; Advani and Kumar, 2021;
Chyr et al., 2022).

Especially in relation to neurodegenerative diseases, which
require long-term treatments in elderly patients, who frequently
have comorbidities and take a multitude of medications, clinical
trials are difficult. Consequently, the purpose of this study is to
identify potential candidate drugs as a treatment for Alzheimer’s
disease using a systematic computational drug repositioning

method that combines disease-specific and drug-induced gene
expression profiles.

Materials and methods

Collection of gene expression data on
disease

Gene expression data related to Alzheimer’s disease were
downloaded from the Gene Expression Omnibus (GEO)
database established at the National Center for Biotechnology
Information (NCBI) (Barrett and Edgar, 2006). The keywords
were “Alzheimer’s disease” and the search results were limited
to those published from 2017 to May of 2022, “Homo sapiens”
as the organism, and “expression profiling by array” as the
study type were used. These data, including the GEO accession
number, summary, sample type, overall design, and platform
were collected. The brain regions of the entorhinal cortex
(EC), medial temporal gyrus (MTG) and temporal cortex (TC)
were selected. The dataset containing healthy controls was
included. If the Braak stages of the samples were available, the
samples with Braak scores ≤3 from Alzheimer’s disease or the
samples with Braak scores ≥3 from controls were removed
from any further analysis (Patel et al., 2019). Gene expression
data pertaining to brain tissues from patients with Alzheimer’s
disease or controls were downloaded. The expression levels
were transformed to logarithms and normalized. If multiple
probes were assigned to one gene, the probe with the highest
interquartile range was selected as the representative probe for
that gene.

Meta-analysis of gene expression on
disease

To obtain a robust result, 10% of non-expressed genes
based on mean intensities across the studies and 30% of
non-informative genes based on variance were removed. The
standardized mean rank method in MetaQC (Kang et al.,
2012) was initially applied to conduct a gene expression
quality check of each GEO dataset. Quantitative quality
control (QC) measures including internal QC, external QC,
accuracy QC, and consistency QC of genes or pathways
and the standardized mean rank summary score for each
dataset were assessed. All P-values were adjusted by Bonferroni
correction. Additionally, a principal component analysis (PCA)
biplot was applied to the visualization and helped determine
the inclusion or exclusion of studies in the meta-analysis.
The MetaDE package (Wang et al., 2012) was used to
identify meta-differentially expressed genes (DEGs) between
Alzheimer’s disease and the control. The P-values and
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combined effect sizes in the meta-analysis were calculated
with a fixed effect model (Choi et al., 2003). This meta-gene
expression levels were used as disease signatures for further
analysis.

Collection of gene expression data on
compounds

Chemical compound-induced genome-wide transcriptional
profiles were downloaded from the Library of Integrated
Network-based Cellular Signatures (LINCS) (Koleti et al.,
2018). Information regarding the cellular contexts, treatment
time points, and treatment concentrations across multiple
compounds was collected.

Computation of reverse gene
expression scores

Reverse gene expression scores were computed using the
method described by Chen et al. (2017), and the description
in the methods section partly reproduces their wording.
Reverse scores of compounds indicate a reversal correlation
between the DEGs associated with disease and compounds. An
enrichment reverse score of gene expression associated with
disease was computed based on the DEG rank. Additionally,
drug-associated genes were ranked based on their expression
levels as regulated by each compound from LINCS. Therefore, if
the possibility of reversing the gene expression associated with
the disease is higher, the negative value of the reverse score
becomes lower. The result is such that each compound can have
more than one reverse gene expression score. If multiple scores
were computed for the one compound, summarized reverse
scores of gene expression were calculated by weighted linear
regression considering the experimental conditions, including
the cell lines, concentrations, and treatment time points of
the compounds. The reference condition established here
used a concentration of 10 µM and treatment time of 24 h
(Chen et al., 2017).

Identification candidate compounds
and reversed genes

Genes whose expression levels were reversed by a compound
were determined by the leave-one-out cross-validation process
to decrease over-fitting problems (Cheng et al., 2017).
Upregulated genes were ranked toward the top, whereas
downregulated genes were ranked toward the bottom. Each
compound in turn was taken to be the test set, while the
data for the remaining compounds served as the training
set. Reversed genes by compound were then identified using

the process described above. In all trials, false discovery rate-
adjusted P-values of less than 0.05 were considered as indicative
of reversal genes.

