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Business process models are widely used artifacts in design activities to

facilitate communication about business domains and processes. Despite

being an extensively researched topic, some aspects of conceptual business

modeling are yet to be fully explored and understood by academicians

and practitioners alike. We study the attentional characteristics specific to

experts and novices in a semantic and syntactic error detection task across

75 Business Process Model and Notation (BPMN) models. We find several

intriguing results. Experts correctly identify more error-free models than

novices, but also tend to find more false positive defects. Syntactic errors

are diagnosed faster than semantic errors by both groups. Both groups

spend more time on error-free models. Our findings regarding the ambiguous

differences between experts and novices highlight the paradoxical nature of

expertise and the need to further study how best to train business analysts to

design and evaluate conceptual models.

KEYWORDS

conceptual modeling, process modeling, eye tracking, attentional characteristics,
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Introduction

Business process modeling activities are used to communicate and share knowledge,
design and improve processes, and re-design decisions in organizations (Becker et al.,
2004; Indulska et al., 2009; Recker et al., 2012). While always considered a key
tool in information systems (IS) development, business process models are becoming
more widely studied in the last decade. Evidence shows that despite the effort of the
academic community, practitioners (e.g., business analysts) still struggle with some
aspects of conceptual modeling, such as the standardization of modeling notations and
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methodologies (Eikebrokk et al., 2008) and the emerging
requirements of an increasingly digital world (Recker et al.,
2021). Furthermore, the focus of the academic community does
not always correspond with the practitioners’ needs (Indulska
et al., 2009). Areas of interest such as individuals’ performance
and practitioners’ training seem to be of little interest to
the research community compared to other elements, such
as modeling grammar and method (Wand and Weber, 2002;
Indulska et al., 2009; Jabbari Sabegh et al., 2017). This creates
a significant gap in the literature as the lack of knowledge on the
nature of expertise in conceptual modeling is a hindrance to the
improvement of business analysts’ training curriculum (Davis
et al., 2018). The use of a widely accepted visual notation, such
as Business Process Model and Notation (BPMN) or Universal
Modeling Language (UML), which has its own set of rules
and constraints, allows the model to be understood by people
across different departments and organizations (Davis et al.,
2018). Yet, when using a visual notation, it can still be hard to
fully grasp the model and it is almost impossible to design a
flawless model without any confusing ambiguities (Figl, 2017).
To refine the notations and to improve the training of future
business analysts, we need to understand how, on a cognitive
level, business analysts read and comprehend graphical process
models (Hungerford et al., 2004).

To better understand expert modelers’ heuristics, the main
objective of the study is to probe the difference in cognitive
processing between experienced business analysts and novices
while reading and diagnosing errors in conceptual models. By
exploring and understanding the differences between neophytes
and more experienced modelers, we hope to highlight what can
be considered ‘best practices’ in deciphering models and at the
same time identify some key limitations of visual notations. To
do so, we use the concept of expertise to compare two groups
of modelers in order to identify the skill-based adaptations that
differentiate novice and expert designers (Davis et al., 2018).
Understanding the heuristics of the experts in an error detection
task will allow us to adapt the training curricula to facilitate the
development of future business analysts.

Several researchers have explored the variations between
novice and expert dichotomy in conceptual modeling (Shanks,
1997; Yusuf et al., 2007; Recker and Dreiling, 2011; Koschmider
et al., 2015). However, we are aware of no studies exploring
the repertoire of skills, or “competencies,” outlined in Bassellier
et al. (2003), to assess their interdependence and capacity to
differentiate novices from more experienced business analysts.
The skills and abilities that differentiate experienced business
analysts from novices, covering a broad spectrum, make the
identification of success factors in conceptual modeling difficult.

This research strives to deepen understanding of the
sometimes simplistic expert-novice dichotomy evident in prior
studies, using eye-tracking instruments to capture an objective
measurement of the actual behavior of our business analysts via
their visual attention (Bera et al., 2019). Our efforts to more fully

articulate the expert-novice dichotomy also strives to identify
and ameliorate limitations in the literature. Specifically, in this
work, we considered semantic and syntactic error detection
tasks by scrutinizing the differences between successful anomaly
detection and unsuccessful diagnostics.

Overall, we were surprised to find that our results suggest
few statistically significant differences between novices and
experts. In fact, experts tend to detect more non-existent
anomalies (false positives) in error-free models than novices.
However, experts correctly diagnose error-free stimuli more
efficiently. Syntactic errors tended to be diagnosed more quickly
than semantic errors and models without any errors generally
took more time to diagnose than other models.

The paper is organized as follows: first, a literature review
of the main concepts, starting by exploring the concept of
conceptual modeling, then examining prior studies regarding
expertise, and finally delving into the use of eye-tracking devices
to capture visual attention. The methodology, instruments, and
measures used in the experiment are explained. The results
are then listed and analyzed, before concluding the paper with
insights for future research and applied practice.

Literature review

Conceptual modeling

Conceptual modeling is a complex activity (Wand and
Weber, 2002; Nelson et al., 2012), essential to the design of IT
artifacts (Davis et al., 2018). More than just a tool to facilitate
comprehension of business processes (Figl, 2017), conceptual
models are used, among other things, as a communication
medium between users and developers, and to help business
analysts understand business domains (Kung and Solvberg,
1986; Parsons and Cole, 2005; Moody, 2009; Bavota et al.,
2011). They also play an important part in business process
transformation, since they greatly facilitate the investigation of
problems and limitations in organizations (Liberatore et al.,
2000). Conceptual models are also used as a bridge between the
business and IT actors, allowing them to understand each other
easily and, thus, allowing them to work together on improving
the business processes of the organization (Birkmeier et al.,
2010).

By tapping into two-dimensional graphic space, diagrams
and models allow the organization of information by location,
rather than having to follow a linear path like a textual
representation (Larkin and Simon, 1987). This means that
the relevant information is usually located in one place,
which makes implicit information more obvious and models
more concise than textual cases (Moody, 2009). This type of
representation allows the business analysts to understand a
situation, or problem, by crossing the diagram quickly, focusing
on the different groups of information, rather than deciphering
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a text in their search for relevant elements (Larkin and Simon,
1987). Furthermore, the use of pictures has been shown to
facilitate the acquisition and retention of information more
readily than through the use of printed items.

Visual notations are composed of visual syntax,
encompassing the visual vocabulary, which is the set of
symbols and the visual grammar, and visual semantics, which
give meaning to the different symbols and to their relationship
(Moody, 2009; Nelson et al., 2012; Davis et al., 2018). However,
while most studies concentrate on the effect of semantics
on the comprehension of a model, for example by studying
the level of abstraction of labels (Mendling and Strembeck,
2008; Mendling et al., 2010; Figl and Strembeck, 2015), few
researchers have examined the effect of syntactic rules or offered
syntactic guidelines (Moody, 2009; Figl, 2017). This represents
a significant gap in the literature, since syntactic differences
between notations are as important, if not more prominent,
than semantic variances (Moody, 2009).

