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Parkinson’s disease (PD) is a common neurodegenerative disease, and there

is still a lack of e�ective diagnostic and treatment methods. This study aimed

to search for hub genes that might serve as diagnostic or therapeutic targets

for PD. All the analysis was performed in R software. The expression profile

data of PD (number: GSE7621) was acquired from the Gene Expression

Omnibus (GEO) database. Di�erentially expressed genes (DEGs) associated

with PD were screened by the “Limma” package of the R software. Key

genes associated with PD were screened by the “WGCNA” package of the

R software. Target genes were screened by merging the results of “Limma”

and “WGCNA.” Enrichment analysis of target genes was performed by Gene

Ontology (GO), Disease Ontology (DO), and Kyoto Enrichment of Genes and

Genomes (KEGG). Machine learning algorithms were employed to screen

for hub genes. Nomogram was constructed using the “rms” package. And

the receiver operating characteristic curve (ROC) was plotted to detect and

validate our prediction model sensitivity and specificity. Additional expression

profile data of PD (number: GSE20141) was acquired from the GEO database to

validate the nomogram. GSEA was used to determine the biological functions

of the hub genes. Finally, RPL3L, PLEK2, PYCRL, CD99P1, LOC100133130,

MELK, LINC01101, and DLG3-AS1 were identified as hub genes of PD. These

findings can provide a new direction for the diagnosis and treatment of PD.
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Introduction

Parkinson’s disease (PD) is one of the common neurodegenerative diseases, second

only to Alzheimer’s disease (Di Stefano and Marinelli, 2021; Pan et al., 2021). The global

prevalence of PD is rising, affecting nearly 2% of people over the age of 65 and 5% of

people over the age of 85 (Bloem et al., 2021; Dorszewska et al., 2021). The pathological

features of PD are mainly the loss of dopaminergic neurons in the substantia nigra and

the formation of Lewy bodies, which is determined by genetic and environmental factors,

and related to age, immune-inflammatory mechanisms, mitochondrial dysfunction,

oxidative stress, apoptosis, lysosomal dysfunction, etc (Pan-Montojo and Reichmann,

2014; Su and Federoff, 2014; Kalia and Lang, 2015; Mullin and Schapira, 2015;

Vivekanantham et al., 2015; Hu and Wang, 2016; Collier et al., 2017; Vascellari and

Manzin, 2021). The role of genetic factors in PD is receiving more attention, and dozens
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of genes have been found to be related to the incidence

of PD, including SNCA, LRRK2, and so on (Manto and

Marmolino, 2009; Deng et al., 2018; Poujois and Woimant,

2018). Neurologists’ assessments of clinical manifestations,

movement disorders, and some routine laboratory tests are

the most important diagnostic methods for PD. However,

these methods have disadvantages and limitations, such as low

sensitivity, selectivity, and high cost (Bindas et al., 2021; Mobed

et al., 2021).

The treatment of PD is constantly developing, including

drug therapy, surgical treatment, gene therapy, rehabilitation,

etc. However, drug therapy is still the preferred treatment of

Parkinson’s disease in the clinic and is the main treatment

method. However, drug therapy can only improve symptoms

and cannot control the progression of the disease. With

the prolongation of the medication duration and the dose

increase, there will be a decrease in the efficacy of the drug

and complications. Some researchers are developing new gene

promoters to control gene expression in different subsets of

neurons, stimulating the growth and development of specific

neurons (such as dopaminergic neurons), thereby promoting the

recovery of Parkinson’s disease. Another emerging form of gene

therapy is using novel drugs that directly deliver key proteins

involved in dopamine metabolism to the basal ganglia region.

Using gene therapies to clear disease-causing proteins is another

beneficial exploration (Brundin et al., 1987; Lindvall et al., 1988;

Ropper and Samuels, 1997). Althoughmany genes are associated

with PD, the specific pathogenesis is not clear, and there is still

a lack of understanding of the genes that can be used for the

diagnosis and treatment of PD. It is important to find new genes

related to PD, which can be used for new targets for treatment.

Recently, bioinformatics analysis has been widely used as

a new technique to screen for underlying biomarkers for both

tumor and non-tumor diseases (Zhang et al., 2022). In this

study, we downloaded a microarray dataset and analyzed gene

expression to obtain differentially expressed genes from persons

with PD and healthy individuals. We combined the data with

WGCNA and machine learning algorithms, screened out a total

of eight core genes, verified the prediction accuracy by area size

(AUC) under the ROC curve, and performed GSEA analysis on

each hub gene. We aimed to identify candidate genes that may

be used as PD biomarkers.

Materials and methods

Data collection and preprocessing

The raw data of the substantia nigra tissue from 16 PD and

nine American normal samples in the GSE7621 (Lesnick et al.,

2007) dataset, which was sequenced using the GPL570 platform,

was obtained from the GEO database.

Identification of DEGs in the substantia
nigra of patients with PD

The “Limma” R package was used to screen DEGs

between PD and normal samples, and genes with

P < 0.05 and |log2FC| >1 were regarded as DEGs

(Liu et al., 2021).