Cell cytotoxicity

Bioactivity IC50 data using human brain tumor cells were
downloaded from ChEMBL (Gaulton et al., 2017). Information
on the units, molecular weights, cells, and organisms was
collected. Compounds in ChEMBL were manually mapped
with those in LINCS based on the IUPAC International
Chemical Identifier (InChI). If multiple IC50 values were
available for one compound, the corresponding median value
was calculated.

Prediction of permeability across the
blood-brain barrier

The blood-brain barrier (BBB) permeability of the
compounds in each case was predicted by the DeepPred-
BBB model (Kumar et al., 2022) using their canonical simplified
molecular input line entry system (SMILES). The SMILES
strings were obtained from PubChem (Kim et al., 2021).

Results

Disease gene expression signatures

Gene expression data for Alzheimer’s disease were searched
for and download from GEO. Forty-seven GEO Series
Experiments (GSEs) were found (Figure 1). A number of
datasets were excluded due to duplication (n = 4), a different
disease (n = 8), a lack of brain temporal region tissue
samples (n = 28), a lack of mRNA expression data (n = 1),
and a lack of a control (n = 2). The four datasets of
GSE109887, GSE118553, GSE132903, and GSE138260 were
selected for the MetaQC analysis. The data were divided
according to the region of brain tissue, EC, MTG, and TC, if
the gene expression data were measured from different brain
tissues. A detailed description of these datasets is presented
in Supplementary Table 1. Supplementary Table 2 shows
the QC measures and standardized mean rank scores. The
PCA plot is shown in Supplementary Figure 1. Although
the first two PCs explained approximately 98% of the total
variance, the datasets were scattered in the plot. Therefore,
all four datasets were included in the meta-analysis, which
contains 249 Alzheimer’s disease and 204 control lesions.
Among the disease signatures, 74 genes including ZNG621,
ANTXR2, and DNALI1 showed increased expression levels in
Alzheimer’s disease lesions compared to control lesions [log
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FIGURE 1

Flowchart of the process used to select gene expression
datasets for the meta-analysis of Alzheimer’s disease. GEO,
Gene Expression Omnibus.

2 (fold change) >1.0, adjusted P < 0.001], whereas 81 genes
including SYNGR1, TUBB2A, SVOP, STMN2, and KLHL35
showed decreased expression levels in dementia lesions [log
2 (fold change) <−1.0 adjusted P < 0.001] (Supplementary
Figure 2). Sixty-two DEGs filtered via log 2 (fold change)
>1.1 or <−1.1 and adjusted P < 0.001 are listed in
Supplementary Table 3.

Drug gene expression signatures

Reverse scores as drug signatures were computed according
to changes in the expression levels of the 978 landmark genes
from the LINCS data. These scores were computed based on
5,302 compound treatments in NPC human neural precursor
cells. Summarized reverse scores were computed by weighting
the concentrations and time points of the compounds and
various cell lines. The minimal summarized reverse score
was −1.014 and maximal summarized reverse scores was
1.093, respectively.

Inhibitory concentrations in human
brain tumor cells

The IC50 values for 875 compounds in human brain tumor
cells, such as astrocytoma, glioblastoma, and neuroblastoma,
were obtained from ChEMBL. The cell lines used for the IC50
values are listed in Supplementary Table 4. The IC50 values

FIGURE 2

The summarized reverse gene expression scores and
half-maximal inhibitory concentrations (IC50) from ChemBL.

varied widely from 0.005 nM to 1320000 µM. Among the
compounds, 174 compounds have computed reverse scores.
Summarized reversal scores of the 174 compounds were
variously distributed according to their median IC50 values
(Figure 2).

Reversed gene identification and
compound predictions

The method of leave-one-out cross-validation was used
to select reversely expressed genes by these compounds.
Seventeen genes showed significantly reversed expressions
(Table 1). TNFRSF21, WDR7, DFFA, IQGAP1, WFS1, RAI14,
and ANXA7 were downregulated upon treatment with
compounds. STMN1, SMARCC1, ALDOA, CLTC, PSMG1,
SUZ12, DAG1, PGRMC1, and HMGCR, and MYO10 were
upregulated following compound treatment Additionally,
the compounds against Alzheimer’s disease were identified
and their BBB permeability levels were predicted. The
predicted BBB non-permeable compounds are listed in
Supplementary Table 5, while the predicted BBB permeable
compounds are shown in Figure 3. The protein kinase inhibitors
including dasatinib, semaxanib, palbociclib, bosutinib, erlotinib,
axitinib, tozasertib, saracatinib, lestaurtinib, staurosporine, and
midostaurin, calcium channel blockers including nimodipine
and nifedipine, histone deacetylase inhibitors including
vorinostat, proteasome inhibitors including mg-132, and
natural polyphenols including curcumin and pterostilbene
were identified. Additionally, antineoplatic agents such
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TABLE 1 Reversed genes expression by compounds in the
Alzheimer’s disease.