The increasing popularity of process modeling in IS has
spawned a significant number of notations and techniques to
create conceptual models. This has had the effect of increasing
the number and disparity of academic and professional
formations, each having to choose which notations to teach and
how to teach it. Organizations also must choose which notation
to use for their process modeling and software suppliers need
the follow the demand and supply tools for the most popular
notations (Recker and Dreiling, 2007). All those questions create
a fertile environment for research. Furthermore, the lack of
study comparing the differences between the semantic and
syntactic components of visual notations, or simply the effect
of the syntactic rules, present another opportunity to contribute
to the literature.

While some experiments have compared different notations
or presentation mediums in order to identify the one having the
most significant effect on comprehension (Recker and Dreiling,
2007; Yusuf et al., 2007; Ottensooser et al., 2012; Rodrigues
et al., 2015), others have studied the effect of prior domain
or modeling knowledge between users (Bera, 2012; Recker,
2013; Recker et al., 2014; Figl and Laue, 2015; Kummer et al.,
2016). However, while there are recommendations on how to
create better models, or how to adapt the models to the user’s
experience, few recommendations are made on how to improve
training curriculums.

In this study, we use the Business Process Model and
Notation (BPMN) specification from the Object Management
Group. BPMN is widely used in industry and has been
the subject of several recent studies on quality issues in
organizational process models. An analysis of 585 BPMN
process models from six companies identified significant quality
concerns on issues of model structure, layout, and labeling
(Leopold et al., 2016). Five modeling recommendations are
offered that claim to address over 90% of the identified
quality issues. An in-depth study of human inspection strategies

on BPMN models found a number of important challenges
that reduced the effectiveness of finding defects in process
models (Haisjackl et al., 2018). Twelve experienced analysts
inspected BPMN models of moderate complexity to find
syntactic, semantic, and pragmatic defects. Using ‘think-aloud’
research methods, challenges were identified in the areas of
lack of domain knowledge, lack of BPMN knowledge, unclear
inspection criteria, and many false positives found. However,
we found no in-depth studies that use eye tracking technologies
to analyze human cognition in the inspection of BPMN models
(Batista Duarte et al., 2021).

The evolving nature of expertise in
conceptual modeling

While the criteria to be considered an expert varies widely
between fields and professions, since there is no consensus
on the definition of expertise (Wineburg, 1998; Davis and
Hufnagel, 2007), researchers tend to agree that, usually, experts
are faster, more precise and more efficient than novices in
their respective field (Speelman et al., 1998; Sonnentag, 2000).
The main difference between novices and experts seems to be
their organization of knowledge (Herbig and Büssing, 2004).
Experts have more detailed and tightly connected schemata
(Glaser, 1984; Lurigio and Carroll, 1985), which is defined by
Glaser (1984) as the representation of the “knowledge that
we experience—interrelationships between objects, situations,
events, and sequences of events that normally occur” (Glaser,
1984, p. 100; Wineburg, 1998). Experts, thus, will be able to
infer other knowledge from the literal cues in a situation or
a problem statement, whereas novices have less sophisticated
strategies for using their knowledge to ‘pick up’ such subtle
cues (Glaser, 1984; Lurigio and Carroll, 1985). Furthermore,
the acquisition of a skill can bring changes to the brain,
both by modifying the area of activation when processing a
stimulus, to morphological changes increasing the gray matter
dedicated to processing the type of stimuli trained for Hill and
Schneider (2006). Chess players and radiologists, among other
professionals requiring improved perceptual-motor skills, will
have a higher performance using lower processing levels than
novices, allowing them to perform more difficult discrimination
tasks. Per contra, novices tend to use high-level processing,
based more on generalizations (Hill and Schneider, 2006).

Evaluating expertise in the conceptual modeling
environment is more complex than it seems since working
with models require two different kinds of expertise: domain
expertise, or expertise related to the semantic component of
the models, and modeling expertise, or expertise related to
the details of the modeling notations. An expert modeler, well
versed in the creation of models using visual notation, may find
it quite hard to understand a model depicting a process from
a domain on which he doesn’t have any prior knowledge. The
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opposite is also true; an expert in a domain may have some
difficulties reading a conceptual model if he doesn’t know the
meaning of the symbols or if he is not used to working with
models, even if the process depicted is well known to him.

In prior studies, a multitude of variables has been used
to define modeling expertise, or expertise regarding the
syntactic component of models, between groups. For example,
self-reported measures on modeling familiarity (Reijers and
Mendling, 2011; Weitlaner et al., 2013), frequency of work
with models (Mendling and Strembeck, 2008; Zimoch et al.,
2018b) or objective measures of modeling knowledge (Mendling
and Strembeck, 2008; Figl et al., 2013; Recker, 2013; Figl
and Laue, 2015) have been used to compare groups of more
experienced modelers, or ‘experts’, with novices. Across all
of those studies and measures used, the frequent use of
flowcharts, prior experience with conceptual modeling (e.g.,
number of models created or read) and prior training had
significant effect on model comprehension, where self-reported
measures of knowledge and prior familiarity with modeling
didn’t differentiate the participants’ comprehension (Figl, 2017).
In conceptual modeling, domain or “semantic” expertise is
usually assessed using self-reported measures on perceived
domain knowledge (Figl, 2017). Across the experiments that
studied the effect of prior domain knowledge on comprehension
or performance, no significant effect has been observed.

Rather than studying the difference between expert
modelers and novices, where expert modelers have been
described in prior experiments with having at least four years of
experience as modelers and had contributed to the development
of at least ten conceptual models (Shanks, 1997), we focus
our attention on the business analysts. Indeed, nowadays the
majority of business analysts have to work continuously with
conceptual models, whether by creating or reading them,
and thus, form the core of the practitioners. Furthermore, in
accordance with the concept of IT competence, as defined
by Bassellier et al. (2003), business analysts have more IT
knowledge – which is the relevant knowledge and the capability
to access more IT-related knowledge – and IT experience than
novices (Bassellier et al., 2003). Therefore, business analysts,
by having more experience with IT projects and by possessing
deeper understanding and IT-related knowledge, are better
suited as practitioners to use and interact with conceptual
models than novices (i.e., individuals who have limited or no
experience in situations characteristic of their domain) without
any significant IT-related experience or knowledge.

Moreover, Patel and Groen’s distinction of “specific” and
“generic” expertise, where “generic” experts have generic
knowledge of the domain and “specific” expertise is linked
with specialized knowledge of the domain, and definitions of
the levels of expertise allow us to place the business analysts
in the “subexpert” group and the novices in the “layperson”
group (Patel and Groen, 1991; Wineburg, 1998). Indeed, the
average business analyst having a generic knowledge of IS and

conceptual modeling, by their background and formation, are
not as specialized as experienced modelers, but still have more
expertise than novices, which are only equipped with common
sense and everyday knowledge.

Thus, business analysts are used as surrogate expert
modelers, by proposing for the purposes of this research that
their IT competences and “generic” expertise differentiate them
from novices, and thus refer to them as “experts” in the
remainder of the article.

