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A wide plethora of intervention procedures, tissue plasminogen activators,

mechanical thrombectomy, and several neuroprotective drugs were reported

in stroke research over the last decennium. However, against this vivid

background of newly emerging pieces of evidence, there is little to no

advancement in the overall functional outcomes. With the advancement of

epigenetic tools and technologies associated with intervention medicine,

stroke research has entered a new fertile. The stroke involves an

overabundance of inflammatory responses arising in part due to the

body’s immune response to brain injury. Neuroinflammation contributes to

significant neuronal cell death and the development of functional impairment

and even death in stroke patients. Recent studies have demonstrated that

epigenetics plays a key role in post-stroke conditions, leading to inflammatory

responses and alteration of the microenvironment within the injured tissue.

In this review, we summarize the progress of epigenetics which provides an

overview of recent advancements on the emerging key role of secondary

brain injury in stroke. We also discuss potential epigenetic therapies related

to clinical practice.
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Introduction

Stroke is one of the main leading causes of death and the first leading cause
of disability worldwide (Avan et al., 2019; Collaborators, 2019). Hemorrhagic stroke,
including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH),
happens when a blood vessel in the brain bursts or when brain tissue starts to bleed. On
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the other hand, ischemic stroke (IS) directly results from
the disruption of blood supply to the brain and constitutes
approximately 85% of all known cases of stroke. After the stroke,
injured brain parenchyma initiates biochemical cascades, which
include energy failure, ionic pump failure, oxidative damage,
cell death, and inflammation, eventually leading to irreversible
brain damage (Iglesias-Rey et al., 2022). Additionally, patients
surviving stroke may suffer from functional disabilities that
might require temporary or lifelong assistance (Aslanyan et al.,
2003). Thus, understanding stroke at the molecular level
will help researchers to produce key therapeutic strategies to
minimize secondary injuries and promotion of neuroprotection
associated with stroke (Saini et al., 2021).

Over the past few decades, researchers have advanced
in our understanding of the epigenetic mechanisms involved
in the central nervous system (CNS) and its role in
neuropsychiatric disorders (Szyf, 2015). These epigenetic-
related findings also offer the important translational potential
for stroke research. Thus, fully understanding the role of
epigenetic regulators in the stroke process is crucial to harness
the potential of epigenetic therapies. Here, we review three
epigenetic mechanisms involved in secondary brain injuries
post-stoke: histone modification, DNA-methylation, and RNA
modifications. We also discuss the relevant clinical treatment
targeting epigenetics and summarize future advancements in
this field.

Etiology

The mechanism and pathophysiology involved in ischemic
stroke and hemorrhagic stroke are quite different but with
some overlap. Two major mechanisms responsible for acute
ischemic stroke (AIS) are thromboembolism and hemodynamic
failure. Embolism, more precisely cardio-embolism, has been
demonstrated to produce 20 to 30% of all ischemic strokes
(Kolominsky-Rabas et al., 2001; Kamel and Healey, 2017).
Risk factors associated with cardio-embolism include atrial
fibrillation (Kamel et al., 2016), systolic heart failure (Go et al.,
2001), acute myocardial infarction (Putaala and Nieminen,
2018), patent foramen ovale (Gottdiener et al., 1983), aortic arch
atheroma (Witt et al., 2006), prosthetic heart valves (Cannegieter
et al., 1994) and infective endocarditis (Kim and Kim, 2018).
Large vessel atherosclerosis (LVA) is another main contributor
to ischemic stroke. LVA accounts for nearly 15 to 20% of
all ischemic strokes. In addition, small vessel occlusion is
also a culprit that can be diagnosed in approximately 25% of
patients with ischemic stroke (Grau et al., 2001). Hemorrhagic
stroke, on the other hand, has a well-established relationship
with traumatic brain injury (TBI) (Chen et al., 2011), cerebral
aneurysm (Nieuwkamp et al., 2009), anti-thrombolytic therapy
(Puy et al., 2022), hypertension (Wan et al., 2022), and other
cerebrovascular diseases.

