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Human gait-labeling uncertainty
and a hybrid model for gait
segmentation
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Motion capture systems are widely accepted as ground-truth for gait analysis

and are used for the validation of other gait analysis systems. To date, their

reliability and limitations in manual labeling of gait events have not been

studied.

Objectives: Evaluate manual labeling uncertainty and introduce a hybrid stride

detection and gait-event estimation model for autonomous, long-term, and

remote monitoring.

Methods: Estimate inter-labeler inconsistencies by computing the limits-of-

agreement. Develop a hybrid model based on dynamic time warping and

convolutional neural network to identify valid strides and eliminate non-stride

data in inertial (walking) data collected by a wearable device. Finally, detect gait

events within a valid stride region.

Results: The limits of inter-labeler agreement for key gait events heel o�,

toe o�, heel strike, and flat foot are 72, 16, 24, and 80ms, respectively; The

hybrid model’s classification accuracy for stride and non-stride are 95.16 and

84.48%, respectively; The mean absolute error for detected heel o�, toe o�,

heel strike, and flat foot are 24, 5, 9, and 13ms, respectively, when compared

to the average human labels.

Conclusions: The results show the inherent labeling uncertainty and the limits

of human gait labeling of motion capture data; The proposed hybrid-model’s

performance is comparable to that of human labelers, and it is a valid model

to reliably detect strides and estimate the gait events in human gait data.

Significance: This work establishes the foundation for fully automated human

gait analysis systems with performances comparable to human-labelers.

KEYWORDS

gait labeling uncertainty, limit of agreement, convolutional neural network, dynamic

time warping, automatic gait segmentation, wearable inertial sensors, gait event

detection, human activity recognition (HAR)
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1. Introduction

Human walking is a complex dynamic process. It

integrates multiple interdependent sensory inputs and

requires coordination of the motor outputs to achieve efficient,

stable, and adaptive locomotion. The deterioration of human

gait can severely affect people’s mobility, reduce a person’s level

of activity, and affect their quality of life. In general, gait can

be described by its temporal and spatial characteristics such

as stride time, stride length, stride velocity, swing time, stance

time, and their corresponding variability as well as left and

right symmetry metrics (Del Din et al., 2016). Probing and

evaluating these gait characteristics is important not only in

the field of rehabilitation (Richards et al., 1999; Eng and Tang,

2007; Selves et al., 2020), but also in the early detection of

neurological diseases, such as Parkinson’s disease (Lees, 1992;

Brognara et al., 2019), Alzheimer’s disease (Gras et al., 2015;

Mc Ardle et al., 2019), and tremor syndromes (Stolze et al.,

2001; Hoskovcová et al., 2013). Some specific gait patterns even

appear in the earliest stage of neurological diseases before other

signs and symptoms are evident, providing significant clues for

early diagnosis and treatment (Jacobi et al., 2012; Nürnberger

et al., 2015; Pistacchi et al., 2017). Therefore, quantitative gait

characteristics can be used as a digital biomarker for monitoring

and assessing people’s health status.

To assess and evaluate an individual’s gait by temporal

and spatial characteristics quantitatively, gait is segmented into

repeating cycles. Each cycle starts when the foot leaves the

ground commencing the swing phase and is followed by the

stance phase, where the foot is on the ground again, which

lasts until the next gait cycle starts (DeLisa, 1998). These two

main phases can be further divided into eight sub-phases by gait

events within one gait cycle: initial contact, loading response,

mid-stance, terminal stance, pre-swing, initial swing,mid-swing,

and terminal swing. Key gait events segmenting these phases are

heel strike (HS) and toe off (TO). Additional events of interest

include heel off (HO) and flat foot (FF), which give insights

into the transition periods between the two main gait phases,

swing and stance. For pathological gait, the preceding sequence

and the time allocation of gait phases can vary compared to

healthy people, and some gait events or phases might even be

missing completely (Senanayake and Senanayake, 2010; Meng

et al., 2013). Observing these variations in gait events long-

term, during daily activities provides a powerful tool for clinical

gait assessment, evaluation, and diagnosis (Atrsaei et al., 2021),

such as identifying early Parkinson’s disease (PD) (Rehman

et al., 2019), capturing freezing of gait (Palmerini et al., 2017;

Mancini et al., 2019), monitoring PD symptoms (Heijmans

et al., 2019), and the Levodopa response (Pulliam et al.,

2017). In light of the ongoing shift of rehabilitation and early

diagnosis from physical visits of care facilities toward remote

monitoring systems, the understanding of real-world gait data

gains significant importance (Warmerdam et al., 2020). Recent

studies have investigated the relationships between clinical gait

assessments and home-based monitoring systems, and have

described an additive component for real-world data (Shah et al.,

2020; Atrsaei et al., 2021). A reliable method for continuous

remote monitoring of gait quantity and quality affords new

perspectives of assessing the real-world impact of interventions

and of investigating the transfer of rehabilitation progress to

out-patient behavior.

To capture the quality of gait, a significant research effort has

been made toward achieving a comprehensive understanding

of spatio-temporal gait characteristics, with the aid of various

systems such as motion capture systems (Mihradi et al., 2011;

Carse et al., 2013), pressure mats (Yu et al., 2010; Papavasileiou

et al., 2017), and wearable sensors (Tunca et al., 2017; Zhang

et al., 2019; Wu et al., 2021; Celik et al., 2022). Compared

to traditional subjective visual observations by therapists,

instrumented assessments allow for an objective assessment of

gait characteristics (Laughman et al., 1984). Motion capture

systems give a detailed evaluation of motion but require a

complex stationary set-up involving cameras and the collected

data needs to be post-processed (manually) to identify relevant

gait characteristics. This makes those gait systems very expensive

to operate. Moreover, motion capture systems cannot track

people outside the laboratory and therefore the time and place

of the data collection are severely constrained as the patient

must physically visit a gait laboratory. An alternative is pressure

mats, which measure the interface pressure when people are

treading on them. While the setup has reduced complexity,

gait measurement is still confined to a gait laboratory and

the available range of gait parameters and information from

pressure mats is limited. Both motion capture systems and

pressuremats offer a constrained walking environment, allowing

individuals to focus their attention solely on ambulation.