Visual attention

The use of eye-tracking to monitor the visual attention of
participants has been tested and proven as an effective way to
assess the moment-to-moment cognitive processing of visual
stimuli (Rayner, 1998; Bednarik and Tukiainen, 2006; Yusuf
et al., 2007). Evidence suggests that attention and saccades,
which are the quick movements of the eyes between different
locations (Yusuf et al., 2007), are closely linked (Rayner, 1998),
while fixations are linked with the cognitive processing of
visual information (Just and Carpenter, 1976; Yusuf et al., 2007;
Zhan et al., 2016). Technological innovations made eye-tracking
instruments more accurate and reliable, while removing the
need to use intrusive goggles or headset to capture precise visual
data (Lupu and Ungureanu, 2013).

Multiple eye-tracking studies have evaluated the eye
movement of participants during an anomaly detection task.
While most of those experiments used anomalous textual
sentences (Ni et al., 1998; Braze et al., 2002; Zhan et al., 2016)
or anomalies in radiography (Krupinski, 2000; Reingold and
Sheridan, 2011) as visual stimuli to assess the variation in eye
movements, the eye-tracking methodology is quickly gaining
popularity in other domains, from forensics to art (Reingold and
Sheridan, 2011). These studies concluded that more fixations
will land on the relevant information, which in our case is
the anomalies, and that those fixations tend to become longer
than the fixations on irrelevant information (Henderson and
Hollingworth, 1999; Van Waes et al., 2009; Holmqvist et al.,
2011).

Furthermore, the number of fixations is related to the
effectiveness of the search (Goldberg and Kotval, 1999;
Holmqvist et al., 2011), where a higher number of fixations
usually result in an ineffective search. Finally, the total view
time of the stimuli has been found to be inversely related to
the detection of anomalies (Van Waes et al., 2009). Indeed, a
higher time spent on a stimulus is correlated with a lower chance
of identifying the anomaly; as the cognitive load increases, the
probability to make errors will also increase and the general
understanding of the model will decrease (Moody, 2004; Figl
and Laue, 2015; Haisjackl et al., 2016).

Recent studies have used the eye-tracking methodology
to investigate the understanding of process models in
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different comprehension tasks (Batista Duarte et al., 2021).
As comprehension of process models cannot be directly
observed and measured; eyetracking studies use the visual
attention measures paired with comprehension correctness
to identify patterns linking the scan path or cognitive load to
model understanding (Petrusel and Mendling, 2013; Batista
Duarte et al., 2021). As the complexity of the tasks increases
(by increasing the model complexity, modeling language
complexity, or reducing the participant’s knowledge of the
process), the fixation duration and the total number of fixations
generally increase (Petrusel et al., 2017; Zimoch et al., 2018b;
Tallon et al., 2019). In general, studies conclude that analysts
providing accurate answers to comprehension tasks have more
and longer fixations in the relevant regions than in the irrelevant
sections (Petrusel and Mendling, 2013; Zimoch et al., 2018a;
Tallon et al., 2019).

These findings offer a better understanding of the visual
characteristics related to successful anomaly detection in the
context of conceptual modeling, which allow us to propose our
first three hypotheses:

H1 — Successful error detections in conceptual modeling
will require less time spent looking at the stimulus than
unsuccessful error detections.

H2 — Successful error detections in conceptual modeling
will require, in total, fewer fixations than unsuccessful error
detections.

H3 — Successful error detections in conceptual modeling
will require, on average, shorter fixation duration than
unsuccessful error detections.

Past studies using eye-tracking in process models
comprehension tasks found that visual attention and scan
paths are influenced by the past work experience and personal
knowledge (Petrusel et al., 2017; Zimoch et al., 2018b).
However, these results are inconsistent as other research found
that expertise had no immediate effect on model comprehension
(Zimoch et al., 2018a; Batista Duarte et al., 2021). As the eye
tracking literature is not mature enough in the field of process
model comprehension, we have extended our literature review
to include studies identifying the differences in visual attention
between experts and novices in different types of search tasks.
Those studies give us a better idea of how expertise influences
visual characteristics in different domains. We keep in mind that
it is not recommended to generalize eye movements meaning
across tasks or domains, since contextual demands and task
complexity might greatly differ (Rayner, 1998; Gegenfurtner
et al., 2011).

Overall, the main findings of prior work suggest that
experts tend to spend less time on a stimulus, require less
and shorter fixations on average, and have all around better
performance than novices (Krupinski, 2000; Gegenfurtner et al.,
2011; Reingold and Sheridan, 2011; Sheridan and Reingold,
2014). These results align with our hypotheses on the visual
characteristics of successful error detection, which may be
explained by the tendency of experts toward more efficient
search strategies and consequently better performance (Recker
and Dreiling, 2007; Yusuf et al., 2007; Petrusel et al., 2017).
Accordingly:

H4 — Experts in conceptual modeling will spend less time
looking at the stimulus than novices.

H5 — Experts in conceptual modeling will require, in total,
fewer fixations than novices.

H6 — Experts in conceptual modeling will require, on
average, shorter fixation duration than novices.

H7 — Experts in conceptual modeling will diagnose the
anomalies more accurately than novices.

Materials and methods

Participants

A within-subject experiment with one experimental factor
on “error type” was conducted in order to test our hypothesis.
30 participants (15 males, 15 females, Age avg. = 28.63) were
recruited and manually divided into two groups. The sample was
screened to only allow participants who weren’t diagnosed with
any neuropsychological conditions or major vision problems
that will require glasses to use a computer, in order to meet
our instrumental constraints. The research was approved by the
Research Ethics Board (REB) of a large academic institution,
and each participant signed a consent form and received a small
monetary compensation from the university bookstore.

The “Novice” group was composed of 15 participants (9
males, 6 females) and were recruited among the volunteers
enrolled in our institution’s panel. This group’s participants were
between 21 and 38 years old (Avg. = 24; SD = 4.06612). Any
participant with a background in IT and business analysis was
excluded, leaving only those that had never used or learned any
visual notation. Even though this group was mostly composed
of undergraduate and graduate students, which might weaken
perception of the external validity of the study, the use of
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students over practitioners allowed us to control the prior
technique and domain knowledge of the participants in order to
make sure that our novices have undeveloped IT competencies
(Batra et al., 1990; Gemino and Wand, 2004; Recker and
Dreiling, 2007).

The remaining fifteen (15) participants (6 males, 9 females)
comprised our ‘Expert’ group. They were recruited, in part, at an
International Institute of Business Analysis (IIBA) convention
that took place in a major North American city in February 2018.
The ages of this group range from 22 to 53 years (Avg. = 33.26;
SD = 9.862161). The experts had to be business analysts and to
have worked on at least 1 project using conceptual modeling,
for a minimum of 15 h of work. Since each organization can
develop their own “flavor” of BPMN or other notation, we also
made sure to recruit experts from different institutions, in order
to minimize the risk that participants will be biased by practices
specific to their organization.

Experimental stimuli

Since conceptual modeling covers such a large scale of
notations and domains, we limited our choice of formalism to
notations used in BPMN. The Business Process Modeling
Notation, or BPMN, is an international standard for
business process notation published by the Business Process
Management Initiative (now Object Management Group)
in 2004. BPMN strives to be understandable by all business
users, from business analysts creating the models to business
actors using or monitoring the processes and even developers
(Birkmeier et al., 2010). Among the analytical evaluation
studies, Wahl and Sindre (2006) found that BPMN is easy to
learn for simple use, even though it can be more complex than
other notations when used with advanced modeling concepts
(Wahl and Sindre, 2006). However, empirical experiments
have found no evidence that the use of BPMN over another
notation would significantly improve the comprehension of
the participant (Birkmeier et al., 2010; Sandkuhl and Wiebring,
2015; Jošt et al., 2016). Furthermore, the growing popularity
of BPMN in the commercial and academic settings lead to its
selection as the visual notation used in this experiment.