Pathophysiology

Under injured conditions, several molecules can gain access
to the cytoplasm of the cell and leak from the dying cells
into the extracellular environment. These spilled substances
such as DNA are not only manifested as changes in expression
but also in their own structures, these changes will gather a
series of complex secondary pathophysiological processes (Eser
Ocak et al., 2020; Gamdzyk et al., 2020). The pathophysiology
involving stroke is quite complex and involves various
cascade processes, which include: loss of cellular homeostasis,
energy failure, metabolic acidosis, increased intracellular Ca2+

levels, free-radical mediated toxicity, generation of arachidonic
acid products, cytokine-mediated cytotoxicity, complement
activation, apoptosis, autophagy, disruption of the blood-
brain barrier (BBB), activation of glial cells and infiltration of
leukocytes (Lu et al., 2021; Qiu et al., 2021; Ye et al., 2021; Peng
et al., 2022). The mechanism involved in both ischemic and
hemorrhagic stroke produces significant cerebral hypoperfusion
leading to an increase in anaerobic metabolism and eventually,
lactic acidosis which in turn sequentially causes astrocyte demise
and an increase in neuroinflammatory cytokines.

Neuroinflammation has been recognized as one of the main
culprits in promoting further insults in post-stroke conditions,
however, they also play a beneficial role in functional recovery
(Bourhy et al., 2022). Similarly, a decrease in cerebral hypo-
perfusion can also produce malfunction of the ionic pump
causing potassium ions (K+) efflux and sodium, calcium (Na+

and Ca2+, respectively) influx into the neuronal cells and
adenosine triphosphate (ATP) depletion causing excitotoxicity,
edema, and eventually led to necrosis (Zhang et al., 2021; Zhong
et al., 2022). Red blood cell lysis can further cause oxidative
damage which in turn further supports necrosis (Figure 1).

Epigenetics in research frontline

Epigenetics is defined as the branch of biology which
studies the causal interactions between genes and their
products which bring the phenotype into being. Epigenetic
variation, a phenomenon that alters genome modifications
without affecting DNA sequence, can affect the development
of individuals (Freedman et al., 2022), cancer evolution (Nam
et al., 2021), neurodegenerative disease (Corces et al., 2020), and
mental disorder (Havdahl et al., 2021). In particular, dynamic
epigenetic states regulate immune response and inflammation
under pathological conditions (Liotti et al., 2022). Recent
epigenetic studies have been demonstrated to play a key role
in post-stroke conditions leading to inflammatory responses
and alteration of the microenvironment within the injured
tissue (Zhao et al., 2016). The current understanding and
development of epigenetic tools have given the researchers
a more reliable method of competitive differentiation of
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FIGURE 1

Pathophysiology and Mechanism involved in Ischemic and Hemorrhagic stroke. Briefly, mechanisms involved in both ischemic and
hemorrhagic stroke involve cerebral hypo-perfusion leading to oxygen (O2) deprivation causing an increase in anaerobic metabolism and
eventually lactic acidosis which sequentially causes astrocyte demise and an increase in neuroinflammatory cytokines thus promoting
neuroinflammation. Subsequently, cerebral hypo-perfusion can also cause malfunction of the ionic pump causing potassium ions (K+) efflux,
sodium and calcium (Na+ and Ca2+ respectively) influx into the neuronal cells and adenosine triphosphate (ATP) depletion causing
excitotoxicity, edema, and eventually led to necrosis. Red blood cell lysis can further cause oxidative damage which further supports necrosis.

normal versus diseased conditions at the molecular level (Ng
et al., 2018). Contemporary studies in the field of epigenetics
involve Histone modification, DNA-methylation, and RNA
modifications, and their association with both pre and post-
stroke conditions (Figure 2).

Histone modification

Histone is the basic protein found in the nucleus of
eukaryotic cells wrapped around by 146 base pairs (bp) of
DNA into a compact structure known as a nucleosome.
The interaction between histone and DNA is determined
by the electrical charges between them. Briefly, the histones
are positively charged due to the presence of a large
amount of positively charged amino acids (mainly lysine and

arginine). On the other hand, DNA is negatively charged and
thus interaction of positive and negative charges maintains
the structural integrity of the nucleosome. Unlike DNA
methylation, histone modification exclusively occurs at the
amino-terminal tail protruding out of the histone subunit and
is a short-term reversible modification. The amino-terminal
tails are subjected to post-translational modification namely
methylation, acetylation, phosphorylation, and ubiquitination
(Yu et al., 2021). Post-translational modification of amino-
terminal tails is associated with DNA repair, activation or
repression of gene expression, telomere integrity, and the total
interaction changes in response to these modifications are
determined by “histone code” (Ng et al., 2018).