Screening of key modules and target
genes based on WGCNA

To screen potential genes associated with PD, the gene

expression matrix of the substantia nigra tissue from 16 PD

and nine normal American samples was used to create a

weighted gene co-expression network using the “WGCNA”

R package (Langfelder and Horvath, 2008; Yu et al., 2012).

First, we clustered all samples to guarantee a reliable network.

Second, we calculated the Pearson correlation coefficient

between each pair of genes to evaluate the expression

similarity of genes and acquire a correlation matrix. We also

used the soft threshold function to convert the correlation

matrix into a weighted neighborhood matrix and used a soft

connectivity algorithm to select the optimal soft threshold

to ensure that gene correlations were maximally consistent

with scale-free distribution. Subsequently, the neighborhood

matrix was transformed into a topological overlap matrix

(TOM). Furthermore, co-expression modules were obtained

based on the criteria of dynamic tree cutting by setting

the minimum number of genes in a module as 50. Finally,

key modules were selected by correlation analysis, and the

key modules’ genes were considered key genes. Target genes

were obtained by intersecting DEGs with key genes based on

WGCNA screening.

Gene Ontology, Disease Ontology, and
Kyoto Enrichment of Genes and
Genomes enrichment analyses

Biological function enrichment of Gene Ontology

(GO), Disease Ontology (DO), and Kyoto Enrichment of

Genes and Genomes (KEGG) analyses were performed

using the “clusterProfiler” R (Yu et al., 2012) package.

GO enrichment analysis was performed to investigate the

gene-related biological process (BP), molecular functions

(MF), and cellular components (CC). DO enrichment

analysis was used to explore genes-related diseases. KEGG

enrichment analysis was conducted to explore gene-related

signaling pathways. Statistical significance was set at an

adjusted P-value < 0.05.
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Identification of hub genes of PD based
on machine learning algorithms

To begin with, the LASSO logistic regression algorithm

was performed to screen potential genes by using the “glmnet”

R package (Tibshirani, 1996; Friedman et al., 2010), and

receiver operating characteristic (ROC) analysis was selected

to test the model reliability by calculating the area under the

curve (AUC) value through the “pROC” R package (Robin

et al., 2011). Next, the SVM-RFE algorithm was used to

screen potential genes using the “e1071” R package (Suykens

and Vandewalle, 2004; Huang et al., 2014). In addition, the

random forest (RF) algorithm was also conducted to screen

potential genes using the “randomForest” R package (Liaw

and Wiener, 2007; Cutler et al., 2011). Similarly, the ROC

curve was used to test the model reliability by using the

“pROC” R package, and the top 10 genes based on %IncMSE

ranking were regarded as potential genes (Robin et al., 2011).

Finally, overlapping genes among potential genes generated via

LASSO, SVM-RFE, and RF algorithms were considered hub

genes of PD.

Establishment of a diagnostic nomogram
for PD

A diagnostic nomogram was established based on the

hub genes by using the “rms” package in R software. The

receiver operating characteristic curve (ROC) was used to

investigate the efficiency of this diagnostic model. The area

under curve >0.7 was considered significant. Additional

expression profile data of PD [number: GSE20141 (Zheng

et al., 2010)] was acquired from the GEO database to validate

the nomogram.

Evaluation of the expression levels and
diagnostic implications for the hub genes

Wilcoxon’s rank-sum test was used to analyze the

expression levels of hub genes. ROC analysis was performed

to evaluate whether hub genes could differentiate PD

samples from normal samples using the “pROC” R package

(Robin et al., 2011).

Biological functions and validation of hub
genes

Gene Set Enrichment Analysis (GSEA) was performed using

the “clusterProfiler” R package to investigate the biological

functions of hub genes by the ordered gene expression matrix

TABLE 1 The DEGs of gene expression profiles (adj. P-value <0.05,

|logFC| >1.0).

DEGs Gene symbol

Upregulated

DEGs

CD99Pl;RPL3L;PLEK2;RAB42;DLG3-

AS1;LlNC01101;lL13;MELK;PYCRL;L

EAP2;DNA2;PCDHGA8;C15orf37;LOC100288893;

LPO;LOC100133130;NEDD4;LOC100130987;DACH2;

NTSR1;PCDHGA1O;ASIC2;lNSM2;SNORD114-3;

LOC400043;RBM11;LlNC01158;CNTN6;CCT6B;

LOC441052;EN1;TTTY15;ABCA11P;DLK1;C21orf37;

WDR17;PIM1;KCNE4;DAPLl;LRRN1;DDIT4L;SDCl

Downregulated

DEGs

SSTR1;LINC00515;RBM3;MAPK8IP1;KDR;DNAJB6;

RERG;PCDH8;KLHL1;AGTR1;TNRC6C-AS1;SLC10A4;

CUX2;EBF3;TlMM238;DDC;NANOS1;SLC18A2;PRMT6;

ALDH1A1;KCNE1L;RSP02;SLC5A3;SPA17;C2orf80;

TH;HIST1H2BD;GBE1;C5orf64;UNC13C;UHRF1;

TMEM255A;SDR16C5;ROBO2;CLSTN2;CDH8;

GPR26;MID1IP1;KCNJ6;RET;HMOX1;SOWAHA;

DDX3Y;RELN;TDRD6;CPVL;NR4A2;PCSK1;AKR1C3;

GABRA4;BCL6;RHOBTB1;RNASE2;PSPH;LRRC3B;

VCAM1;TAC1;C5AR1;ANGPT2;DOK6;CTXN3;CXCR4;

SLC35D3;FGF13;KDM5D;CBLN1;FGF12;OLFM3;APLNR;

COPG2IT1;S100A4;FZD7;OPALlN;LY96;ELAVL2

based on the Pearson correlation between each hub gene and

other genes (Yu et al., 2012).