This may lead to biased results, as the recorded gait is not

representative of the patient’s typical gait. Additionally, the

measurements often take place under the supervision of a

health professional, which may further skew the collected

data (Kaye et al., 2012; Robles-García et al., 2015). These costly

and laboratory-limited data acquisition systems have led to a

growing urge for cheaper and mobile systems, i.e., wearable

gait analysis system (WGAS) (Tunca et al., 2017; Zhang et al.,

2019; Wu et al., 2021). WGAS are not only cost-effective and

portable, but can also be used for a longer period of time of

continuous monitoring, allowing for unbiased measurements

during daily routines.

For validation ofWGAS’s algorithms, optical motion capture

systems are the most commonly used reference systems and are

considered as the gold standard (Caldas et al., 2017; Kobsar

et al., 2020). They employ either retro-reflective (passive) or

infrared emitting (active) markers attached to different locations

on the lower limbs. These markers are tracked through multiple
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cameras to record their spatial trajectories. The key gait events

are then identified by technicians who visually examine the

markers’ spatial trajectories or by automated event detection

algorithms based on markers’ position and velocity (Kidziński

et al., 2019; Lempereur et al., 2020) for further gait parameter

estimation. Although the aforementioned automated detection

algorithms are time efficient, they are not suited for the patient

population due to the high variability that is intrinsic to

pathological gait. Thus, the manual labeling of motion capture

system data is still the most widely accepted benchmark for

validation of WGAS algorithms for gait analysis (Caldas et al.,

2017; Tunca et al., 2017; Hsu et al., 2018). Nonetheless, the

uncertainty of manual labels of motion capture system data

and the limit of detection have never been considered and

evaluated. The uncertainty in manual labels mainly comes

from two sources: 1) the lack of consistency within a labeler

i.e., intra-labeler inconsistency; and 2) the lack of consistency

among different labelers i.e., inter-labeler inconsistency. The

label quality of gait events and acquisition results are highly

dependent on the labeler’s personal perspective and experience

level. The uncertainty of labels in gait data resulting from

intra-labeler and inter-labeler inconsistency can have a direct

impact on the reliability of gait event labels, and further

affect the accuracy of gait parameter estimation and the

decision by doctors. Therefore, one objective of this study is

to investigate the uncertainty in manual labeling of gait events

in the well-accepted benchmark, i.e., optical motion capture

system data.

To estimate spatial and temporal gait parameters from
WGAS, different algorithms have been developed. The first

group of gait analysis methods relies on straight gait event
detection in long-term sensor signals (Agostini et al., 2013).

Gait events can be identified by different techniques, including
rule-based (Zhu et al., 2012; Zhao et al., 2017) and machine

learning methods (Zhen et al., 2019; Liu et al., 2021).

The second group of methods splits gait analysis into two

stages: first segmenting the sensor data into strides, and

then searching for gait events within each found stride. The

advantages of identifying single strides first are that it is more

robust for pathological gait where some gait events may be

missing (Agostini et al., 2013), and more efficient for long-

term gait recording processing since it rejects non-stride data

in the first stage, reducing the computational cost (Ullrich

et al., 2020). This two-stage gait analysis has been investigated

in literature by many techniques, such as threshold/peak

detection methods (Hickey et al., 2016; Ullrich et al., 2020),

template matching methods (Barth et al., 2015; Oudre et al.,

2018) and machine learning-based methods (Martindale et al.,

2021). However, robust algorithms for automatic detection

of stride and rejection of non-stride data from long-term

free-living walking data are still needed for effective gait

analysis. Therefore, in this paper, a hybrid approach based

on dynamic time warping (DTW) and convolutional neural

network (CNN) is proposed to automatically identify stride

signals and eliminate non-stride signals from long-term inertial

walking data.

The contribution of this study is two-fold: 1) The uncertainty

in terms of the limit of agreement (LOA) in manual labeling

of human walking data from an optical motion capture system

is assessed and analyzed. Those manual labels are further used

as benchmarks for the validation of the proposed gait analysis

algorithm. Their inherent variances serve as a baseline for the

validation study. 2) A hybrid approach based on DTW and

CNN named stepperNet is developed for gait cycle identification

in long-term walking. A gait event detection algorithm is later

employed to segment each stride data-slice into sub-phases.

The results of gait event detection are compared to the average

manual labels obtained from the work done in contribution 1).

2. Materials and methods

2.1. Data acquisition

2.1.1. Participants of the study

Three groups Gi with i ∈ {1, 2, 3} of healthy participants

were recruited in this study. The first group G1 consisted of four

healthy participants (all males, with an average age of 39 ± 7.07

years), who were instructed to walk on a treadmill. They are

labeled as participant S1 − S4. The dataset of this group was

used for the assessment of manual labeling and validation of

gait event detection algorithm. The second group G2 consisted

of (distinct) four healthy participants (all males, with an average

age of 31.5± 2.06 years), who were instructed to walk for several

minutes at various gait regimes. They are labeled as participant

S5 − S8. The dataset of this group was used for stepperNet

training and validation. The third group G3 consisted of another

five labelers (four males and one female, with an average age of

29.6 ± 1.67 years). Note that the G3 is not a walking group but

a group of labelers. To minimize the effect of different labeling

experience of labelers and to keep them with the same level

of labeling experience, the five labelers were well-trained for

the same amount of time to manually label the gait events on

the software of the motion capture system. They are labeled as

participant S9 − S13.

All participants of G1 and G2 had no known injuries

or abnormalities that affected their gait and were asked to

walk as much as possible in the same way they walk in

their daily lives. Written informed consent was provided by

all participants and this study was conducted in accordance

with Good Clinical Practice guidelines and the Declaration of

Helsinki after receiving a declaration of clearance from the local

ethics committee (BASEC Nr Req-2019-00715).