Building upon the experimental design proposed by Davis
et al. (2018), 25 models were created, equally grouped in 5
different business scenarios. Each of these models was then
duplicated in 3 copies called sentences. Sentences were then
manipulated on a single experimental factor, error type. There
are 3 error types: one with no known errors (Figure 1); one
with a known semantic error (Figure 2), and one with a known
syntactic error (Figure 3) (Davis et al., 2018). Therefore, 75
models, 25 models for each error type, were created (i.e., 25 with
no errors, 25 with sematic errors and 25 with syntactic errors).
Boxes indicating the three error types were added at the bottom

of each model and were used by participants to indicate their
diagnosis.

Syntactic errors include the use of invalid symbols (Davis
et al., 2018) (e.g., the use of a BPMN “start event” symbol
to represent a “gateway”) or a non-consistent flow (e.g., a
misdirected flow between two activities). Semantic errors, on
the other hand, are subtler and cannot be identified at a glance,
in addition to being difficult to recognize by a compiler or
other verification technologies, making them especially costly
and hard to correct (Dijkman et al., 2008). By using valid
symbols but ambiguous design (e.g., sequence of activities in a
scenario mis-ordered), they present an unintended and puzzling
message.

While several studies found that the domain knowledge had
no significant effect on the understanding of the models in a
model comprehension task (Recker and Dreiling, 2007; Bera,
2012; Recker et al., 2014; Turetken et al., 2016), we feared that
the disparity in the prior knowledge of the business domains
of the models between the participants would greatly influence
the ease with which they would pinpoint errors in an anomaly
detection task (Gemino and Wand, 2004; Birkmeier et al., 2010).
Therefore, we based our models on simple and well-known
scenarios to all participants (e.g., fast food ordering process).
By limiting the range and quantity of symbols used between
8 and 13 elements per model, we controlled the complexity
of each scenario and models (Zur Muehlen and Recker, 2008;
Sánchez-González et al., 2010). In accordance with prior BPMN
literature (Wahl and Sindre, 2006), only the basic symbols
were used, since the use of more advanced components of
the notation greatly complicates the comprehensibility of the
models. Exclusive gateways were used, since the use of gateways
has a positive effect on the comprehension of a model (Recker,
2013), but we did not use any of the other types of gateway
since a use of a heterogeneous range of gateways tends to lower
the comprehension of the models (Sánchez-González et al.,
2010). By combining the use of readily comprehensible models
with a training presentation and some practice tasks, we partly
mitigated the effect of the variation of prior technical knowledge
between each participant (Bavota et al., 2011).

The training consisted of a PowerPoint presentation
explaining the symbols used and the two types of errors present
in the experiment (i.e., semantic and syntactic errors). The
participants went through the presentation at the beginning of
the experiment, after the calibration of the instruments. They
were allowed to take as much time as needed. The content of
the presentation was tested on 6 participants with no, or close
to no, experience with BPMN. After reading the presentation,
the pretested participants were asked to describe the different
symbols and rules explained in the training. The training stimuli
were then improved, and any confusion removed.

After the training presentation, the participants were given a
practice exercise. Just like the experiment, the practice consisted
of identifying and diagnosing an error in a conceptual model.
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FIGURE 1

Example of a model with no error.

FIGURE 2

Example of a model with a semantic error (mis-ordered activities).

The task was composed of three (3) models, where each one
had a different type of error (i.e., no error, semantic error, and
syntactic error). To avoid any form of bias, the practice models
were not related to the scenarios used later in the experiment

and the modeling (experimental) environment was the same
(Bavota et al., 2011). The only difference between the training
task and the experiment was that the participant could see
the correct answer after each practice model. This way, any
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FIGURE 3

Example of a model with syntactic error (use of invalid symbols).

remaining confusion regarding the error types was ameliorated
before the experiment.

The training presentation and the practice task allowed us
to make sure every participant had the necessary knowledge to
complete the experiment and to mitigate the effect of learning
through trial (Bavota et al., 2011). While useful with novices
and experts who were less familiar with BPMN, the training
phase of the experiment also allowed us to make sure that the
experts accustomed with the use of BPMN were still using the
normalized rules of BPMN and were not biased by some of their
own organization’s standards.

To complete the tasks, the participant had to manually click
on the modeling error and on the box classifying the error type
at the bottom of the screen, using the mouse (see Figure 4).
After each click on the model, a visual indicator would be
placed on the location of the click and would disappear after
0.5 s. This indicator was used to provide visual feedback to the
participant that the click was registered, in order to mitigate
any confusion about the user’s actions. If the model contained
no error, the participant simply had to click on the box
indicating “No Error.” After identifying the error, by clicking
on it, and the error type, by clicking on the corresponding box,
participants manually advanced to the next model by pressing
the spacebar. After completion of a scenario, the researcher
opened and completed an online questionnaire. The researcher
then closed the questionnaire and started the next set of models,
or ‘scenario’.

Protocol

As the participants arrived at the laboratory lobby, the
researcher greeted them and explained roughly the stages of
the experiment. They were then asked to read and sign the
consent form, while the experimenter made sure that the
equipment was ready to run and that all the required software
was initiated. After the consent form was signed by both the
participant and the experimenter, participants were taken to the
laboratory and the eye-tracking device calibrated. These steps
took approximately 10 min.

The participant then went through the training presentation
and practice task, which took, on average, between 5 and
7 min to complete. On completion of the practice task, the
participants started their first task for a random scenario. For
each scenario, the participants had to identify and diagnose
errors in 15 models, shown in a random order, without any time
limitations. After completing a scenario, the participants would
then start another error detection task, for another scenario at
random. The experiment would conclude when a participant

FIGURE 4

Boxes indicating error types.
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would go through the 5 scenarios, totaling the 75 models, and
a questionnaire on their previous experience with conceptual
modeling. At the end of the experiment, which took around
45 min, the participant, was given their compensation and
escorted back to the building lobby. Figure 5 summarizes the
experimental protocol design.

Measures

The experiment was set up using SMI Experiment Center
3.7.56 and the data were processed and analyzed using
SMI BeGaze 3.7.40 software. The stimuli were created using
Microsoft Visio 2010. The statistical analysis was carried out
using Stata/MP 15.1. We captured the behavioral measures,
which translate into eye movements, using SMI RED 250 eye-
tracker (Red 250, SensoMotoric Instruments GmbH, Teltow,
Germany). The instrument was configured at a sampling
frequency of 60 Hz and a fixation duration threshold of 200 ms
(Rayner, 1998; Holmqvist et al., 2011). Following the calibration,
using a 9-point predefined calibration grid, the eye-tracker was
adjusted for each participant, to a gaze-position deviation of 0.5◦

or less.
For each model, areas of interest (AOIs) were mapped to

the location of the error. Additional margins of at least 1.5◦

were added to the AOIs to mitigate the imprecision of the eye-
tracker (Holmqvist et al., 2011). Figure 6 shows an example
of a model with AOIs, where the AOI can be seen on the
syntactic error. These AOI mappings allowed us to gather data
on the proportion of fixation and time to first fixation on precise
locations in our models.