Type* Gene
ID

Gene
symbol

Description

Upregulated 27242 TNFRSF21 TNF receptor
superfamily member 21

23335 WDR7 WD repeat domain 7

1676 DFFA DNA fragmentation
factor subunit alpha

8826 IQGAP1 IQ motif containing
GTPase activating
protein 1

7466 WFS1 Wolframin ER
transmembrane
glycoprotein

26064 RAI14 Retinoic acid induced 14

310 ANXA7 Annexin A7

Downregulated 3925 STMN1 Stathmin 1

6599 SMARCC1 SWI/SNF related,
matrix associated, actin
dependent regulator of
chromatin subfamily C
member 1

226 ALDOA Aldolase,
fructose-bisphosphate A

1213 CLTC Clathrin heavy chain

8624 PSMG1 Proteasome assembly
chaperone 1

23512 SUZ12 SUZ12 polycomb
repressive complex 2
subunit

1605 DAG1 Dystroglycan 1

10857 PGRMC1 Progesterone receptor
membrane component 1

3156 HMGCR 3-Hydroxy-3-
methylglutaryl-CoA
reductase

4651 MYO10 Myosin X

*Up or downregulated means that the gene expression is up or downregulated
after treatment.

as obatoclax, olomoucine, amsacrine, temozolomide, and
tamoxifen were identified.

Discussion

The burden associated with Alzheimer’s disease continues
to increase, and there is consequently an urgent need to seek
innovative solutions to resolve this issue. In this study, we
used a computational method that integrates disease-specific
gene expression profiles and drug-induced gene expression
profiles to predict drug candidates for use in Alzheimer’s
disease treatments.

We identified seventeen therapeutic targets and twenty-
eight repositioning candidates against Alzheimer’s disease.

Several DEGs were found after a meta-gene expression analysis
of Alzheimer’s disease in our study. It has been reported
that amyloid precursor protein binds with tumor necrosis
factor receptor superfamily member 21 (TNFRSF21) to induce
neural inflammation in Alzheimer’s disease (Zhang et al., 2021).
Induced wolframin endoplasmic reticulum transmembrane
glycoprotein (WFS1) deficiency has been found to increase tau
toxicity, which may play important roles in the development
and progression of Alzheimer’s disease (Li et al., 2020).
Progesterone receptor membrane component 1 (PGRMC1)
increases the neuronal toxicity of amyloid beta-peptides
by binding to the amyloid beta oligomer in Alzheimer’s
disease (Qin et al., 2015). 3-Hydroxy-3-methylglutaryl-CoA
reductase (HMGCR) was found to be a genetic modifier
of the risk of Alzheimer’s disease (Leduc et al., 2015).
Stathmin 1 (STMN1) as a cytosolic phosphoprotein that
regulated microtubules dynamics, impaired axonal transport,
and cause human neurodegenerative diseases (Duncan et al.,
2013). Astrocytic dystrophin-associated complex components
including dystroglycan 1 (DAG1) is known to be associated with
temporal tau pathology (Simon et al., 2018).