In humans or mammals, the immune system, especially
innate immune cells, plays a decisive role in producing signals
depending on the response in cerebrovascular events. The
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FIGURE 2

Illustrates common epigenetic modifications in stroke. DNA methylation occurring exclusively at the CpG island is associated with gene
silencing and is irreversible modifications. Known histone modifications occurring at the amino-terminal tails are short-term reversible
modifications. RNA modifications are the chemical alteration of the RNA molecules post transcription that alters the expression of RNA.

predominant innate immune cell in the CNS is microglia,
along with subsidiary infiltrating myeloid cells because of the
disruption of the BBB. Microglia, even under resting conditions,
constantly monitor the surrounding microenvironment and
act promptly per changes (Wesselingh et al., 2019). Activated
microglia are subjected to altering their morphology, gene
expression, and consequently undertaking their role per
the changes in the microenvironment (Cherry et al., 2014).
Similar to macrophages, pro-inflammatory microglia (M1)
has been illustrated to up-regulate inflammatory genes
namely interleukin-1 alpha/beta (IL-1α/β), interleukin-6
(IL-6), interleukin-12 (IL-12), interleukin-23 (IL-23), tumor
necrosis factor-alpha (TNF-α), inducible nitric oxide synthase
(iNOS) whereas the anti-inflammatory subtype (M2) has been
illustrated to up-regulate neuroprotective genes such as arginase
1 (Arg-1), insulin-like growth factor-1 (IGF-1), chitinase-3-like
protein 3 (Chi3l3/Ym-1), and found in the inflammatory zone
(FIZZ) (Cao and He, 2013; Caldeira et al., 2017; Salvi et al., 2017;
Zhou T. et al., 2017). Simultaneous down-regulation of M1 and
up-regulation of the M2 phenotype in post-stroke conditions
can be beneficial in minimizing the post-stroke insults.

Histone 3 lysine acetylation (H3KAc) is up-regulated in
microglia around the peri-infarct and infarct zone after ischemic
stroke. Similar up-regulation in H3KAc was also noted in
lipopolysaccharide (LPS) mediated microglial activation. Thus,
H3KAc up-regulation is highly associated with inflammatory
cytokines. Histone deacetylase (HDAC) is a key regulator of
H3KAc (Demyanenko et al., 2020; Fessler et al., 2013; Kong et al.,
2018). HDAC inhibition promotes the downregulation of pro-
inflammatory genes, such as TNF-α, iNOS, signal transducer

and activator of transcription 1 (STAT1), and IL-6, and up-
regulation of interleukin-10 (IL-10) and signal transducer and
activator of transcription (STAT3) genes in activated microglia,
both in vivo and vitro. The up-regulation of anti-inflammatory
genes promotes neuronal survival, reduction in brain infarct
volume, and suppression of microglia activation (M1) which
shows the neuroprotective abilities of HDAC inhibitors (Kim
et al., 2007; Patnala et al., 2017). HDAC6, as an adaptor,
can affect aggrephagy in CNS. For instance, HDAC6-mediated
aggregation is associated with retrograde axonal transport
(Xu et al., 2021). Suberoylanilide hydroxamic acid (SAHA),
which is an HDAC inhibitor, has been exhibited to up-
regulate 70 kilodalton heat shock protein (Hsp70; essential for
protein folding and stress-related protection in cells) and B-cell
lymphoma 2 (Bcl-2; anti-apoptotic) along with the reduction of
pro-inflammatory cytokines, thus preventing neuronal loss and
promoting favorable outcome in post-stroke condition (Faraco
et al., 2006; Langley et al., 2009; Abend and Kehat, 2015; Jhelum
et al., 2017).

Apart from SAHA, other HDAC inhibitors such as valproic
acid (VPA), sodium butyrate (SB), trichostatin-A (TSA), and
sodium 4-phenylbutyrate (4-PBA) have been shown to promote
similar neuroprotective abilities by regulation of excitotoxicity,
oxidative stress, endoplasmic reticulum stress (ER-stress),
apoptosis, inflammation, and BBB breakdown (Fessler et al.,
2013). Reactive oxygen species (ROS) have a well-established
association with cerebrovascular accidents (Olmez and Ozyurt,
2012; Qu et al., 2016). Nuclear factor erythroid 2-related factor 2
(Nrf-2) has been identified as a key regulator in ROS-dependent
oxidative insults to CNS (Li et al., 2011; Yamauchi et al., 2016).
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Up-regulation of Nrf-2 using HDAC inhibitors such as VPA and
TSA has been exemplified to promote neuroprotection against
oxidative stress (Correa et al., 2011; Fessler et al., 2013).