2.1.2. Wearable gait analysis system

Gait data were recorded with the WGAS as shown

in Figure 1. It consists of a pair of shoes with custom-

developed embedded electronics. The electronics include a
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FIGURE 1

Schematic illustration of WGAS ecosystem embedding sensors

in the outsole of the shoes.

wireless-enabled (BLE and Wi-Fi), a dual-core MCU (ESP32,

Espressif Systems CO. Ltd., Shanghai, China) running a custom

FreeRTOS-based1 C firmware for handling communication with

a custom iOS application, and on-board sensors (LSM6DSM and

LSM303AGR, STMicroelectronics, Geneva, Switzerland). The

system allows logging sensor data to a local SD card. TheWGAS

also includes vibration-motors for haptic-feedback.

According to the needs of this research, the range of the

accelerometer and gyroscope are set to ±8 g and ±2, 000 ◦/s,

respectively. The sampling frequency of data acquisition is set

to 100 Hz. The sensor’s body frame, in which the acceleration,

angular rate, and magnetic field are measured, can be seen in

Figure 1. The x−axis is aligned with the shoe’s major axis from

heel to toe (pointing forwards), while the z−axis is normal to the

shoe’s sole and pointing upwards (toward the ankle and leg of the

wearer). Lastly, the y−axis is set in accordance to x and z, such

that the frame is right-handed.

2.1.3. Data acquisition and notation

Data acquisition for G1 The participants of the first group

G1 were instructed to wear the WGAS and walk with a self-

selected gait on a treadmill. They were guided to complete three

trials without assistance (e.g., handrail or body weight support)

at Nv = 3 different walking speeds, specifically 0.53, 0.86, and

1.11m/s. The treadmill (Bertec) was equipped with two force

plates beneath the treadmill belt measuring ground reaction

force sampled at 600Hz. Retroreflective markers (marker size

14mm) were placed on participants’ shoes at the toes, the

first and fifth Metatarsophalangeal joints, and the calcaneal

tuberosities, as well as on the medial and lateral malleolus of

the ankle, and on their hands. The markers on the hands were

used to identify the hand clapping movements performed by

the participants, which were used to signal the start of steady-

state walking in the experiment. Positional data of markers were

1 https://www.freertos.org

collected by the motion capture system (Qualisys Opus 400 with

9 cameras) running at 100Hz.

The data-acquisition protocol involved the following

stages:

1. Data-logging was enabled for both systems, the WGAS and

the motion-capture and force-plate system.

2. A simple calibration process was carried out before each

walking trial began, consisting of turning-on and -off

of the vibration on both shoes to give a signal for

data synchronization. The vibration was registered by the

WGAS as a binary signal (ON/OFF) and by the treadmill’s

force-plates. The registered vibration signals allowed for

synchronization of the motion capture data and the WGAS

data in post-processing.

3. The treadmill was subsequently ramped up to the respective

speed and the participants were asked to acquaint themselves

with the speed.

4. Once the treadmill reached the correct speed and the

participants were comfortable walking at its speed, they

performed a pronounced clapping motion with their hands

to indicate the start of the steady-state motion capture

measurement.

5. Participants then walked for approximately Ns = 50

strides for left and right foot, respectively. Stride count was

monitored by a dedicated person.

6. After completing 50 strides on each side, the motion capture

measurement was terminated, followed by a stop of the

WGAS logging and a halting of the treadmill.

This protocol was repeated for each participant and speed.

Data obtained from the motion capture system contained

the markers’ positional data in three orthogonal axes, and the

magnitude of the exerted force on the treadmill including its

orientation vector in three axes. Data obtained from the WGAS

consisted of acceleration, angular velocity and magnetic field

vectors in three axes.

Data acquisition forG2 Each individual of the second group

of participants G2 = {S5, . . . , S8}, was instructed to wear the

WGAS and collect three distinct datasets. The first was a 2-min

recording of their normal gait at their preferred walking speed.

The second dataset consisted of the participant imitating various

walking impairments, including spastic gait, steppage gait and

waddling gait for another 2 min. Thirdly, they were asked to

collect any range of non-stride motions, such as stomping,

jumping, backwards and sideways walking, etc. The three data

recordings were collected outdoors.

Notation Let ax ∈ R
m denote a column vector consisting of

the sensor’s acceleration data in x axis, where ax[k] denotes the

k-th entry of ax and is the acceleration data at time stamp k,m ∈

N denotes the length of the acceleration data, i.e., the number

of collected samples. Similarly, ay and az are column vectors

of the sensor’s acceleration data in y and z axis, respectively.

Analogously, ωx, ωy, and ωz denote the data column vectors
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of angular velocity. Given any data vector, here we use the

accelerometer signal ax as an example, ax ∈ R
m, Ē(ax) =

∑m
k=1

ax[k]
m denotes its sample mean. Time derivative signals of

ax are denoted and computed as ȧx[k] =
ax[k]−ax[k−1]
t[k]−t[k−1] , where

ȧx[0] = 0 and t is the vector of the timestamps. Similarly, the

derivative signals, ȧy, ȧz , ω̇x, ω̇y, and ω̇z , are computed in the

same way. Given any real number α ∈ R, the absolute value of

α is denoted as |α|. Given any column vector ax, the symbol |ax|

denotes a new column vector obtained from the element-wise

absolute value of ax. When applied to a set S , the operator | · |

indicates the cardinality of the set, i.e., the number of its elements

|S| ∈ N.

2.2. Human labeling

2.2.1. Labeling strategy

The uncertainty of human gait labeling, which is widely

accepted as the gold standard, is first evaluated in this paper. The

datasets collected on the treadmill were labeled byN = 5 labelers

(G3 = {S9, . . . , S13}). The uncertainty of manual labeling was

quantified by studying the inter-labeller differences. The labelers

were trained to use Mokka 3D Motion Kinematic & Kinetic

Analyzer version 0.6.22 (Barre and Armand, 2014) to identify

four (Ne = 4) key gait events, i.e., HO, TO, HS, and FF for both

left and right feet. Note that different gait terminologies are used

in different works (Vu et al., 2020). In this work, the following

definitions for the gait events within a stride are applied: HS is

defined as the first sample at which consistent contact between

the heel and the ground is achieved after the swing phase; FF is

defined as the first sample at which the tip of the foot is flat on

the ground after an HS event; HO is defined as the first sample

at which the heel (marker) leaves the ground after an FF event;

and TO is defined as the first sample at which the toe (marker)

leaves the ground after a HO event.