Several repositionable candidate drugs, especially anticancer
agents, against Alzheimer’s disease were identified in our
study. Autophagy is the key mechanism by which to remove
cellular abnormal protein aggregates, and the dysfunction of
this process contributes to the pathogenesis of Alzheimer’s
disease (Zhang et al., 2021). Most anticancer agents are able
to induce autophagy or apoptosis, which may contribute
to the neurodegenerative process (Eshraghi et al., 2022).
Accumulating evidence has suggested that Alzheimer’s disease
and cancer share some familiar biological pathways (Advani
et al., 2020). Preclinical and clinical evaluations of several
kinase inhibitors are ongoing in relation to Alzheimer’s disease
(Fagiani et al., 2020; Prins et al., 2021). A pilot clinical trial
of a senolytic combination therapy of dasatinib plus quercetin
in early-stage Alzheimer’s disease was conducted (Gonzales
et al., 2022). Additionally, vorinostat, a histone deacetylase
inhibitor has also been proposed for use in the treatment
of Alzheimer’s disease, phase I clinical trials were conducted
(Eshraghi et al., 2022). However, it is important to consider
that anticancer drugs can destroy subcellular components and
disable fundamental biological processes. For instance, some
anti-neoplastic agents can cause DNA damage, which is a
critical pathological cause of Alzheimer’s disease (Lin et al.,
2020). Therefore, we compared the reverse scores with the
IC50 values of the compounds in our study. The reversal
potency was not correlated to the IC50 values in Alzheimer’s
disease, despite the higher variations in the reverse scores
and IC50 values. It was previously reported that reverse
scores were not correlated with IC50 values in cases involving
microtubule inhibitors (Chen et al., 2017). The most commonly
identified compound candidates in our results had microtubule-
associated activity, and microtubule destabilization is known
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FIGURE 3

Genes whose expression was reversed in response to treatments with compound. The heatmap indicates the relative position of a gene in
ranked compound expression data. Position are normalized and compound columns are ordered according to reversal scores. The distance
matrix was calculated by the Euclidean method and the dendrogram was drawn by the complete linkage method. Low and high ranks suggest
that the gene expression is down and upregulated, respectively, by the corresponding compound. Red and green colors indicate up and
downregulation, respectively, after compound treatment.

to be related to Alzheimer’s disease (Fernandez-Valenzuela
et al., 2020). From this point of view, further investigations
are required.

An antidiabetic agent, metformin (De Santi et al., 2019)
exhibit pro-autophagy properties, which imply that these may
be useful as a treatment for Alzheimer’s disease. Digoxin was
reported to be beneficial in treating cognitive impairment
in a mammalian model (Erdogan et al., 2022). The clinical
efficacy of lamotrigine and changes in the dosages of
concomitantly used psychotropic drugs were studied in relation
to Alzheimer’s disease in conjunction with behavioral and
psychological symptoms of dementia as a preliminary clinical
trial (Suzuki and Gen, 2015). Calcium channel blockers have
been reported to decrease significantly the rate of progression
to dementia, which may minimize the formation of amyloid
beta (Lovell et al., 2015), and nilvadipine was studied as a
treatment in patients with mild to moderate Alzheimer’s disease
(Lawlor et al., 2018).

Several natural products have been used in patients
with Alzheimer’s disease. Curcumin has been shown to
maintain the normal structure and function of cerebral vessels,
mitochondria, and synapses effectively and to reduce the risk of
Alzheimer’s disease (Chen et al., 2018). Numerous investigations
in cellular and animal models have associated resveratrol

and pterostilbene with protection against Alzheimer’s disease
(Lange and Li, 2018).

On the other hand, with regard to repurposing for the
treatment of Alzheimer’s disease, accessing the degree of
penetration through the BBB requires significant consideration
(Benn and Dawson, 2020). Therefore, we also predicted
BBB permeability using deep learning and machine learning
algorithms in our study.

Highly expressed TNFRSF21 gene was significantly
correlated with the dasatinib sensitivity or resistance (Huang
et al., 2007). Nifedipine was found to activate 3-hydroxy-3-
methyl-glutaryl-coenzyme A (HMG CoA) reductase, suggesting
elevated production of cholesterol and phospholipids (Lin et al.,
2019). DFFA gene associated with sensitivity or resistance of
curcumin in tumor cells (Sertel et al., 2012) and treatment
with curcumin was able to significantly increase the levels of
CLTC mRNA in curcumin treated cells compared with control
(Luo et al., 2018). The studies of association between candidate
compounds and genes were still not enough for Alzheimer’s
disease. The pathophysiologic mechanisms of Alzheimer’s
disease are complex and are not well known. Pharmacological
action and therapeutic outcomes cannot be determined by
the simple approach of reverse gene expression profiling
and the further evaluations need to replicate our results.
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Therefore, our findings likely indicate further investigations of
treatments of Alzheimer’s disease. In summary, repositioning
drug candidates and target genes in Alzheimer’s disease were
identified using a computational method that combined disease-
specific gene expressions with drug-induced gene expressions.
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