Results

Identification of DEGs in the substantia
nigra of patients with PD

By setting the cut-off value as P < 0.05 and |log2FC|

>1, a total of 117 DEGs, including 42 upregulated and 75

downregulated genes were identified in the substantia nigra

of PD patients compared with normal samples (Table 1). A

volcano diagram was constructed for the DEGs (Figure 1A).

The top 60 DEGs are presented using a cluster heatmap

(Figure 1B).

Screening of key modules and genes
based on WGCNA

We extracted the expression data of differentially expressed

genes in samples of persons with PD for co-expression analysis.

First, the soft threshold was selected for subsequent co-

expression network construction (Figure 2A). The principle

was to make the constructed network more in line with

the characteristics of the scale-free network. The R-square
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FIGURE 1

DEGs between PD patients and normal samples. (A) Volcano plot showing the expression levels of DEGs. Red dots indicate upregulated genes in

PD patients compared with normal samples. In contrast, blue dots indicate downregulated genes in PD patients compared with normal samples,

and gray dots indicate nonsignificant di�erences in genes between PD patients and normal samples. (B) Heat map showing the expression levels

of the top 60 DEGs. Red indicates high expression, while blue indicates low expression.

was set as 0.85 (Figure 2A). WGCNA was used to construct

the co-expression network module and visually display the

modules’ gene correlation. Fourteen co-expression modules

were obtained, and the number of genes in each module was at

least 50. The results were displayed in a hierarchical clustering

diagram (Figure 2B). Then, a heat map was mapped on module-

trait relationships according to the Spearman correlation

coefficient to evaluate the association between each module

and the disease (Figure 2C). Two modules “MEdarkgrey” and

“MEdarkorange” had high association with PD and were

selected as PD-related modules (MEdarkgrey module: r = 0.91,

P = 4e−10; MEdarkorange module: r = 0.89, P = 4e−08).

The MEdarkgrey and MEdarkorange modules were positively

correlated with PD, 5,801, and 7,763 genes, respectively. Target

genes were obtained by intersecting DEGs with key genes based

on WGCNA screening (Figure 2D).

Gene Ontology, Disease Ontology, and
Kyoto Encyclopedia of Genes and
Genomes enrichment analyses

The GO analyses associated the most enriched biological

process (BP) terms with dopamine biosynthetic process,

synapse organization regulation, and synapse structure or

activity. The most enriched terms for cellular components

(CC) were mainly associated with terminal bouton. The

most enriched molecular function (MF) terms were associated

with G protein-coupled peptide receptor activity and peptide

receptor activity (Figures 3A,B). In the DO analysis, the

target genes were enriched in neurodegenerative diseases, such

as PD, and tumors of the nervous system (Figures 3C,D).

In the KEGG analysis, the target genes were enriched

in cocaine addiction and the calcium signaling pathway

(Figures 3E,F).

Identification of hub genes of PD based
on machine learning algorithms

Machine learning algorithms were selected and executed

to further identify the hub genes of PD from 91 target genes.

First, while constructing the LASSO model based on PD and

normal samples, λ analysis suggested that the model could

accurately predict PD with λ = 11 (Figure 4A). Thus, RPL3L,

PLEK2, PYCRL, ABCA11P, DACH2, CD99P1, SNORD114-

3, LOC100133130, MELK, LINC01101, and DLG3-AS1 were

identified to build the LASSO module. We acquired the LASSO

coefficient spectrum of the potential genes according to λ

= 11(Figure 4A). However, SVM-RFE analysis revealed that

the SVM model based on one characteristic gene showed an

optimum error rate (0.00, Figure 4B). The first 20 genes were

identified as potential genes. At the same time, the RF algorithm

identified the top 10 genes from 52 potential genes (Figure 5C).
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FIGURE 2

Weighted gene co-expression network analysis (WGCNA). (A) Soft threshold analysis suggested gene associations were maximally consistent

with the scale-free distribution when β = 26. (B) The cluster dendrogram of co-expression genes in PD. (C) Module-trait relationships in PD.

Each cell contains the corresponding correlation and P-value. (D) A Venn diagram was made to obtain the intersection of the target genes

screened by the two methods.
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FIGURE 3

GO, DO, and KEGG analyses of target genes. (A,B) GO analyses of target genes. (C,D) DO analysis of target genes. (E,F) KEGG analysis of target

genes. BP, biological process; CC, cellular component; MF, molecular function.
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FIGURE 4

Identification of hub genes for PD based on machine learning algorithms included (A) the Log (Lambda) value of the three genes in the LASSO

model and the most proper log (Lambda) value in the LASSO model, (B) the optimum error rate of the SVM model based on one characteristic

gene, (C) the RF module based on the top 20 genes, and (D) the Venn diagram showing the overlapping genes in LASSO, SVM, and RF modules.
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FIGURE 5

(A) Nomogram predicting PD probability. (B,C) ROC curve for the GSE7621 dataset and GSE20141 dataset.