All labelers were given the same task of labeling 12 datasets

collected from four (Nh = 4) healthy participants S1 − S4,

each participant walking at three walking speeds (1.11, 0.86, and

0.53m/s). This corresponds to roughly NL = 2 · Ns · Nv · Nh ·

Ne = 4, 800 events manually labeled by each labeler, leading to

NE = N · NL = 24, 000 labeled events obtained in total. The

labels obtained from each labeler are the motion capture system

timestamps of the occurrence of each gait event.

2.2.2. Labeling condensation process

In general, labeling is not a difficult task for a human being,

while it comes with some caveats, such as lossy marker data

when the makers are disappeared for a few samples in the

monitor due to marker occlusion, the lack of consistency of a

2 https://github.com/Biomechanical-ToolKit/Mokka

labeler3, and the lack of consistency among different labelers4.

Labeling uncertainty is thus to be expected, which introduces

a new problem: one cannot simply compute statistics on the

manual events by constructing a matrix with the labels’ arrays

by all labelers since

1. there is no a priori guarantee that all labelers label the same

number of gait events on a specific dataset;

2. even if all labelers provide the same number of labels, it does

not mean that the obtained labels correspond to the same

gait events. Figure 2A illustrates an example of this situation:

Even if the two label sequences (xi)
7
i=1 and (yj)

7
j=1 from two

labelers for the same dataset contain the same number of

labels, the fourth (x4, y4), fifth (x5, y5), and sixth (x6, y6) pairs

of labels do not correspond to the same gait events.

To evaluate the uncertainty in themanual labels for a specific

gait event, each label of a labeler Si needs to be first matched to

the corresponding label of another labeler Sj. This is necessary

for each pair of distinct labelers (Si, Sj) for (i, j) ∈ {9, . . . , 13} ×

{9, . . . , 13}, i 6= j. To achieve this labels-condensation, a

matching algorithm is applied iteratively among pairs of labelers

until the number of labels for each labeler converges to the

same number and the labels from different labelers correspond

to the same sequence of gait events. This matching algorithm is

conducted for each gait event, side (left or right), and experiment

(walking speed and walking participant) individually.

The employed matching algorithm is the Needleman-
Wunsch algorithm (NWA) (Needleman and Wunsch, 1970),

which was developed for DNA sequence matching. The basic
idea of NWA is to apply dynamic programming to find the
optimal alignment of two label sequences while allowing for

the insertion/deletion of entries from either label sequence. The
NWA is implemented in Python3 with numpy. To apply the

NWA, given any two label sequences (xi)
m
i=1 and (yj)

n
j=1 for

somem, n ∈ N from two labelers, the scoring function, including

the match score (which measures the difference between two

labels at the same index) and insertion/deletion score (which

penalizes one insertion/deletion of a label in one of the label

sequence), for the labeling condensation is defined as follows:

• Match score: s(xi, yj) = |xi − yj| ;

• Insertion/deletion score: s(xi, yj) = Ē((δxi)
m
i=1), where

δxi = xi − xi−1 with x0 = 0.

With this scoring function, two label sequences of gait events

(xi)
m
i=1 and (yj)

n
j=1 are optimally aligned according to NWA

algorithm (Needleman and Wunsch, 1970), leading to two

3 Even if the same labeler labels the same dataset several times in the

same way, a di�erent labeling sequence will be obtained each time.

4 Even if di�erent labelers label the same dataset with the same labeling

rules, di�erent labeling sequences will be obtained for each labeler.
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FIGURE 2

The illustration of matching algorithm for manual labeling of motion capture data. Given two label sequences (xi)
7
i=1 and (yj)

7
j=1 from two labelers

containing the same number of labels, it is demanded to find the best sequence of index pairs (i, j), associating elements of xi to elements of yj
such that one can then proceed in computing the error between sequences (xi)

7
i=1 and (yj)

7
j=1. (A) An example of matching results of two label

sequences according to their index. It can be seen that the resulting fourth, fifth, and sixth pairs of labels (x4, y4), (x5, y5), and (x6, y6) do not

correspond to the same gait events. (B) An illustration of NWA algorithm for matching labels from di�erent human labelers. With NWA, gait

event labels are matched according to their relative distances and two labels, namely y3 and x6, are considered as outliers and discarded in the

further human error computation. The reasons for the existence of such outliers include human labeling errors as well as the errors from the

automatic labeling algorithms.

sequences that have the same number of labels. An illustration

of the NWAmatching results is shown in Figure 2B.

For every gait event, walking speed, and walking participant,

the corresponding five label sequences from five labelers were

matched between each other using the NWA. After this

matching process, the resulting five labeler event sequences have

the same number of labels can be grouped in matrices for

error analysis.

2.2.3. Limit of agreement

Given the matched gait event labels among five labelers, the

uncertainty of the human labeling is quantified as the limit of

agreement (LOA) and is assessed as follows. Let the vector li
consist of all matched labels (labels from all gait speeds and

walking participants datasets) of a gait event from a labeler Si ∈

G1, and let N = |G1|. A type of gait event’s label uncertainty

is determined by first grouping all the labels of this type of gait

event across the five labelers into a matrix as:

L = (l1, l2, . . . , lN ) ∈ R
M×N (1)

where M is the number of matched labels for this type of gait

event and N is the number of labelers. Next, the ground-truth

labels, denoted as l̄, of this type of gait event are computed by

averaging the rows of L, i.e., l̄ = 1
N

∑N
i=1 li. Then, an error

matrix D ∈ R
M×N is computed as D[:, i] = l̄ − L[:, i], where

i ∈ {1, 2, . . . ,N}. With the obtained matrix D, the LOA is

computed as the 95-th percentile of the ordered list (sorted from

least to greatest) obtained from the absolute values of the entries

in D. The ground-truth labels l̄ are considered as a benchmark

for the further validation of the proposed gait event detection

algorithm.

2.3. Automated gait analysis

This section describes the details of the proposed gait

analysis algorithm. The flowchart of the algorithm is shown in

Figure 3.