As the literature tends to agree that the cognitive processing
of visual stimuli is done during fixations (i.e., the stabilization
of the eye on an object) (Just and Carpenter, 1976; Yusuf et al.,
2007; Zhan et al., 2016), we gathered the fixations, and their
duration, inside each area of interest (AOI). We also took into
account the total view time of each stimulus, in order to evaluate
the response time of the participants.

FIGURE 5

Experimental design.

The error rate for each participant was also determined.
A performance score was created for the three types of error
and calculated by manually reviewing, with the help of the
experiment’s recordings, each answer given by the participants.
Those scores, in percentage, were used to identify which type of
error was the hardest to diagnose and for which error group the
difference between experts and novices was the largest.

A questionnaire was created in order to determine the prior
experience of the participants. It was composed of 7 questions
assessing the number and kinds of visual notations known by
the participant, the number of projects and hours spent working
on conceptual models and the kind of manipulation done in
those projects. In accordance with literature on expertise, rather
than using the amount of time spent as a business analyst as
our indicator of modeling expertise, since experience in itself is
often a poor predictor of true expertise (Gobet, 2016), we chose
objective measures of modeling experience, being the number of
projects involving conceptual models in which the participant
took part and the hours spent working with conceptual models,
in BPMN or any other notations, to define our experts and
novices.

Analysis

To test our hypotheses, linear regressions with mixed model
and a two-tailed level of significance were performed. We have
used a generalized linear mixed model using proc glimmix
in SAS SAS9.4. For this type of presentation study, using a
generalized linear mixed model is more flexible than repeated
ANOVA as it can take into account control variables (Judd
et al., 2017; Plonsky and Oswald, 2017). The repeated measures
ANOVA results based on type 3 sum of squares calculated using
Proc Glimmix in SAS are shown in the Appendix. Dummy
variables were created to represent the error types: dErrSem
for semantic errors, dErrSyn for syntactic errors with invalid
symbols (ErrSyn2) and with non-consistent flow (ErrSyn3),
dErrSyn2 only for syntactic errors with invalid symbols and
dNoError for stimuli with no error. Syntactic errors with non-
consistent flow (ErrSyn3) are isolated when dErrSyn = 1 and
dErrSyn2 = 0 and, therefore, no dummy variable dErrSyn3
variable was created. The binary variable Expertise was also
created to distinguish our two groups of participants, where
Expertise = 1 when the participant is a business analyst.
The variable dWhiteSpace regroups everything that is not
inside an AOI and is considered as ‘irrelevant’ information.
For each stimulus with an error (thus excluding stimuli with
dNoError), there will be a dummy variable (dErrSem, dErrSyn
or dErrSyn2) representing the error area and dWhiteSpace
representing the rest of the stimulus. Scenarios and sentences
were not included in the analysis as they were presented in
a counterbalanced way, and, based on our pretest, they were
considered of the same difficulty level, length, and complexity.

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.982764
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-982764 November 23, 2022 Time: 11:10 # 10

Boutin et al. 10.3389/fnins.2022.982764

FIGURE 6

Example of a model with visible AOI.

Also, we had no hypothesis on effect of the scenarios nor
sentences.

By creating a median split on the overall performance
of experts, we can create and compare two groups: the
performing and underperforming experts. This manipulation
allows us to push our analysis further, and to articulate
the heuristics of experts with good and poor performance.
The dummy variable “dGoodExpert” was then created, where
dGoodExpert = 1 represents the group of high performing
experts. A similar manipulation was carried out by creating
a median split on the performance of all participants, thus
creating dPerformance, where dPerformance = 1 represents
the group of high performing participants, novices and experts
alike. The results of the linear regressions and correlation are
shown in the tables in the following section.

Results

Tables 1A,B present the results of our experiments. The
first hypothesis (H1) states that successful identification and
diagnosis of errors in conceptual models will take less time than
unsuccessful answers. We compared the effect of the variable
“Answer” (i.e., if the participant successfully diagnosed the error,
Answer = 1, if the diagnostic was wrong, Answer = 0) on the
measure “Total View Time.” A significant relationship between
those two variables was found (b = –0.4143, p < 0.001), meaning
that correct diagnostics tend to be looked at for a significantly

shorter amount of time than wrong answers, thus supporting
the hypothesis. Furthermore, Table 1B shows that syntactic
errors tend to be diagnosed faster than other error types (b = –
0.3237, p < 0.001) and, more specifically, stimuli with syntactic
errors that used invalid symbols (ErrSyn2) are diagnosed faster
than stimuli with non-consistent flow (ErrSyn3) (b = –0.3258,
p < 0.001). These results contrast with those for the ‘No Error’
group, which were looked at longer than other error types
(b = 0.2913, p < 0.001). No statistically significant result was
found for semantic errors.

While H2 states that successful error detection will require
fewer fixations than incorrect diagnostics, no significant
results substantiate this assumption. To the contrary, a trend
in our sample suggests that “Answer” seems to have a
positive relationship, but insignificant, with “Fixation Count”
(b = 0.1673, p < 0.0864), implying that good answers could
be linked with a higher fixation count. However, while the
fixation count in the AOI is lower than in the White Space
(i.e., everything that is not inside the AOI) for both correct and
incorrect diagnostic, the proportion of fixation in the relevant
area is higher for the accurate diagnostics of syntactic errors
(b = 0.0236, p < 0.003) as we can see in Figure 7.

Similar results were found for semantic errors (b = 0.0062,
p < 0.022) and syntactic errors of non-consistent flow
(b = 0.0196, p < 0.008).

No statistically significant results were observed for H3,
which states that successful error diagnosis will be linked
with shorter fixation duration. H4, which states that experts
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TABLE 1A Results of linear regressions.

Sex LogAge Expertise dPerformance dGoodExpert

Perf_Total –0.0674
(0.0380)

–0.0911
(0.0807)

0.0052
(0.0389)

0.1193**
(0.0352)

0.0941
(0.0491)

Total view time 0.2373**
(0.0724)

0.3843*
(0.1553)

0.0831
(0.0821)

–0.0648
(0.0836)

0.0834
(0.1351)

Time to first fixation 0.0599
(0.117)

–0.1358
(0.2955)

–0.0247
(0.1170)

0.1912
(0.0463)

0.1855
(0.1782)

Fixation count 0.1664*
(00629)

0.2220
(0.1380)

0.1168
(0.0681)

0.0152
(0.0463)

0.1005
(0.1191)

Fixation duration (ms) 10.9187**
(3.2504)

15.5805*
(67133)

6.2263
(3.6720)

–2.3073
(3.7416)

2.5698
(6.2372)

Fixation duration (%) –0.0423
(0.0524)

–0.1289
(0.1151)

–0.0040
(0.0530)

0.0298
(0.0539)

0.0159
(0.0948)

Perf_NoError –0.1276**
(0.0446)