Finally, eight common potential genes, namely, RPL3L, PLEK2,

PYCRL, CD99P1, LOC100133130, MELK, LINC01101, and

DLG3-AS1, were regarded as the hub genes of PD patients using

the above three algorithms (Figure 4D).

Establishment of diagnostic nomogram
for PD

A diagnostic nomogram was successfully constructed based

on the eight genes for predicting the incidence of PD

(Figure 5A). The area under the curve (AUC) of the GSE7621

dataset was 1.000 (Figure 5B), and that of the GSE20141 dataset

was 0.900 (Figure 5C).

Evaluation of the expression levels and
diagnostic implications for the hub genes

To further investigate the role of hub genes in PD, we first

observed their expression levels in PD patients. Interestingly,

we found that the expression of PYCRL, LOC100133130,

MELK, LINC01101, and DLG3-AS1 was downregulated, and the

expression of RPL3L, PLEK2, and CD99P1 was upregulated in
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FIGURE 6

The expression levels and diagnostic implications of the hub genes. (A) The expression levels of hub genes in PD patients and normal samples of

the dataset (number: GSE7621); (B) ROC curves of hub genes of the dataset (number: GSE7621).

PD patients compared with the healthy samples (Figure 6A).

Moreover, ROC analyses suggested RPL3L, PLEK2, PYCRL,

CD99P1, LOC100133130, MELK, LINC01101, and DLG3-AS1

might be used as hub genes of PD patients (Figure 6B).

Biological functions of hub genes

To further investigate the biological functions of

RPL3L, PLEK2, PYCRL, CD99P1, LOC100133130, MELK,

LINC01101, and DLG3-AS1, GSEA was performed based

on their ordered gene expression matrix. As shown in

Figure 7, GSEA analyses revealed that RPL3L, PLEK2, PYCRL,

CD99P1, LOC100133130, MELK, LINC01101, and DLG3-AS1

were mainly involved in glycosaminoglycan biosynthesis

– heparan sulfate/heparin, histidine metabolism, nicotine

addiction, diabetes, protein export, taste transduction, fatty

acid degradation, propanoate metabolism, endocrine, and

other factor–regulated calcium reabsorption, GABAergic

synapse, steroid biosynthesis, synaptic vesicle cycle,
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FIGURE 7

GSEA of hub genes: (A) GSEA results for CD99P1; (B) GSEA results for DLG3-AS1; (C) GSEA results for LINC01101; (D) GSEA results for

LOC100133130; (E) GSEA results for MELK; (F) GSEA results for PLEAK2; (G) GSEA results for PYCRL; (H) GSEA results for RPL3L.
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carbohydrate digestion and absorption, proteasome, and

asthma (Figure 7).

Discussion

Parkinson’s disease is the second most prevalent

neurodegenerative disease and has significantly increased

over the past 20 years (Cabreira and Massano, 2019). It is caused

by a combination of environmental and genetic factors related

to age, sex, etc (Cabreira and Massano, 2019; Cerri et al., 2019).

Due to the lack of early diagnostic techniques, PD is usually not

detected until later stages of complete neuronal degeneration,

which often leads to delayed treatment of patients and affects

the prognosis (Lotankar et al., 2017). Therefore, to improve

prognosis, biomarkers are needed to detect the onset of the

disease in the early stages.

In the present study, we first obtained 117 DEGs from the

substantia nigra of PD, and WGCNA screened a total of 13,564

key genes for two key modules. Ninety-one target genes were

screened out by intersecting DEGs with key genes. Interestingly,

these 91 target genes were mostly related to the regulation of

synapse structure or activity, dopamine biosynthetic process,

locomotory behavior, and response to nicotine metabolism-

related BPs (Figures 3A,B). Thus, we speculated that these genes

might play key roles in PD by regulating the synapse structure

or activity, dopamine biosynthetic process, locomotory behavior,

and response to nicotine.

Over the past few decades, more and more studies have

shown that the biosynthesis of dopamine and the regulation

of synaptic activity and structure play an important role in the

pathogenesis of PD (Latif et al., 2021; Nachman and Verstreken,

2022). In addition, increasing evidence has revealed that nicotine

has protective effects on PD (Jin Jung et al., 2021; Wang et al.,

2022). Furthermore, motor symptoms are one of the most

important clinical manifestations of PD (Opara et al., 2017).

However, we found that 91 target genes were enriched only in

the calcium signaling pathway (Figures 3E,F). Calcium signaling

pathways play an important role in PD (Calì et al., 2014;

Bohush et al., 2021). Therefore, our study may contribute to

understanding the molecular mechanisms underlying PD.