2.3.1. Data segmentation

The potential strides are first identified within a WGAS

recording by analyzing the recorded raw signals of the angular

rate and acceleration. To do so, the raw signals are first

segmented into multiple regions of motion (ROMs), which

represent continuous foot movements and potential strides,

by applying filters and dynamic thresholds. The details of

the applied filters and thresholds can be found in the

Supplementary material.

2.3.2. Feature extraction

To classify whether an obtained ROM constitutes a stride or

not, its underlying raw signals R = (ax, ay, az ,ωx,ωy,ωz) are

characterized by a set of features F = {M, c}, consisting of a

normalized and resampled IMU signal matrix, M ∈ R
100×6,

and a correlation score vector, c ∈ R
19. M consists of six

column vectors as M = (âx, ây, âz , ω̂x, ω̂y, ω̂z), where given

the acceleration vector ax within the considered ROM, the

column vector âx is obtained by first min-max normalize ax to

rescale its range into [0, 1], and then resample the normalized

data to 100 samples by interpolation using discrete Fourier

transform (Bracewell and Bracewell, 1986). The obtained M

matrix is shown in Figure 3 as a grayscale image. The row vector

c quantifies the similarity between the considered ROM signal
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R and the template stride signal T = (āx, āy, āz , ω̄x, ω̄y, ω̄z),

where T ∈ R
100×6. In this work, each column vector of

T is chosen as the average of 448 recorded stride signals,

which have been resampled to 100 data points first, from four

healthy participants G2 = {S5, . . . , S8}. The stride template

signal T reflects a normal stride in terms of acceleration

and angular rate. To account for the temporal distortion of

two signals R and T, which may be caused by different gait

patterns such as walking speed, stride length, and cadence, a

matching technique DTW (Berndt and Clifford, 1994; Giorgino

et al., 2009) is applied to align each column of ROM signal

R onto each column of stride template signal T. The rationale

behind DTW is to stretch or compress the signal R, such

that the cumulative Euclidean distance, which is referred to

as DTW distance, between the resulting warped signal R̃ and

T is minimized under certain constraints. After R has been

warped to T along the optimal warping path, the obtained

DTW distance is normalized by dividing the optimal warping

path length. The normalized DTW distance for i-th column

of R is denoted as di, where i ∈ {1, 2, . . . , 6}. In addition,

the Pearson’s correlation coefficient ri and its p-value pi for

i-th column of the warped signal R̃ and T are calculated

to characterize the similarity of R and T. Those p-values of

Pearson’s correlation are further rescaled by p̂i = 0.1 log pi.

Together with the time duration of the considered ROM signal

1t, the correlation score vector c is constructed as c =
(

1t, 1
d1
, r1, p̂1, . . . ,

1
d6
, r6, p̂6

)⊤
.

2.3.3. Feature classification

The extracted features set F of each ROM is then fed

into a neural network, which classifies if the corresponding

ROM signals represents a stride or not. The architecture of

the proposed CNN, stepperNet, is illustrated in Figure 3, which

accepts F = {M, c} as an input and outputs the probability of

the feature set being a stride. It is composed of six total layers.

The first is a convolutional layer, in which three kernels (with

dimensions of 10 × 6), a step size of 1, and zero padding are

applied to M. The resulting layer (91 × 1 × 3) is applied with

a max pooling kernel (3 × 1) to compress its dimensionality.

The obtained three reduced feature maps are then concatenated

into a single vector (90× 1), to which c is appended. The joined

vector is then passed through two fully connected layers with

30 and 15 neurons each. Finally, the output of the network is

normalized to a probability by the softmax function (Goodfellow

et al., 2016). For any ROM signals: if the stepperNet outputs

a probability greater than 0.5, the ROM is considered to be

a walking stride, and thus the gait event detection algorithm

will be further applied for intra-stride-based detection of gait

events; if the stride probability is lower than 0.5, the ROM is

assumed to be non-stride foot motion and will be rejected for

further analysis.

FIGURE 3

Illustration of the WGAS’s automated stride detection pipeline,

which takes in raw sensor data including acceleration and

angular velocity, from which it detects gait strides. The figure

outlines each performed operation and shows its respective

result. First, the raw data is segmented into multiple ROMs,

which constitutes candidate strides. Each ROM is further

analyzed individually, by extracting features that are passed to

the stepperNet, whose architecture is detailed in Section 2.3.3.

Finally, the stepperNet outputs the probability of the input

features. If the probability is larger than 0.5, the ROM is accepted

as a valid stride.

2.3.4. Gait event detection

For any ROM, which has been determined to constitute a

stride, the four gait events HO, TO, HS, and FF are identified by

event-specific features in the recorded acceleration and angular

rate within the signal region of the ROM. The correspondence

of these features to the occurrence of the event was established

experimentally by comparing the WGAS recordings to the

manual labeled events of the accompanying motion capture

systemmeasurements obtained from Section 2.2. Figure 4 shows

an example of the raw acceleration and angular rate over a stride

recorded by the WGAS’s IMU, together with the location of the

gait events.

It can be observed that between the HO and FF, the

foot can be assumed to be moving. As both gait events

are the result of changes in the foot’s orientation, in this

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.976594
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnins.2022.976594

FIGURE 4

An example of the measured acceleration and angular rate over

the course of a stride. Four gait events, HO, TO, HS, and FF, are

identified by the manual labels obtained from the motion

capture system.

work, HO and FF are detected by taking the first and last

time stamp where ωa[k]/σωa > 0.5, where ωa[k] =
√

(ωx[k])2 + (ωy[k])2 + (ωz[k])2 and σωa is the standard

deviation of the column vector ωa. As the HS event resembles

an impulse that manifests itself in an abrupt change in the

measured acceleration and its impact is markedly experienced

in the z−direction, the HS event is determined by the location

of the most prominent peak in ȧz . By comparing the WGAS’s

measurements to themanual labels of themotion capture system

the TO event is determined as the first timestamp, where ax[k] =

az[k].

2.3.5. Data synchronization

The validation dataset consists of twoWGAS measurements

(left and right) with a corresponding motion capture system

recording, each of which is logged with its own internal clocks.