–0.1876
(0.1134)

–0.092
(0.0470)

0.1483**
(0.0476)

0.1921*
(0.0655)

Perf_Sem 0.0025
(0.0478)

0.0455
(0.0835)

0.0415
(.0462)

0.0962*
(0.0470)

0.0110
(0.0540)

Perf_Syn –0.0771
(0.0647)

–0.1309
(0.1407)

0.0680
(0.0633)

0.1134
(0.0626)

0.077
(0.0815)

Perf_Syn2 0.0470
(0.0769)

–0.0909
(0.1795)

0.0330
(0.0776)

0.0453
(0.0792)

–0.0084
(0.1163)

Perf_Syn3 –0.1601*
(0.0681)

–0.1571
(0.1546)

0.0912
(0.0695)

0.1605*
(0.0680)

0.1409
(0.0883)

Answer –0.3469
(.1974)

–0.4304
(0.3991)

0.0417
(0.2061)

0.6172***
(0.1804)

0.4944*
(0.2395)

Input 0.5618
(0.348)

0.5629
(0.6923)

0.6165
(0.3288)

–0.5169
(0.3470)

–0.9732*
(0.4033)

Standard errors in parentheses; signif.: ***p < 0.001, **p < 0.01, *p < 0.05.

TABLE 1B Results of linear regressions.

dNoError dErrSem dErrSyn dErrSyn2 Answer

Perf_Total 0.0001
(0.0001)

–0.0001
(0.0001)

0.0001
(0.0001)

–0.0014
(0.001)

0.0602***
(0.0128)

Total view time 0.2913***
(0.0404)

0.0325
(0.0316)

–0.3237***
(0.0460)

–0.258***
(0.0501)

–0.4143***
(0.0314)

Time to first fixation –3.7968***
(0.1215)

1.8252***
(0.0785)

2.0672***
(0.0754)

–0.192
(0.1082)

–0.2053
(0.1546)

Fixation count 2.2335***
(0.0473)

–0.7364***
(0.0295)

–1.4956***
(0.405)

–0.2820***
(0.0520)

0.1673
(0.0942)

Fixation duration (ms) 1.02e + 02***
(3.6638)

–4.09e + 01***
(1.8398)

–6.09e + 0***
(2.3814)

–7.8289***
(1.5880)

1.6253
(4.4275)

Fixation duration (%) 1.9532***
(0.0410)

–0.7196**
(0.0336)

–1.2322***
(0.0612)

–0.0044
(0.0663)

0.6760***
(0.0922)

Perf_NoError – – – – –

Perf_Sem – – – – –

Perf_Syn – – – – –

Perf_Syn2 – – – – –

Perf_Syn3 – – – – –

Answer 0.2365
(0.1658)

–0.4336**
(0.357)

0.2191
(0.1685)

0.0871
(0.2088)

–

Input 4.3134***
(0.7370)

–1.4103***
(0.2027)

–0.4654*
(0.1923)

–1.1883***
(0.344)

–

Standard errors in parentheses; signif.: ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 7

Fixation count by AOI and answer.

in conceptual modeling will spend less time looking at
the stimulus than novices, is also not supported since no
statistically significant results were found linking “Expertise”
with “Total View Time.” However, Table 2, which combines
statistical analysis of a dataset when only including the experts
(Expertise = 1), suggests that among experts, syntactic errors
tend to be diagnosed faster than other error types (b = –
0.4167, p < 0.001), with the “invalid symbols” group being
diagnosed faster than the ‘non-consistent flow’ errors (b = –
0.3189, p < 0.01), and where stimuli without any errors were
diagnosed slower (b = 0.3716, p < 0.0038). These results concur
with the findings for H1. Indeed, just like accurate diagnostics,
experts tend to identify syntactic errors faster and diagnose
error-free stimuli slower. Again, no statistically significant result
was found for semantic errors.

Table 3 shows the significant results from statistical analysis
from a dataset only including the high performing experts
(dGoodExpert = 1). A similar pattern can be found, where,
among these proficient experts, syntactic errors are diagnosed

TABLE 2 Effect of errors type on attentional characteristics,
when Expertise = 1.

dWhiteSpace dErrSem dErrSyn dErrSyn2

Total view
time

0.3716**
(0.0455)

0.0457
(0.0423)

–0.4167***
(0.0652)

–0.3189**
(0.0921)

Fixation
count

1.8606***
(0.0629)

–1.0475***
(0.0499)

–1.7427***
(0.0681)

–0.3491***
(0.0606)

Fixation
duration
(ms)

80.8083***
(4.3135)

–5.12e + 01***
(3.1097)

–7.00e + 01***
(3.9850)

–1.04e + 01***
(1.6075)

Fixation
duration
(%)

1.7238***
(0.0811)

–1.0859***
(0.0440)

–1.4991***
(0.1128)

–0.1308
(0.0770)

Standard errors in parentheses; signif.: ***p < 0.001, **p < 0.01.

faster than other types of errors (b = –0.4884, p < 0.0013), with
faster identification of errors involving invalid symbols usage
rather than non-consistent flow (b = –0.3489, p < 0.008) and
a longer total view time with stimuli in the “No Error” group
(b = 0.3683, p < 0.0005). However, a statistically significant link
was found for the semantic errors, where the high performing
experts tend to respond more slowly to stimuli with semantic
errors than other error types.

H5 and H6 were found to be inconclusive since no
statistically significant result was observed. The effect of
“Expertise” on “Fixation Count” (b = 0.1168, p < 0.0970) and
“Fixation Duration” (b = 6.2263, p < 0.1007).

H7, which proposes that experts should diagnose anomalies
more accurately than novices, was tested by analyzing the effect
of “Expertise” on the “Total Performance” and the individual
performance for each error type (see Table 1A). While no
significant values were found, a trend found in our sample for
the performance with the “No Error” group of stimuli, shows
that, contrary to our expectations and hypothesis, experts tend

TABLE 3 Effect of errors type on attentional characteristics, when
dGoodExpert = 1.

dWhiteSpace dErrSem dErrSyn dErrSyn2

Total view
time

0.3683***
(0.0622)

0.1201
(0.0607)

–0.4884**
(0.0955)

–0.3489**
(0.0953)

Fixation
count

1.8245***
(0.0629)

–1.0295***
(0.0830)

–1.7074***
(0.0861)

–0.4257**
(0.0847)

Fixation
duration
(ms)

80.3340***
(5.3879)

–5.01e + 01***
(4.7160)

–7.04e + 01***
(4.3249)

–1.23e + 01**
(2.5090)

Fixation
duration
(%)

1.6751***
(0.1096)

–1.1033***
(0.0773)

–1.4095***
(0.1364)

–0.1725
(0.0944)

Standard errors in parentheses; signif.: ***p < 0.001, **p < 0.01.
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to have a lower performance for error-free stimuli than novices
(b = –0.0942, p < 0.0547).