Histone methylation has also been extensively explored
to determine factors associated with prognostic outcomes
in both pre and post-stroke conditions. Aging is one
of the principal determinants of functional outcomes in
cerebrovascular accidents (Manwani et al., 2011; Zhang et al.,
2018) and is highly associated with a reduction in brain plasticity
(Guggisberg et al., 2019; Nesin et al., 2019). A murine study
revealed a significant reduction of Trimethylation of Histone H3
at lysine 4 (H3K4me3) in cortical astrocytes with progression
in age (Chisholm et al., 2015). Histone 3 lysine 9 (H3K9)
has also been identified as a potential target therapy region
as inhibition of Histone-lysine N-methyltransferase SUV39H1
and Euchromatic histone-lysine N-methyltransferase 2 (G9a)
promotes up-regulation of brain-derived neurotrophic factor
(BDNF) in E17 neuronal cells (Schweizer et al., 2015). Another
study using dimethyloxalylglycine (DMOG) to inhibit histone
lysine demethylase subfamily 4 (KDM4) has been shown to
promote neuronal repair via H3K9me2 dependent manner in
CD1 mice (Chakravarty et al., 2017).

Apart from histone acetylation and methylation, post-
translational phosphorylation has also been identified in

cerebral ischemic conditions (Crowe et al., 2006; Song et al.,
2010; Liu et al., 2014; Zhao et al., 2016). Crowe SL and colleagues
demonstrated an increase in ionotropic glutamate receptor
(NMDA) activity that promotes histone phosphorylation (γ-
H2A.X) in rat cortical neurons. However, pretreatment with
vitamin E and BAPTA-AM (calcium chelator) attenuated γ-
H2A.X formation (Crowe et al., 2006). A study using the
Drosophila model demonstrated neuronal necrosis through
phosphorylation of histone 3 serine 28 (H3S28Ph) (Liu et al.,
2014). A list of commonly undertaken histone modification and
histone binding modules has been enlisted in Figures 3A–C.

DNA methylation

DNA methylation has been one of the most extensively
studied epigenetic modifications, exclusively occurring at CpG
dinucleotides in mammals and always symmetrical to maintain
the methylation during the cell division process. Notably,
DNA methylation depends on the balance between hyper and
hypomethylation activity. DNA methylation is carried out by
de novo methyltransferases (DNMT); precisely DNMT3a and
DNMT3b in mammals. CpGs are clustered into CpG islands,
often at the promotor site of the gene. CpG island tends

FIGURE 3

Histone Modifications. (A) Illustrates pictorial representation of all known till date post-translational modification of histone amino-terminal tail
and their location regions. (B) Portraits frequency used histone marks and their histone binding modules such as BRCT, bromodomain,
chromodomain, MBT, PHD, Tudor, WD40 repeats and 14-3-3. (C) List of frequently used histone-modified regions, functions, and locations in
DNA sequence which includes H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, H3K9Ac, H3K9La, H3K27Ac, H4K12La,
H4K16Ac, H3S10P, and Gamma H2A.X.
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to be protected from methylation. Methylation observed at
CpG island is entirely associated with the silencing of gene
expression and carried out either by the formation of repressive
chromatin structure or inhibiting transcription factor binding
and alteration of gene expression.

Long interspersed nuclear element-1 (LINE-1), which is
a class I transposable element in the DNA and a member
of LINEs has been the center of many study discussions
after their discovery concerning the association in predicting
increased risk of ischemic stroke and cardiovascular events.
Hypomethylation of LINE-1 is associated with an increased
risk of ischemic stroke (Baccarelli et al., 2010b; Lin et al.,
2014; Soriano-Tarraga et al., 2014; Ng et al., 2018). However, a
single sex-specific analytic study has demonstrated that LINE-
1 hypomethylation is suggestive of advanced atherosclerotic
lesions, which leads to global hypomethylation and has more
association in determining the risk of development of ischemic
stroke in men as compared to that of women (Lin et al.,
2014). A further investigation reported the co-relation between
hypomethylation of LINE-1 and an increased level of circulating
vascular cell adhesion molecule-1 (VCAM-1) (Baccarelli et al.,
2010a).