Finally, we identified RPL3L, PLEK2, PYCRL, CD99P1,

LOC100133130, MELK, LINC01101, and DLG3-AS1 as hub

genes using LASSO logistic regression, SVM-RFE, and RF

algorithms. RPL3L (ribosomal protein L3-like) is one of the

four non-canonical riboprotein genes, and it encodes the 60S

ribosomal protein L3-like protein that is highly expressed only

in cardiac and skeletal muscles (Ganapathi et al., 2020). Recent

research indicates that RPl3l overexpression impairs the growth

and myogenic fusion of myotubes, and RPL3L can be used

as a potential genetic marker to control neurodegeneration

(Chaillou, 2019). Thus, RPL3L may play a critical role in PD by

regulating function of skeletal muscle. CD99P1 (CD99 molecule

pseudogene 1) is a long noncoding RNA (lncRNA) and has been

revealed to be related to myofibroblast differentiation (Huang

et al., 2015; Yildirim et al., 2021). Hence, CD99P1 may play

a key role in PD by affecting myofibroblast differentiation.

PYCRL (pyrroline-5-carboxylate reductase-like) is a pyrroline-

5-carboxylate reductase linked to the conversion of ornithine

to proline (De Ingeniis et al., 2012). Therefore, PYCRL may

play a decisive role in PD by affecting proline biosynthesis.

MELK (maternal embryonic leucine zipper kinase) is an AMP-

activated protein kinase (AMPK)-related kinase (Seong and

Ha, 2019). More and more studies have found that MELK is

involved in the occurrence of cancer and cell metabolism by

regulating the cell division cycle (Wang et al., 2018; Seong

and Ha, 2019). Therefore, MELK may play a key role in PD

by affecting the cell division cycle. PLEK2 (Pleckstrin-2) is a

crucial mediator of cytoskeletal reorganization (Wang et al.,

2021). Studies show that PLEK2may regulate actin organization

and cell spreading (Hu et al., 1999; Hamaguchi et al., 2007).

Therefore, PLEK2 may play a key role in PD by regulating actin

organization and cell spreading. LINC01101 is a long noncoding

RNA (lncRNA) associated with progression and high-risk HPV

infection (Iancu et al., 2017). But there is still no description

of its pathogenesis. Notably, no studies have reported the role

of RPL3L, PLEK2, PYCRL, CD99P1, LOC100133130, MELK,

LINC01101, and DLG3-AS1 in PD. LOC100133130 and DLG3-

AS1, as newly discovered genes, have no relevant report. Thus,

further investigations are necessary.

We investigated the biological functions of RPL3L, PLEK2,

PYCRL, CD99P1, LOC100133130, MELK, LINC01101, and

DLG3-AS1. Interestingly, GSEA revealed that RPL3L, PLEK2,

PYCRL, CD99P1, LOC100133130, MELK, LINC01101, and

DLG3-AS1 were mainly involved in nicotine addiction, diabetes,

protein export, taste transduction, fatty acid degradation,

propanoate metabolism, endocrine and other factor-regulated

calcium reabsorption, GABAergic synapse, steroid biosynthesis,

synaptic vesicle cycle, carbohydrate digestion and absorption,

proteasome, and asthma. Currently, an increasing number of

studies have shown that the above factors significantly impact

the occurrence and development of PD. For example, it has been

suggested that nicotine addiction and diabetes are associated

with PD (Cheong et al., 2020; Carvajal-Oliveros et al., 2021).

However, their regulatory mechanisms are rarely studied to the

best of our knowledge. Thus, further studies are required to

explore this in the future.

Conclusion

In all, 117 DEGs were screened between the substantia nigra

of PD and healthy samples. Of these, RPL3L, PLEK2, PYCRL,

CD99P1, LOC100133130, MELK, LINC01101, and DLG3-AS1

were identified as hub genes of patients with PD based on
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WGCNAandmachine learning algorithms. Therefore, our study

contributes to the understanding of PD and helps in improving

the diagnosis and treatment of PD. However, further studies are

needed to investigate the roles of hub genes.
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Bohush, A., Leśniak, W., Weis, S., and Filipek, A. (2021). Calmodulin
and its binding proteins in Parkinson’s disease. Int. J. Mol. Sci. 22.
doi: 10.3390/ijms22063016

Brundin, P., Strecker, R. E., Lindvall, O., Isacson, O., Nilsson, O. G., Barbin, G.,
et al. (1987). Intracerebral grafting of dopamine neurons. Experimental basis for
clinical trials in patients with Parkinson’s disease.Ann. N. Y. Acad. Sci. 495, 473–96.
doi: 10.1111/j.1749-6632.1987.tb23695.x

Cabreira, V., and Massano, J. J. A. M. P. (2019). Doença de Parkinson: revisão
clínica e atualização. Parkinson’s disease: clinical review and update. Acta. Med.
Port. 32:661–670. doi: 10.20344/amp.11978

Calì, T., Ottolini, D., and Brini, M. (2014). Calcium signaling in Parkinson’s
disease. Cell Tissue Res. 357, 439–54. doi: 10.1007/s00441-014-1866-0