To get a deeper understanding of the relationship between
our classification of expertise and the responses to the stimuli,
we analyzed the effect “Expertise” on the variable “Input” for
wrong diagnostics, where Input = 1 means that the participant
diagnosed a wrong anomaly and Input = 0 denotes that the
participant wrongly thought that the stimuli didn’t have any
error. While not significant, the trend in our data suggests that
experts tend to diagnose wrong anomalies more than novices
(b = 0.6165, p < 0.0608). These false (or secondary) positives
were unexpected. Like error free code, completely unambiguous
BPMN models are a utopian myth. Although clearly a limitation,
the paradox evident here prompts important future research
questions about the soundness of the expert-novice dichotomy.

Contrary to our expectations, substituting “Expertise” with
“dGoodExpert” showed that high performing experts didn’t
find errors more frequently than underperforming experts
(b = –0.9731, p < 0.0158), suggesting that they diagnose more
“false negatives.” However, high performing experts are also
associated with a higher success rate with error-free stimuli than
other participants (b = 0.1921, p < 0.0109). These confounding
results are further highlighted when we isolate the error types
of the stimuli wrongly diagnosed. We can see in Table 4
that experts, when offering a false diagnosis, tend to identify
false anomalies in syntactic errors with invalid symbols use
(b = 1.2481, p < 0.0048) more than novices. Despite this finding,
the effect of “Expertise” on “Input” for semantic errors in our
sample was positive, but statistically insignificant (b = 0.2152,
p < 0.5858), while high performing experts are more inclined
to inappropriately respond “No Error” than underperforming
experts (b = –1.1518, p < 0.0187).

The ANOVA analyses provided in the Appendix confirm
the results from the linear regressions used in Tables 1–4.
All ANOVAs are repeated measures ANOVA based on type
3 sum of squares after controlling by the order of stimulus
shown to the participants, except for the performance measures
as they are not repeated measures and are not affected
by the stimulus order. The performance measures include

TABLE 4 Effect of expertise on the type of error answered,
when Answer = 0.

Expertise dGoodExpert

Input 0.6165
(0.3288)

–0.9733*
(0.0158)

Input
(Error type = 1)

0.2152
(0.3948)

–1.1518*
(0.4895)

Input
(Error type = 2)

1.2481**
(0.4425)

0.6205
(0.5549)

Input
(Error type = 3)

0.958
(0.5517)

–0.7816
(1.0133)

Standard errors in parentheses; signif.: **p < 0.01, * p < 0.05.

the following measures: Perf_Total, Perf_NoError, Perf_Sem,
Perf_Syn, Perf_Syn2, and Perf_Syn3.

Table 5 presents correlations between the participants’
answers of the questionnaire on previous experience with
conceptual modeling and their performance in the experiment.
Contrary to our expectations, our analysis shows that, prior
experience is negatively correlated with performance. For
instance, we observe a non-significant trend in our sample
where Nb_Q2, which is the number of notations previously
experienced, has a negative effect on performance (b = –0.3410,
p < 0.0703). This infers – again, paradoxically, that participants
with experience of more notations beforehand tend to have a
lower score. Similarly, lQ3_cont, which represent the number of
projects in which they used any visual notation, has a negative
impact on performance (b = –0.3991, p < 0.0320).

Table 6 summarizes our analyses of the data and the results
of hypothesis testing.

Discussion

Clarifying the nature of expertise in conceptual modeling is
crucial to improve business analysts’ training curriculum. Even
if the characteristics of visual attention related to optimized
searches within visual stimuli are known, expertise can translate
into several behavioral dimensions that – as our results
suggest – may be orthogonal, depending on the domain. Expert
radiologists can identify an anomaly more quickly in a visual
stimulus (Krupinski, 2000), while an expert probation officer
will tend to take more time than a novice during a file
reconstruction exercise (Lurigio and Carroll, 1985).

Thus, by comparing the performance, the visual attentional
characteristics and the antecedents between business analysts
and novices in conceptual modeling, our main objective is to
deepen insight into the interdependent heuristics of experts
and how dimensions of expertise affect the behavior and
performance of the participants.

First, we compare the attentional characteristics of correct
and incorrect diagnosis, in order to compare our results with
prior experiments. While H1 was supported, indicating that
correct diagnostics tend to take a shorter amount of time than
incorrect answers, which concur with prior findings among
the literature (Van Waes et al., 2009), H2 and H3 were not.
Contrary to what has been observed in prior work, the accurate
diagnostics in this experiment weren’t linked with a shorter
amount of fixation count or fixation duration (Henderson
and Hollingworth, 1999; Van Waes et al., 2009; Holmqvist
et al., 2011). While not statistically significant, the results from
our sample contradict previous findings and are interesting,
since they point toward an increase rather than a decrease in
fixation count and duration. This might be explained by the
complexity of the task. Indeed, it has been postulated that a
lower amount of fixation could mean that the task was merely
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TABLE 5 Correlation table of items of Past Experience questionnaire.

dQ2 Nb_Q2 lQ3_cont lQ4_cont lQ6_cont lQ7_cont

Performance –0.2183 –0.3410 –0.3991* –0.2828 –0.3294 –0.2245

dGoodExpert 0.2774 –0.2206 –0.3480 –0.2122 –0.0255 0.1168

Signif.: *p < 0.05.

too simple, therefore necessitating a lesser amount of cognitive
processing (Gegenfurtner et al., 2011). In contrast, the fact
that the task may require a larger amount of fixation and
fixation duration on a stimulus to be successfully completed
may show that the anomaly detection process in conceptual
modeling is more cognitively complex than similar tasks in other
domains. This postulation is supported by known ambiguity
of conceptual models and the challenge they present in terms
of comprehension (Figl, 2017). It therefore becomes clear that
a certain amount of fixation is needed to fully understand
the models and that trials with a lesser amount of fixation
count and duration are linked with incorrect answers, since
the participants may have under-appreciated the conceptual
richness of the stimulus, leading to premature and inaccurate
diagnosis.

Second, by comparing the error detection process between
the different error types, we aim to better understand the
relation between model comprehension and the semantic and
syntactic dimensions of conceptual modeling. Syntactic errors
involving invalid symbols use is the type of error diagnosed

TABLE 6 Summary of hypotheses.

Hypothesis Description Conclusion

H1 Successful error detections in conceptual
modeling will require less time spent
looking at the stimulus than unsuccessful
error detections.

Supported

H2 Successful error detections in conceptual
modeling will require, in total, fewer
fixations than unsuccessful error
detections.

Not supported

H3 Successful error detections in conceptual
modeling will require, on average, shorter
fixation duration than unsuccessful error
detections.

Not supported

H4 Experts in conceptual modeling will spend
less time looking at the stimulus than
novices.

Not supported

H5 Experts in conceptual modeling will
require, in total, fewer fixations
than novices.

Not supported

H6 Experts in conceptual modeling will
require, on average, shorter fixation
duration than novices.

Not supported

H7 Experts in conceptual modeling will
diagnose the anomalies more accurately
than novices.

Not supported

the fastest, leading us to surmise that they may be the easiest
kind of error to spot. This concurs with prior work on syntactic
and semantic errors, where syntactic errors are found to be less
subtle and easier to recognize than semantic errors, leading to a
lesser amount of time needed to be diagnosed (Dijkman et al.,
2008; Davis et al., 2018).