A cross-sectional study was conducted on the Japanese
population aiming to determine the relationship between
methylation of LINE-1 in leukocytes and that dyslipidemia.
Hypomethylation of LINE-1 in leukocytes was showcased to
have a higher odds ratio in individuals with dyslipidemia
(Tsuboi et al., 2018). Thus, the methylation status of
LINE-1 can be a key risk factor predictor. Similarly,
hypomethylation of TNF receptor-associated factor 3 (TRAF3)
and hypermethylation of thrombospondin-1 (THBS1) has
also been illustrated to be crucial predictor of stroke-related
outcomes (Lopez-Dee et al., 2011; Udali et al., 2013; Gallego-
Fabrega et al., 2016; Ng et al., 2018). DNMT, especially DNMT1
and DNMT3a has also been identified as pivotal enzymes
regulating methylation of various genes (Feng et al., 2010;
Wu et al., 2012; Gustafsson et al., 2018), of which DNMT1-
dependent DNA methylation has been pinpointed as a mediator
of chronic inflammation and development of atherosclerotic
disease via the peroxisome proliferator-activated receptor
gamma (PPAR-γ) pathway (Yu et al., 2016). On the other hand,
DNMT3a has also been identified to promote ischemic brain
damage (Morita et al., 2013; Pandi et al., 2013). Thus, DNA
hypomethylation may be a potential therapeutic strategy for the
treatment of stroke (Sharifulina et al., 2021).

Matrix metalloproteinase-2 (MMP-2) is one of the most
studied enzymes concerning their changes in peripheral blood
concentration both in acute and chronic phases of post-
stroke symptoms (Fatar et al., 2008; Kreisel et al., 2012,
2016). However, various studies have produced not identical
data, creating confusion within the research field. A study
conducted over a sample size of 556 participants (298 with
ischemic stroke versus 258 control) successfully showcased a

lower concentration of MMP-2 methylation level in peripheral
blood exclusively in male small-vessel occlusion participants
(Lin et al., 2017). Thus, narrowing the use of MMP-2 serum
concentration as an effective marker in post-ischemic stroke.
Apart from the common methylation at the fifth position
of the pyrimidine ring of cytosine (5mC), other forms of
modifications are also noted at a similar position namely, 5-
hydroxymethyl (5hmC), 5-formal (5fC), and 5-carboxyl (5caC).
Various studies have successfully showcased 5-hmC to regulate
several cellular processes which include neuronal development
as well. A neoteric study was conducted in murine specie
(mouse), demonstrating the use of ascorbate (mineral salt of
ascorbic acid; vitamin C) in post-stroke reperfusion led to Ten-
eleven translocation 3 (TET3) dependent conversion of 5mC to
5hmC, promoting up-regulation of neuroprotective genes and
functional recovery (Morris-Blanco et al., 2019).

5-aza-2′-deoxycytidine which is a DNA methyltransferase
inhibitor (DNA methylation inhibitor) has been illustrated to
significantly reduce the infarct volume (Endres et al., 2000).
Likewise, another study using zebularine, which is also a
DNA methylation inhibitor, has demonstrated dose-dependent
(500 µg and 100 µg) reduction in infarct volume (Dock et al.,
2015).

RNA modification

Similar to DNA modifications, RNA modifications
have also been shown to be a regulator of gene expression
(Li et al., 2017; Engel and Chen, 2018; Coker et al., 2019;
Sendinc et al., 2019). To date, RNA modifications include
N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine
(m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C),
5-hydroxymethylcytosine (hm5C), N4-acetylcytidine (ac4C),
rotation isomerization of uridine/pseudouridine (ψ) and
7-Methylguanosine (m7G) (Figure 4). m6A is one of the most
commonly observed mRNA modifications (Ji et al., 2018) and
was identified in the 1970s (Desrosiers et al., 1974; Adams and
Cory, 1975; Aloni et al., 1979). However, their association with
small nuclear RNAs (snRNAs), micro-RNAs (miRNAs) circular
RNA (circRNAs), and long non-coding RNAs (lncRNAs) has
been recently understood (Dominissini et al., 2012; Chen et al.,
2020). Mapping of m6A over human and murine RNA has
identified over 18,000 m6A sites in 7,000 human genes with
a consensus sequence of [G/A/U][G > A] m6A[U > A/C]
(Dominissini et al., 2012; Meyer et al., 2012; Sun et al., 2016).
m6A has also been shown to be changed during embryonic
brain development and cerebral ischemic conditions (Meyer
et al., 2012; Li et al., 2022). Furthermore, the silencing of m6A
methyltransferase affects gene expression and modulates the
p53 (TRP53) signaling pathway and apoptosis (Dominissini
et al., 2012). Likewise, m6Am, m1A, m5C, hm5C, ac4, C, ψ,
and m7G are somewhat understood in the context of cancer
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FIGURE 4