Carvajal-Oliveros, A., Domínguez-Baleón, C., Zárate, R. V., Campusano, J.
M.,Narváez-Padilla, V., Reynaud, E., et al. (2021). Nicotine suppresses Parkinson’s
disease like phenotypes induced by Synphilin-1 overexpression in Drosophila
melanogaster by increasing tyrosine hydroxylase and dopamine levels. Sci. Rep. 11,
9579. doi: 10.1038/s41598-021-88910-4

Cerri, S., Mus, L., and Blandini, F. (2019). Parkinson’s disease in women andmen:
what’s the difference? J. Parkinsons Dis. 9, 501–515. doi: 10.3233/JPD-191683

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.974838
https://doi.org/10.1016/j.actbio.2021.03.071
https://doi.org/10.1016/S0140-6736(21)00218-X
https://doi.org/10.3390/ijms22063016
https://doi.org/10.1111/j.1749-6632.1987.tb23695.x
https://doi.org/10.20344/amp.11978
https://doi.org/10.1007/s00441-014-1866-0
https://doi.org/10.1038/s41598-021-88910-4
https://doi.org/10.3233/JPD-191683
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2022.974838

Chaillou, T. (2019). Ribosome specialization and its potential role in the control
of protein translation and skeletal muscle size. J. Appl. Physiol. 127, 599–607.
doi: 10.1152/japplphysiol.00946.2018

Cheong, J. L. Y., de Pablo-Fernandez, E., Foltynie, T., Noyce, A. J. (2020). The
association between type 2 diabetes mellitus and Parkinson’s disease. J. Parkinsons
Dis. 10, 775–789. doi: 10.3233/JPD-191900

Collier, T. J., Kanaan, N. M., and Kordower, J. H. (2017). Aging and
Parkinson’s disease: different sides of the same coin? Mov. Disord. 32, 983–990.
doi: 10.1002/mds.27037

Cutler, A., Cutler, D., and Stevens, J. (2011). “Random forests,” in Ensemble
Machine Learning, eds C. Zhang and Y. Q. Ma, Vol. 45 (New York, NY: Springer),
157–176. doi: 10.1007/978-1-4419-9326-7_5

De Ingeniis, J., Ratnikov, B., Richardson, A. D., Scott, D. A., Aza-Blanc, P., et al.
(2012). Functional specialization in proline biosynthesis of melanoma. PLoS ONE.
7, e45190. doi: 10.1371/journal.pone.0045190

Deng, H., Wang, P., and Jankovic, J. (2018). The genetics of Parkinson disease.
Ageing Res. Rev. 42, 72–85. doi: 10.1016/j.arr.2017.12.007

Di Stefano, A., and Marinelli, L. (2021). Advances in Parkinson’s disease drugs.
Biomolecules. (2021) 11. doi: 10.3390/biom11111640

Dorszewska, J., Kowalska, M., Prendecki, M., Piekut, T., Kozłowska, J., Kozubski,
W., et al. (2021). Oxidative stress factors in Parkinson’s disease. Neural Regen. Res.
16, 1383–1391. doi: 10.4103/1673-5374.300980

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.
doi: 10.18637/jss.v033.i01

Ganapathi, M., Argyriou, L., Martínez-Azorín, F., Morlot, S., Yigit, G., Lee, T.
M., et al. (2020). Bi-allelic missense disease-causing variants in RPL3L associate
neonatal dilated cardiomyopathy with muscle-specific ribosome biogenesis. Hum.
Genet. 139, 1443–1454. doi: 10.1007/s00439-020-02188-6

Hamaguchi, N., Ihara, S., Ohdaira, T., Nagano, H., Iwamatsu, A., Tachikawa,
H., et al. (2007). Pleckstrin-2 selectively interacts with phosphatidylinositol
3-kinase lipid products and regulates actin organization and cell spreading.
Biochem. Biophys. Res. Commun. 361, 270–5. doi: 10.1016/j.bbrc.2007.
06.132

Hu, M. H., Bauman, E. M., Roll, R. L., Yeilding, N., and Abrams, C.
S. (1999). Pleckstrin 2, a widely expressed paralog of pleckstrin involved
in actin rearrangement. J. Biol. Chem. 274, 21515–8. doi: 10.1074/jbc.274.
31.21515

Hu, Q., and Wang, G. (2016). Mitochondrial dysfunction in Parkinson’s disease.
Transl. Neurodegener. 5, 14. doi: 10.1186/s40035-016-0060-6

Huang, C., Yang, Y., and Liu, L. (2015). Interaction of long noncoding RNAs
and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol.
Genomics. 47, 463–9. doi: 10.1152/physiolgenomics.00064.2015

Huang, M. L., Hung, Y. H., Lee, W. M., Li, R. K., and Jiang, B. R. (2014). SVM-
RFE based feature selection and Taguchi parameters optimization for multiclass
SVM classifier. ScientificWorldJournal. 2014, 795624. doi: 10.1155/2014/795624

Iancu, I. V., Anton, G., Botezatu, A., Huica, I., Nastase, A., Socolov, D.
G., et al. (2017). LINC01101 and LINC00277 expression levels as novel
factors in HPV-induced cervical neoplasia. J. Cell. Mol. Med. 21, 3787–3794.
doi: 10.1111/jcmm.13288