To compare the manually labeled gait events to the events

detected by the gait event detection algorithm, we first ensure

that they are temporally synchronized. To this end, each WGAS

is set to initiate a vibration sequence once they are turned on,

vibrating for 1 s, a 1 s pause, and a second vibration of 1 s. As the

experiment starts with the participant standing on the treadmill

of the motion capture system the vibration sequence is also

picked up by the treadmill’s integrated force plate. This allows

for the temporal synchronization between the data collected by

the two systems.

The proposed algorithms of gait stride detection and gait

event detection are implemented in Python3. Further important

tools include PyTorch, which was used as the machine-

learning framework (Paszke et al., 2019) and the dtw-python

library as the DTW library (Giorgino et al., 2009). Lastly, the

proposed algorithms extensively use various toolboxes of the

SciPy library (Virtanen et al., 2020).

TABLE 1 Labels matching results obtained by applying the NWA across

the five labelers’s manual labeling of motion capture system data.

Event Labels Removed Percentage

HO 6,916 121 1.75

TO 6,930 95 1.37

HS 6,924 84 1.21

FF 6,913 113 1.63

Total 27,683 413 1.49

3. Results

3.1. Uncertainty of human labeling

For all labeled datasets, the label matching results of the

NWA algorithm are presented in Table 1. It can be seen that only

a small percentage (1.49%) of labels were discarded for all gait

events. Overall, 413 labels were discarded from a total of 27,683

manually labeled events. The maximum number of discarded

events was 23 out of 333 available (for HO event of participant

S12 with walking speed 1.11m/s).

After the procedure of label condensation, the LOA results

illustrated in Figure 5 are obtained. The LOA in this work for

HO, TO, HS, and FF are 72, 16, 24, and 80ms, respectively,

which corresponds to 2–8 samples of uncertainty/disagreement

when sampling at 100 Hz. It can be seen that for the main gait

events HS and TO, the labels agree well among labelers as the

LOA are 16 and 20ms, which means that only two samples on

average differ between the five labelers. However, the human

labeling uncertainty for the secondary gait events HO and FF

reached 72 and 80ms, i.e., nearly eight samples of variations are

observed between the labels labeled by the five labelers, which

are higher than the LOA of the HS and TO labels. This is due

to the intrinsic difficulty that HO and FF come within their

definitions, and consequent difficulties for humans to decide

from the motion capture system data whether an event of these

types has occurred. As a consequence, the limits in terms of

accuracy claims of automated systems are to be set around the

identified LOA, i.e., the LOA is the limit of accuracy for the

validated system as it represents the intrinsic uncertainty in the

ground-truth measurements.

3.2. Gait cycle segmentation

The second dataset collected for building stepperNet

consisted of 4,014 labeled feature sets, of which 1,888

represented strides, and the rest characterized non-stride foot

movement. For training stepperNet, the collected data were

randomly split into a training dataset (3,493 features), with

which the network’s parameters were optimized, and a test
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FIGURE 5

The error distributions and the LOA of the labels for four gait events HO, TO, HS, and FF. The LOA in this work for HO, TO, HS, and FF are 72ms,

16ms, 24ms, and 80ms respectively. In each subplot: the left plot shows all identified manual labels from five labelers S9 − S13 as deviation from

the average label—the gray area is the LOA band; the right plot shows the distribution of all label errors—it can be understood as a projection of

all samples of the left plot onto the y−axis. The dotted lines in the histogram mark the LOA band.

set (521 features) which was used to monitor stepperNet’s

performance in training.

The stepperNet was trained by stochastic gradient

descent (Bottou, 2010) over 7 epochs, with the learning

rate and momentum set to 0.015 and 0.75, respectively. Due to

the small network size and the number of training examples,

the performance of the trained network is highly dependent on

the initially chosen weights and biases. To optimize the stride

classification capabilities of stepperNet, the training procedure

was repeated multiple times, each time with different random

initial internal parameters, and the highest scoring network was

saved and deployed. The optimized stepperNet’s performance

on the training and validation data are reported in Figure 6,

with stride and non-stride detection accuracy of 95.10% and

84.42%, respectively.

3.3. Gait event detection

To evaluate the performance of the gait event detection

algorithm, the timestamp of each type of gait event detected

by the proposed algorithm is compared to the ground truth

labels, i.e., the timestamp of the gait event identified manually

in the motion capture system data. Note that the ground truth

labels obtained from Section 2.2 are served as the baseline

for the validation of this gait event detection algorithm. The

performance of the gait event detection algorithm is quantified

by four error metrics for each type of gait event, i.e., the mean

FIGURE 6

The performance of stepperNet at the conclusion of its training

on the training dataset and the separate test dataset. The

residual loss on the two datasets is 4.26× 10−3 and 4.02× 10−3

respectively.

error, the mean absolute error (MAE), the root mean squared

error (RMSE), and the 95-th percentile error (LOA). The overall

error metrics for the detected HO, TO, HS and FF, averaged

across all participants and treadmill speeds, are presented in

Table 2. In total, the timestamps of the WGAS detected gait

events for about 1,350 strides are compared to the ground truth

labels. This number has a slight differences for different gait

events as shown in Table 2, this is due to the reason that the

manual labels of a gait event that are not identified by all labelers

has been discarded in the labeling condensation process.

The error metrics are also presented for each event averaged

across all participants but grouped by treadmill speed as shown
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TABLE 2 Error metrics for WGAS gait event detection results.

Event Mean (ms) STD (ms) MAE (ms) RMSE (ms) LOA (ms) Samples (-)

HO 9 29 24 31 60 1,338

TO 2 7 5 7 10 1,347

HS -2 16 9 16 20 1,355

FF 9 34 13 36 30 1,349

in Figure 7 and Supplementary Table S1. It can be observed that

as the walking speed increases from 0.53 to 1.11 m/s, the event

detection error of the algorithm appears to slightly decrease

(HO: from 11± 22 ms to 8± 27 ms, TO: from 3± 7 ms to 1± 6

ms, HS: from −5 ± 14 ms to −4 ± 13 ms, FF: from 15 ± 17 ms

to 6± 12 ms). This can be explained by the reason that with the

higher walking speed, the event features are more pronounced

and unambiguous within the signals. As this effect is negligible,

the gait event detection algorithm can be considered invariant

and robust toward changes in gait speed.