Illustrate DNA to RNA transcription (followed by possible mRNA (messenger RNA) modifications at different nitrogen bases).
N6-methyladenosine m6A; Pseudouridine (9); 5-methylcytosine (m6C); 5-hydroxymethylcytidine (hm6C); N1-methyladenosine (m1A);
7-Methylguanosine (m7G); N6,2′-O-dimethyladenosine (m6Am). 3′UTR: Three prime untranslated regions; CDS: CoDing Sequence; 5′UTR: Five
prime untranslated regions.

and as potential biomarkers. For example, m1A was identified
as a modulator in cerebral ischemic stroke (Chokkalla et al.,
2022), and m6A was showcased to regulate the brain functions,
development of synaptic plasticity, and their association with
neuropsychiatric disorders (Yoon et al., 2017).

Cumulatively, epigenetic mechanisms offer a promising new
therapeutic target in ischemia (Table 1). Histone/DNA/RNA
modifications have been widely studied over the last decade.
However, their contributions to stroke pathophysiological
processes (including hemorrhagic and ischemic stroke) are still
limited. Further clinical studies should assess whether these
targets can restore or enhance significantly clinical outcomes of
stroke patients.

Prospect

As a result of interventions in the hyperacute phase, the
mortality of stroke has declined substantially. However, long-
term disability and institutionalization of the post-stroke remain
unchanged. Stroke is a complex, multifactorial disease in which
a wide plethora of pathological processes are simultaneously set
in motion. Modulation of a single molecular factor is unlikely
to be sufficient to attenuate or reverse the progression of stroke
pathology. Epigenetic alterations such as DNA methylation,
histone modifications, and RNA modifications are potent
modulators of gene regulation, and an accumulating body of

evidence suggests that they play a pivotal role in regulating
brain remodeling after stroke. As a result, efforts are being
made to identify key molecular signatures and development of
combination therapy strategies similar to cancer (Dawson and
Kouzarides, 2012).

Specifically, DNA methylation has been one of the heavily
researched topics over the last decade and their association with
risk factor prediction has been well documented. For example,
DNA methylation of Cyclin-dependent kinase inhibitor 2B
(CDKN2B) has been showcased to promote an increased risk
of arterial calcification in ischemic stroke patients (Zhou et al.,
2016; Zhou S. et al., 2017). Similarly, histone modifications have
been illustrated to be a regulator of gene expression (Crowe
et al., 2006; Kim et al., 2007; Schweizer et al., 2015; Patnala
et al., 2017). Furthermore, strokes could cause an increase in
anaerobic metabolism and lactic acidosis. Recently, a novel
function for lactate is utilized in a new histone modification,
histone lysine lactylation (Zhang et al., 2019; Figure 2). Pan et al.
report an H4K12 lactylation positive feedback loop in microglial
inflammation (Pan et al., 2022). This epigenetic mechanism
may bring forth new biology and functionality to the role of
metabolic homeostasis in regulating the secondary brain after
stroke. The antagomir approach has been proven to promote
neuroprotective effects in animal models of stroke and potential
treatment strategies for the subsequent trend in epigenetics.
Pharmacological inhibitors of these epigenetic modifications
have been studied in animal models of stroke (Tang et al., 2017)
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TABLE 1 Potential molecules and their targets on epigenetics in ischemic stroke.