Jin Jung, Y., Choi, H., and Oh, E. (2021). Effects of particulate matter and
nicotine for theMPP+-induced SH-SY5Y cells: implication for Parkinson’s disease.
Neurosci. Lett. 765, 136265. doi: 10.1016/j.neulet.2021.136265

Kalia, L. V., and Lang, A. E. (2015). Parkinson’s disease. Lancet. 386, 896–912.
doi: 10.1016/S0140-6736(14)61393-3

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics 9, 559.
doi: 10.1186/1471-2105-9-559

Latif, S., Jahangeer, M., Maknoon Razia, D., Ashiq, M., Ghaffar, A., Akram, M.,
et al. (2021). Dopamine in Parkinson’s disease. Clin. Chim. Acta. 522, 114–126.
doi: 10.1016/j.cca.2021.08.009

Lesnick, T. G., Papapetropoulos, S., Mash, D. C., Ffrench-Mullen, J., Shehadeh,
L., de Andrade, M., et al. (2007). A genomic pathway approach to a
complex disease: axon guidance and Parkinson disease. PLoS Genet. 3, e98.
doi: 10.1371/journal.pgen.0030098

Liaw, A., and Wiener, M. C. (2007). In Classification and Regression
by randomForest.

Lindvall, O., Rehncrona, S., Gustavii, B., Brundin, P., Astedt, B., Widner, H., et al.
(1988). Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet 2,
1483–4. doi: 10.1016/S0140-6736(88)90950-6

Liu, D., Fan, Y. B., Tao, X. H., Pan, W. L., Wu, Y. X., Wang, X. H., et al. (2021).
Mitochondrial quality control in sarcopenia: Updated overview ofmechanisms and
interventions. Aging Dis. 12, 2016–2030. doi: 10.14336/AD.2021.0427

Lotankar, S., Prabhavalkar, K. S., and Bhatt, L. K. (2017). Biomarkers
for Parkinson’s disease: recent advancement. Neurosci. Bull. 33, 585–597.
doi: 10.1007/s12264-017-0183-5

Manto, M., and Marmolino, D. (2009). Cerebellar ataxias. Curr. Opin. Neurol.
22, 419–29. doi: 10.1097/WCO.0b013e32832b9897

Mobed, A., Razavi, S., Ahmadalipour, A., Shakouri, S. K., and Koohkan,
G. (2021). Biosensors in Parkinson’s disease. Clin. Chim. Acta. 518, 51–58.
doi: 10.1016/j.cca.2021.03.009

Mullin, S., and Schapira, A. (2015). The genetics of Parkinson’s disease. Br. Med.
Bull. 114, 39–52. doi: 10.1093/bmb/ldv022

Nachman, E., and Verstreken, P. (2022). Synaptic proteostasis in Parkinson’s
disease. Curr. Opin. Neurobiol. 72, 72–79. doi: 10.1016/j.conb.2021.09.001

Opara, J., Małecki, A., Małecka, E., and Socha, T. (2017). Motor
assessment in Parkinson’s disease. Ann. Agric. Environ. Med. 24, 411–415.
doi: 10.5604/12321966.1232774

Pan, L., Meng, L., He, M., and Zhang, Z. (2021). Tau in the
pathophysiology of Parkinson’s disease. J. Mol. Neurosci. 71, 2179–2191.
doi: 10.1007/s12031-020-01776-5

Pan-Montojo, F., and Reichmann, H. (2014). Considerations on the role of
environmental toxins in idiopathic Parkinson’s disease pathophysiology. Transl.
Neurodegener. 3, 10. doi: 10.1186/2047-9158-3-10

Poujois, A., and Woimant, F. (2018). Wilson’s disease: a 2017 update. Clin. Res.
Hepatol. Gastroenterol. 42, 512–520. doi: 10.1016/j.clinre.2018.03.007

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., et al.
(2011). pROC: an open-source package for R and S+ to analyze and compare ROC
curves. BMC Bioinformatics 12, 77. doi: 10.1186/1471-2105-12-77

Ropper, A. H., and Samuels, M. A. (1997). In Adams and Victor’s Principles
of Neurology.

Seong, H. A., and Ha, H. (2019). Thr55 phosphorylation of p21 by
MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in
diet-induced obese mice. Cell Death Dis. 10, 380. doi: 10.1038/s41419-019-1616-z

Su, X., and Federoff, H. J. (2014). Immune responses in Parkinson’s disease:
interplay between central and peripheral immune systems. Biomed Res. Int. 2014,
275178. doi: 10.1155/2014/275178

Suykens, J. A. K., and Vandewalle, J. J. N. P. L. (2004). Least squares support
vector machine classifiers. Neural Process. Lett. 9, 293–300.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Series B Methodol. 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Vascellari, S., and Manzin, A. (2021). Parkinson’s disease: a prionopathy? Int. J.
Mol. Sci. 22. doi: 10.3390/ijms22158022

Vivekanantham, S., Shah, S., Dewji, R., Dewji, A., Khatri, C., Ologunde, R., et al.
(2015). Neuroinflammation in Parkinson’s disease: role in neurodegeneration and
tissue repair. Int. J. Neurosci. 125, 717–25. doi: 10.3109/00207454.2014.982795