Generally, it should be stated that it is difficult to discern if

an error is the result of faulty event detection of the algorithm

or due to the subjective nature of manual labeling. For the

HO and FF, this is especially true, as the events are not

definitively identifiable in the motion capture system data by

eye introducing an error in the ground truth itself. An infinite

number of labelers may average out every individual labeling

error, but due to time and cost constraints, the limited number

of labelers in this study and in practice, the ground truth may

still be imperfect.

4. Discussion

Manual labeling of four gait events HO, TO, HS, and FF

on motion capture system datasets are evaluated in this work

as they are essential for analyzing temporal gait parameters,

such as stride time, swing time, stance time, and single- and

double-support time. As can be seen from Figure 5, The manual

labels that were labeled by five labelers with the similar labeling

experience exhibit a remarkable consistency among different

labelers for two main gait events, HS and TO, with only two

samples (around 20 ms) of variations are observed. However,

they showed greater disagreement on the secondary gait events

HO and FF, with up to eight samples of average variations

are observed on these two gait events. This disagreement is

due to the inherent challenges of observing HO and FF in

optical data from motion capture systems and the fact that

different labelers have different perspectives even though they

have similar labeling experience. It can also been observed from

the Figure 5 that even for the same labeler, such as S13, they have

a large labeling deviation along the sequence of data labeling,

varying from 2 to 8 samples. It is the intrinsic human labeling

uncertainty regardless of human experience of labeling. This

FIGURE 7

Error histograms for the WGAS gait event detection errors

grouped by the set treadmill speed and event type. The

histograms are plotted with a bin size of 10ms, and for

comparison, the uncertainty bounds of the manual labeled

events are shown in gray.

uncertainty represents the accuracy limit of human gait-labeling

based on motion capture data, and it determines the limit for

any validation study which considers the motion capture system

as the gold standard. Low consistency between labelers can

have a direct impact on gait event detection reliability. This

further affects the estimation accuracy of spatio-temporal gait

parameters, as well as the medical decision-making and therapy

by clinicians.

The reasons for identifying HS, TO, HO, and FF gait events

in a gait cycle are discussed as follows. The gait cycles can be

delimited by the HS event, which is considered of paramount

functional importance marking the shift from flexors to anti-

gravity muscles and is also reliably detectable (Burnfield, 2010).

To calculate gait parameters for each gait cycle, the movement

data are interpolated from HS to the next ipsilateral HS. Errors

in HS detection lead to normalization artifacts that can affect

the whole gait cycle and hence all calculated parameters. TO

delineates the two main phases of gait: stance and swing.

Kinematic parameters are frequently reported for these phases

separately, hence errors in TO detection affect not only values
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at TO but also parameters calculated for the phases, e.g., “knee

range of motion during swing.” At both time points, parameters

are frequently reported that are in phases of rapid change, such

as sagittal ankle and knee angle at TO (both in the range of 100–

300◦/s in dependence on walking speed), or foot elevation angle

at HS (Mentiplay et al., 2018). Concerning the gait events HO

and FF, there is a growing interest in the importance of these

phases that depict a first reaction to a state change from swing-

to-stance (Nolan and Yarossi, 2011) and the preparatory phase

from stance-to-swing (Lewek et al., 2018; Roelker et al., 2019).

Detecting these additional gait events also allows the calculation

of parameters related to push off and initial contact. These

events do not correspond with traditional clinical phases of

gait, however present a technical method to acquire information

about critical states. Overall, more detailed segmentation of

the gait cycle and calculation of movement parameters that

provide a relationship to typical recovery patterns in clinical

populations allows clinicians to make more objective and

detailed assessments of the deviation in pathological gait and

the improvements in rehabilitation progress. Furthermore, gait

event detection is also critical for applications in which gait

events are served to trigger assistive devices, as well as when

considering the use of orthotic or therapeutic interventions,

particularly in functional electrical stimulation (Zahradka et al.,

2020).

After the manual labels obtained on the motion capture

data, a stepperNet to automatically identify strides and reject

non-strides from long-term walking signals is developed, and

a gait event detection algorithm was adopted to segment the

identified strides into sub-phases for further estimation of gait

parameters. As shown in Figure 6, the stride classifier stepperNet

shows a good classification performance with an accuracy of

94.04% in stride detection. For non-stride detection, a relatively

low accuracy of 83.41% was obtained. This could be due to the

fact that in the motion activity of healthy people, stride motion

include only walking movements, while non-stride motion

include various human motions, such as jumping, sitting and

standing, climbing, etc. The variability of stride signals are much

higher than the variability of non-stride signals. It can also been

noticed that the classification accuracy of the test set is slightly

higher than that of the training set (around 1%), this can be

explained by the randomness when splitting the total feature

set, which yielded marginally 1% more difficult examples in the

training set than in the test set. Note that the CNN is only used

for identifying a valid stride and eliminating non-stride data

from the dataset that was acquired over a long (walking) period.

It shall be noted that whilst one is walking for longer periods

in real-life scenarios not all motions are actually strides, e.g.,

walking usually features breaks andmotions associated to breaks

such as pivoting on the spot, which are not to be considered

strides/walking. The presented hybrid model allows to split the

long-term “walking” data into “stride” and “non-stride” data

slices, which makes further data processing (gait event) easier.