Name Target Species Cell type Model Mechanism
of action

References

SAHA Histone C57BL/6 mice Neuron/Microglia/
Astrocyte

MCAO Hsp70 and Bcl-2 Abend and Kehat, 2015; Faraco
et al., 2006; Jhelum et al., 2017;
Langley et al., 2009

SB Histone C57BL/6 mice Microglia MCAO IL-10/STAT3 Patnala et al., 2017

4-PBA Histone C57BL/6 mice Neuron Hypoxia HDAC Qi et al., 2004

Chaetocin Histone Rats Neuron OGD BDNF Schweizer et al., 2015

DMOG Histone CD1 mouse Neuron ICAO KMTs/KDMs Chakravarty et al., 2017

JIL-1/MSK Histone
(H3S28ph)

Drosophila and
C57BL/6 mice

Neuron MCAO PRC1/Trx Liu et al., 2014

LINE-1 DNA Human – AIS patients Methylation Lin et al., 2014

Clopidogrel DNA Human – AIS patients TRAF3 Gallego-Fabrega et al., 2016

DNMT1 DNA C57BL/6 embryos
and
Human

Macrophage AIS PPAR-γ Yu et al., 2016

MMP-2 DNA Human – AIS patients Methylation Lin et al., 2017

Ascorbate DNA C57BL/6 mice Neuron/Astrocyte MCAO TET3/5hmC Morris-Blanco et al., 2019

5-aza-2′-deoxycytidine DNA Transgenic mice Neuron MCAO Methylation Endres et al., 2000

Zebularine DNA Rats Astrocyte MCAO Methylation Chisholm et al., 2015

m1A RNA C57BL/6 mice – MCAO m1A
demethylase.

Chokkalla et al., 2022

m 6 A RNA C57BL/6 mice – MCAO RNA
methylation

Li et al., 2022

4-PBA: Sodium 4-phenylbutyrate; 5hmC: 5-hydroxymethyl; AIS: Acute ischemic stroke; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; DMOG:
dimethyloxalylglycine; DNMT 1: de novo methyltransferases 1; HDAC: Histone deacetylases; Hsp70: 70 kilodalton heat shock proteins; ICAO: Internal carotid artery occlusion; IL-10:
Interleukin-10; JIL-1: Chromosomal serine/threonine-protein kinase-1; KMTs: Lysine methyltransferases; KDMs: Lysine demethylases; LINE-1: Long interspersed nuclear element-1;
m1A: N1-methyladenosine; m6A: N6-methyladenosine; MCAO: Middle cerebral artery occlusion; MMP-2: Matrix metalloproteinase-2; MSK: Mitogen- and stress-activated kinase;
OGD: Oxygen-glucose deprivation; PPAR-γ: Peroxisome proliferator-activated receptor gamma; PRC1: Polycomb repressive complex 1; SAHA: Suberoylanilide hydroxamic acid; SB:
Sodium butyrate; STAT3: Signal transducer and activator of transcription 3; TET3: Tet methylcytosine dioxygenase 3; TRAF3: TNF receptor-associated factor 3: Trx: Thioredoxin; TSA:
Trichostatin-A; VPA: Valproic acid.

and are readily available as treatment options in the clinic
(Santini et al., 2013).

Over the years, several clinical studies or clinical trials were
conducted to determine effective treatment after hemorrhagic
and ischemic strokes. As mentioned earlier, HDAC inhibition
could promote the downregulation of pro-inflammatory genes.
VPA, a nitrogen-free broad-spectrum antiepileptic compound,
has been used clinically for decades due to its effect on the
decrease in neuronal hyperexcitability both by strengthening
GABAergic transmission and by inhibiting sodium/especially
calcium ion channels and HDACs. Previous clinical trials
(Trial No. NCT01115959) reported that VPA-treated ICH
patients had improved the National Institute of health stroke
scale (NIHSS) scores (Gilad et al., 2011; Brookes et al.,
2018). An ongoing study (Trial No. ChiCTR2100050161)
also focuses on the effects of sodium valproate in patients
with SAH (Chen et al., 2022). Other histone modification-
related drugs, including Fluoxetine and Sildenafil citrate,
are reported in clinical trials for both hemorrhagic and
ischemic stroke (Chollet et al., 2011; Washington et al., 2016;
Dennis et al., 2020; Marquez-Romero et al., 2020). Although
clinical studies (Trial No. ISRCTN83290762, NCT00657163,

NCT01737541) reported that Fluoxetine did not improve
patients’ functional outcomes, early prescription of Fluoxetine
with physiotherapy enhanced motor recovery in AIS and
ICH patients (Chollet et al., 2011; Dennis et al., 2020;
Marquez-Romero et al., 2020). Other epigenetic therapies,
such as D-cycloserine (Trial No. NCT02082912), intra-
arterial autologous bone marrow mononuclear cells injection
(RNA modification, Trial No. NCT02178657), intravenous
transplantation of autologous mesenchymal stem cells expanded
with autologous serum (involved in non-coding RNA functions,
Trial No. NCT01716481) also showed beneficial effects in
ischemic stroke patients (Butler et al., 2015; Mancha et al., 2020;
Bang et al., 2022) (Table 2).