Wang, C., Zhou, C., Guo, T., Huang, P., Xu, X., Zhang, M., et al.
(2022). Association between cigarette smoking and Parkinson’s disease: a
neuroimaging study. Ther. Adv. Neurol. Disord. 15, 17562864221092566.
doi: 10.1177/17562864221092566

Wang, J., He, Z., Sun, B., Huang, W., Xiang, J., Chen, Z., et al. (2021). Pleckstrin-
2 as a prognostic factor and mediator of gastric cancer progression. Gastroenterol.
Res. Pract. 2021, 5527387. doi: 10.1155/2021/5527387

Wang, Y., Li, Y. M., Baitsch, L., Huang, A., Xiang, Y., Tong, H., et al. (2018).
Correction: MELK is an oncogenic kinase essential for mitotic progression in
basal-like breast cancer cells. eLife. 7:e36414. doi: 10.7554/eLife.36414

Yildirim, M., Oztay, F., Kayalar, O., and Tasci, A. E. (2021). Effect of long
noncoding RNAs on epithelial-mesenchymal transition in A549 cells and fibrotic
human lungs. J. Cell. Biochem. 122, 882–896. doi: 10.1002/jcb.29920

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R
package for comparing biological themes among gene clusters. OMICS. 16, 284–7.
doi: 10.1089/omi.2011.0118

Zhang, J., Huang, C., Liu, Z., Ren, S., Shen, Z., Han, K., et al. (2022). Screening
of potential biomarkers in the peripheral serum for steroid-induced osteonecrosis
of the femoral head based on WGCNA and machine learning algorithms. Dis.
Markers. 2022, 2639470. doi: 10.1155/2022/2639470

Zheng, B., Liao, Z., Locascio, J. J., Lesniak, K. A., Roderick, S. S., Watt, M. L., et al.
(2010). PGC-1α, a potential therapeutic target for early intervention in Parkinson’s
disease. Sci. Transl. Med. 2, 52ra73. doi: 10.1126/scitranslmed.3001059

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.974838
https://doi.org/10.1152/japplphysiol.00946.2018
https://doi.org/10.3233/JPD-191900
https://doi.org/10.1002/mds.27037
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1371/journal.pone.0045190
https://doi.org/10.1016/j.arr.2017.12.007
https://doi.org/10.3390/biom11111640
https://doi.org/10.4103/1673-5374.300980
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/s00439-020-02188-6
https://doi.org/10.1016/j.bbrc.2007.06.132
https://doi.org/10.1074/jbc.274.31.21515
https://doi.org/10.1186/s40035-016-0060-6
https://doi.org/10.1152/physiolgenomics.00064.2015
https://doi.org/10.1155/2014/795624
https://doi.org/10.1111/jcmm.13288
https://doi.org/10.1016/j.neulet.2021.136265
https://doi.org/10.1016/S0140-6736(14)61393-3
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/j.cca.2021.08.009
https://doi.org/10.1371/journal.pgen.0030098
https://doi.org/10.1016/S0140-6736(88)90950-6
https://doi.org/10.14336/AD.2021.0427
https://doi.org/10.1007/s12264-017-0183-5
https://doi.org/10.1097/WCO.0b013e32832b9897
https://doi.org/10.1016/j.cca.2021.03.009
https://doi.org/10.1093/bmb/ldv022
https://doi.org/10.1016/j.conb.2021.09.001
https://doi.org/10.5604/12321966.1232774
https://doi.org/10.1007/s12031-020-01776-5
https://doi.org/10.1186/2047-9158-3-10
https://doi.org/10.1016/j.clinre.2018.03.007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1038/s41419-019-1616-z
https://doi.org/10.1155/2014/275178
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.3390/ijms22158022
https://doi.org/10.3109/00207454.2014.982795
https://doi.org/10.1177/17562864221092566
https://doi.org/10.1155/2021/5527387
https://doi.org/10.7554/eLife.36414
https://doi.org/10.1002/jcb.29920
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1155/2022/2639470
https://doi.org/10.1126/scitranslmed.3001059
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Identification of hub genes of Parkinson's disease through bioinformatics analysis
	Introduction
	Materials and methods
	Data collection and preprocessing
	Identification of DEGs in the substantia nigra of patients with PD
	Screening of key modules and target genes based on WGCNA
	Gene Ontology, Disease Ontology, and Kyoto Enrichment of Genes and Genomes enrichment analyses
	Identification of hub genes of PD based on machine learning algorithms
	Establishment of a diagnostic nomogram for PD
	Evaluation of the expression levels and diagnostic implications for the hub genes
	Biological functions and validation of hub genes

	Results
	Identification of DEGs in the substantia nigra of patients with PD
	Screening of key modules and genes based on WGCNA
	Gene Ontology, Disease Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses
	Identification of hub genes of PD based on machine learning algorithms
	Establishment of diagnostic nomogram for PD
	Evaluation of the expression levels and diagnostic implications for the hub genes
	Biological functions of hub genes

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