An interesting finding arises from the comparison of the two
kinds of syntactic errors. Stimuli with seeded syntactic errors
of non-consistent flow tend to be viewed for a longer amount
of time than models with syntactic errors that used invalid
symbols, thus suggesting greater complexity. While more tests
and analysis are needed to better understand the full nature
of this complexity, we are aware of no study that compared
those two kinds of syntactic errors, and, therefore, we believe it
is a lead worth investigating further. Contrary to expectations,
stimuli with no seed errors were answered slower than other
error types. This can be explained by the concept of ‘stopping
rule’, which is the extent to which participants would continue or
terminate their search for additional information before taking
a decision (Nickles et al., 1995; Browne and Pitts, 2004). It is
then reasonable to expect that the participant takes more time
to diagnose that a model has no errors than the average time
needed to diagnose a semantic or syntactic error, since they must
pass through the same cognitive process, without stopping their
search at the first error found.

The most interesting – and surprising – results appear when
we compare experts with novices. Contrary to our hypotheses
and prior studies, we found that experts were not more
efficient and effective than novices in our experimental tasks.
We found that experts did not have fewer fixations, fixation
duration or total view time than novices, and even had lower
performance than novices for error-free stimuli. How to explain
this confounding result?

While some studies have found that experts may behave
similarly to novices, especially in tasks requiring judgment
(Goldberg, 1959; Levy and Ulman, 1967; Bédard, 1989), few
experiments have produced results where novices performed
better than experts (Adelson, 1984; Köpke and Nespoulous,
2006). In these experiments, the qualitative difference between
how experts and novices perform the tasks would influence
which task was more suited for novices and which for experts.
The task type and complexity would then influence which group
had a better performance. For example, Adelson (1984) found
out that the type of representations constructed by computer
programmers was different between novices and experts, and
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that each type of representation was more suited for a specific
type of task.

This leads us to propose that our task type, or the level of
complexity of the task, may have been more suited to novices:
this might partly explain the unexpected results. Conceptual
models are – by their very name and nature – potent with
ambiguities that business analysts must process cognitively to
find anomalies and errors. However, the use of simple models,
as used in this experiment, could lead the experts to over-
complexify the stimuli when trying to find all the ambiguities.
Our finding that experts tend to diagnose more non-existent
anomalies than novices, could lead to more false diagnoses,
more time spent on the stimuli and more fixations. In other
words, experts tend to over think anomaly detection on simple
conceptual models. They expect to find more defects than do
novice subjects.

Biases linked to expertise also need to be taken into
consideration, since cognitive bias is considered one of the most
serious handicaps of experts (Ericsson et al., 2006). Studies in
neurophysiology have found that experts tend to activate the
areas of the brain associated with inhibition more than novices,
suggesting that experts must inhibit misconceptions in order to
give a sound answer (Masson, 2007; Masson et al., 2014; Brault
Foisy et al., 2015). Furthermore, experts tend to have more
design fixations, such as functional fixedness (i.e., restricting
the use of an object to previously encountered functions)
or mental sets, which limit the creativeness and set of ideas
used in problems solving (Jansson and Smith, 1991; Ericsson
et al., 2006). In our situation, this bias is extremely important,
since understanding and diagnosing unknown models, without
any context or clues, requires a fair amount of creativity
and cognitive flexibility. Cognitive schemata arise from prior
experiences. They frame and, in some ways, limit their abilities
to inhibit misconceptions. The creative limitations from this
bias could very well explain why most experts tend to look
extensively for an error and find ambiguities even in error-free
stimuli. This claim is supported by the post hoc analysis showing
that high performing experts seem to manage to overcome this
bias and successfully diagnose error-free stimuli. Clearly, further
studies and experiments are warranted to explore the deeper
insights indicated by the contradictory results.

Our main theoretical and practical contribution lay in
the elaboration of the expert-novice dichotomy in conceptual
modeling. Our findings regarding experts’ performance, and
the unexpectedly narrow difference between that of experts and
novices, reveals a paradox that offers a new perspective on
the richness of the cognitive milieu of expertise in modeling.
From a theoretical perspective, our results highlight a clear need
for more in-depth studies on how business analysts process
and comprehend conceptual models compared to novices. At
a practical level, articulating the difference between semantic
and syntactic errors, and the difference between the two
kinds of syntactic errors, will enable instructors to adapt and
improve their curriculum when training new business analysts.
Demonstration that different error types require different levels

of cognitive processing, and that experts may over-think and
over-complexify their representation of a model when looking
for anomalies in error-free stimuli, are important to take in
consideration when trying to develop novices into experts.

Limitations and future research

This paper presents an initial attempt to articulate the
differences between experts and novices in an anomaly detection
task in conceptual modeling: the cognitive complexity of both
the field and the study give rise to limitations and opportunities
for improvement in future work.

While we use the concept of IT competence (Bassellier
et al., 2003) to propose a link between experience as a business
analyst and expertise in conceptual modeling, we do not
actually control or measure the level of IT competence of our
participants. Rather than using a conceptual model based on
the model of Bassellier et al. (2003) to measure the antecedents
of IT competence, we used years of experience as a business
analyst as a surrogate indicator of competence. An interesting
way to extend this experiment would be to study the actual
independent variables of IT competence that would contribute
to improving the business analysts’ expertise in conceptual
modeling. Furthermore, it would be interesting to widen the
range or scope of expertise, by comparing participants in 3 or
4 groups with different levels of experience. This would allow
us to further explore the orthogonality of the characteristics and
“dimensions” of expertise, rather than trying to compare what
we now primarily see as a binary concept with two samples.
Future research should consider using a knowledge test to
qualify the expertise of the business analysts. This could allow
capturing with more richness the effect of the level of expertise.

A further limitation of our study is the fact that we didn’t
control for domain expertise (or semantic expertise), and rather
use simple and well-known scenarios. By collecting data on
the familiarity of participants for each scenario, we may have
a better insight into what really causes such small difference
between novices and experts. We only manipulated the “error
type” factor and did not manipulate the complexity of the
models. In the real world, models can sometimes be more
complex with 50 activities and more, and our study relied on
process models with a number between 8 and 13 activities.
Future research should explore the effect of the domain of
expertise and level of complexity as they are likely to play a role
in the ability of the analyst to detect errors as seen in the study
by Haisjackl et al. (2018).

New measures, such as analyzing and comparing the scan
paths and stopping rules of novices and experts, have the
potential to offer us valuable information on reading techniques
used by experienced modelers which could, in turn, be used
to provide recommendations for teaching curricula, the design
of instructional materials and the revision of standardized
notations such as BPMN.
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Since the acquisition of skill can bring major changes
to the brain activity and areas activated, depending on the
skill and the training, a study using functional magnetic
resonance imaging (fMRI) techniques or EEG might allow us
to pinpoint the domain-general control areas and the domain-
specific representational areas associated to expertise in error
detection tasks during conceptual modeling. Considering that
the performance of those areas is sensitive to the nature of the
training, by identifying which areas of the brain to work on,
we could create training curricula and materials strengthening
those areas, thus improving the cognitive processing of future
business analysts. Furthermore, a more detailed understanding
of the cognitive processing of experts will grant us valuable
insights into how novices and experts differ, overcoming the
limitations of the apparently false dichotomy that currently
persists in the literature.
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