Overall, previous studies have successfully demonstrated
that stroke leads to epigenetic dysregulation which in
turn triggers a series of cascade changes that cause
neuroinflammation, oxidative stress, apoptosis, and several
other secondary injury events. Other epigenetic modifications
(such as acetylation, phosphorylation, and lactylation) and
epigenetic regulators (such as lncRNAs, circRNAs, and
miRNAs), although not discussed in this review, were also
reported as translational targets in stroke research. Agents
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TABLE 2 Clinical trials with epigenetic-related agents in stroke research.

Agent Disease Trial no. Country Duration Proposed
mechanism

Intervention Status Final verdict References

VPA ICH NCT01115959 Israel Feb 2003 –
Dec 2008

Blocking voltage-gated
ion channels/Inhibiting
histone deacetylase

Orally 400 mg twice daily
for one month

Completed VPA-treated patients had
improved NIHSS scores

Gilad et al., 2011;
Brookes et al., 2018

SAH ChiCTR21000
50161

China Aug 2021 –
Present

20 mg/kg daily
intravenously for 7 days

Ongoing – Chen et al., 2022

Fluoxetine AIS ISRCTN8329
0762

UK May 2015 –
Oct 2021

Selective serotonin
reuptake
inhibitor/Histone
deacetylase

20 mg once daily or
matching placebo
capsules for 6 months

Completed Fluoxetine did not improve
functional outcomes but
decreased the occurrence of
depression

Dennis et al., 2020

NCT00657163 France Mar 2005 –
Dec 2010

20 mg daily for 3 months Completed Fluoxetine enhanced motor
recovery after 3 months

Chollet et al., 2011

ICH NCT01737541 Mexico Nov 2012 –
Aug 2014

Completed Fluoxetine was safe and
helped to increase motor
recovery 90 days after ICH.

Marquez-Romero et al.,
2020

D-cycloserine IS NCT02082912 USA Jun 2010 –
Apr 2012

NMDA agonist 100 mg PO twice weekly
for three weeks

Completed D-cycloserine can’t provide
greater gains in learning for
stroke survivors

Butler et al., 2015

Sildenafil citrate IS NCT02628847 USA Mar 2012 –
Oct 2016

PDE5 inhibitor/Histone
deacetylase

25 mg once per day for
14 days starting day 5-9
post stroke

Completed Assessment of upper
extremity and lower
extremity motor impairment

–

SAH NCT03028298 USA Dec 2016 –
Present

20mg oral and 10mg
intravenous; 60mg oral
and 30 mg intravenous

Ongoing – Washington et al., 2016

BM-MNCs AIS NCT02178657 Spain Ap 2015 –
Oct 2021

RNA modification Intra-arterial autologous
BM-MNCs injection
(dose 2× 106 per
kilogram)

Completed BM-MNC is related to
precursor cell migration in
stroke and smaller infarct
volumes

(Mancha et al., 2020)

MSCs AIS NCT01716481 South Korea Nov 2012 –
Dec 2017

miRNAs Intravenous
transplantation of
autologous MSCs

Completed MSCs are correlated with
improvement in motor
function and MRI indices of
plasticity

Bang et al., 2022

AIS: Acute ischemic stroke; BM-MNCs: Bone marrow mononuclear cells; ICH: Intracerebral hemorrhage; IS: ischemic stroke; miRNAs: micro-RNAs; MRI: magnetic resonance imaging; MSCs: Mesenchymal stem cells; NIHSS: National institute of health
stroke scale; PDE5: Phosphodiesterase 5; SAH: Subarachnoid hemorrhage; VPA: Valproic acid.
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targeting epigenetic regulation are under development and
entering clinical trials. Epigenetic modifications, such as
methylation or non-coding RNA expression levels, may play
a crucial role in antiplatelet treatment for stroke patients
(Danielak et al., 2022). Regulation of these key triggers would
be beneficial to produce the desired outcome in post-stroke
conditions.

Conclusion

Advancements in epigenetics research have led us to
further understand the mechanisms of secondary injury. Future
understanding of the key modulators at the molecular level and
combination therapies would be new management strategies in
post-stroke conditions.
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