After stride segmentation, gait events are afterwards

detected within the region of this identified stride by searching

for specific signal characteristics. The detected gait events are

validated with the ground-truth labels obtained from themanual

labeling of motion capture system data. It can be seen from

Table 2, the gait event detection algorithm perform well for all

four gait events (HO, TO, HS, and FF), with a mean difference

of less than one samples and a standard deviation of less than

four samples compared to the benchmark (i.e., the labels from

the motion capture system). The errors of gait events HO and

FF are slightly higher than those of TO and HS. This is due

to the reason that at the gait event of HO and FF (Figure 4),

the signals are flat, the amplitude or the rate fluctuations of

the motion signal are not as pronounced as in the TO and

HS. This agrees with the results of human labeling in Figure 5,

where the uncertainties of HO and FF are higher than that of

TO and HS. Besides, comparing the LOA of the detected gait

events, as shown in Table 2, with those of human labeling in

Figure 5, it can be seen that the gait event detection algorithm

are generally consistent in their predictions. Table 3 compares

the results of this paper to the work reported in the literature

in terms of MAE. This comparison focuses on studies with

healthy participants, no pathological patients were involved

in the experiments. The comparison shows that the proposed

algorithm has a comparable performance in detecting HS and

TO. TO has the lowest MAE compared to the other studies,

while the MAE of HS is slightly higher MAE than the study

of Fadillioglu et al. (2020) and Mo and Chow (2018). However,

the MAE of HS is less than one sampling time (10 ms), this

difference is still within the acceptable range.

Opposed to the commonly used approach in the literature,

which straightly scans the entire walking recording to identify

the gait events and then employs the gait event to define a

stride, the CNN eliminates all non-stride data and only keeps

stride data for further gait event detection. The main advantage

of this approach is robustness, as the aforementioned method

scans the entire dataset, erroneously detected gait events, have

the potential to invalidate the entire analysis. Errors in our

proposed method however only affect an individual stride

and the detection of gait events belonging to other strides

is undisturbed.

This work is based on a limited number and type of

validation participants, but it still provides important insight

on analyzing gait in a robust and efficient way. Furthermore,

the selection of manual labeling of the motion capture data

as the ground truth induces caveats. Vertical ground reaction

force, specifically, was not used in this study due to a large

amount of foot strikes that loaded both force plates. These

events would have needed to be excluded, which would have

introduced a bias into the data set. Therefore, group-based

manual labeling was performed, which is also representative of

how pathological gait is frequently segmented. Though males

and females differ from a biomechanical perspective due to their
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TABLE 3 A comparison of the MAE for HS and TO gait event detection in healthy participants with those reported in the literature.

Study Sensor location Walking condition HS (ms) TO (ms)

Tiwari and Joshi (2020) Foot Over-ground walking 22.87 10.42

Fadillioglu et al. (2020) Shank Treadmill walking 7 9

Flood et al. (2019) Waist and shank Treadmill walking 16.41 39.84

Nazmi et al. (2019) Foot Treadmill walking 35 49

Mo and Chow (2018) Pelvis 10-m walkway walking 6.2 20.3

Godiyal et al. (2018) Thigh Over-ground walking 9.66 16.99

Ours Foot Treadmill walking 9 5

differences in joints-relative position, the proposed system is

believed to be agnostic with regard to these differences. This

is because that different joint positions and body dimensions

affect the motion metrics at the extremities, which is where the

proposed system performs the measurements. Therefore, the

motion captured by theWGAS system is not subject to potential

gender-related effects. While the issue of gender balance and

pathological gait have to be addressed in the future for assessing

the generalizability and effectiveness of the proposed method

for pathological subjects. In this study, the stride template was

generated by averaging a set of healthy strides. For pathological

gait, strides will not be as homogeneous, new methodologies

have to be developed for optimizing the stride template, such as

generating template from kernel density estimation or Gaussian

mixture model, constructing a library of stride templates from

different pathologies or experimental conditions. In this work,

stepperNet is only validated on treadmill walking data, one

participant’s stride is likely to be identical during the same

speed session. As the stepperNet is primarily designed for

identifying walking strides and eliminating the non-walking

strides data from long-term free walking data to reduce the

computational cost, the performance of stepperNet on long-term

free walking in the real-world must be validated. Future work

will focus on investigating the detection accuracy of stepperNet

in various conditions, including variable speed walking, free-

range walking, and various clinical populations.

5. Conclusion

We described a method to estimate and analyze the

uncertainty in manual labeling of human walking data from

motion capture systems, which are commonly used as a

benchmark. Human manual labeling uncertainty was assessed

by measuring inter-labeler inconsistencies. The limits of

detection for key gait events, HO, TO, HS, and FF have been

estimated as 72, 16, 24, and 80ms respectively with a sampling

time of 10ms. Those inherent label uncertainty of human gait

labeling based on motion capture data is the accuracy limit for

any validation research using this technology.

Using the manual labels (obtained by averaging across all

labelers) as a baseline, we also present a novel CNN-based

algorithm capable of detecting key gait events with a detection

error less than 25ms in healthy, fixed speed treadmill walking.

The algorithm provides an improvement on current solutions in

that it allows the accurate processing of long continuous walking

data streams. Clinically, the accurate detection of these events

reduce distortion effects when calculating gait parameters,

providing a gateway to reliable parameter calculation that

are lower than the minimal clinically important difference.

Achieving a high accuracy in gait parameters is paramount

for empowering clinical decision-making based on mobile

gait analysis.
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in ParkinsonâĂŹs disease using wearable motion sensors: a systematic review.
Diseases 7, 18. doi: 10.3390/diseases7010018

Burnfield, M. (2010). Gait analysis: normal and pathological function. J. Sports
Sci. Med. 9, 353.

Caldas, R., Mundt, M., Potthast, W., de Lima Neto, F. B., andMarkert, B. (2017).
A systematic review of gait analysis methods based on inertial sensors and adaptive
algorithms. Gait Posture 57, 204–210. doi: 10.1016/j.gaitpost.2017.06.019

Carse, B., Meadows, B., Bowers, R., and Rowe, P. (2013). Affordable
clinical gait analysis: an assessment of the marker tracking accuracy of a
new low-cost optical 3d motion analysis system. Physiotherapy 99, 347–351.
doi: 10.1016/j.physio.2013.03.001

Celik, Y., Stuart, S., Woo, W. L., Sejdic, E., and Godfrey, A. (2022).
Multi-modal gait: a wearable, algorithm and data fusion approach for clinical
and free-living assessment. Inf. Fusion 78, 57–70. doi: 10.1016/j.inffus.2021.
09.016

Del Din, S., Godfrey, A., Galna, B., Lord, S., and Rochester, L. (2016).
Free-living gait characteristics in ageing and parki|NsonâĂŹs disease: impact
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