AUTHOR=Zhang Gengbiao , Li Ni , Liu Hongkun , Zheng Hongyi , Zheng Wenbin TITLE=Dynamic connectivity patterns of resting-state brain functional networks in healthy individuals after acute alcohol intake JOURNAL=Frontiers in Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.974778 DOI=10.3389/fnins.2022.974778 ISSN=1662-453X ABSTRACT=Aims

Currently, there are only a few studies concerning brain functional alterations after acute alcohol exposure, and the majority of existing studies attach more importance to the spatial properties of brain function without considering the temporal properties. The current study adopted sliding window to investigate the resting-state brain networks in healthy volunteers after acute alcohol intake and to explore the dynamic changes in network connectivity.

Materials and methods

Twenty healthy volunteers were enrolled in this study. Blood-oxygen-level-dependent (BOLD) data prior to drinking were obtained as control, while that 0.5 and 1 h after drinking were obtained as the experimental group. Reoccurring functional connectivity patterns (states) were determined following group independent component analysis (ICA), sliding window analysis and k-means clustering. Between-group comparisons were performed with respect to the functional connectivity states fractional windows, mean dwell time, and the number of transitions.

Results

Three optimal functional connectivity states were identified. The fractional windows and mean dwell time of 0.5 h group and 1 h group increased in state 3, while the fraction window and mean dwell time of 1 h group decreased in state 1. State 1 is characterized by strong inter-network connections between basal ganglia network (BGN) and sensorimotor network (SMN), BGN and cognitive executive network (CEN), and default mode network (DMN) and visual network (VN). However, state 3 is distinguished by relatively weak intra-network connections in SMN, VN, CEN, and DMN. State 3 was thought to be a characteristic connectivity pattern of the drunk brain. State 1 was believed to represent the brain’s main connection pattern when awake. Such dynamic changes in brain network connectivity were consistent with participants’ subjective feelings after drinking.

Conclusion

The current study reveals the dynamic change in resting-state brain functional network connectivity before and after acute alcohol intake. It was discovered that there might be relatively independent characteristic functional network connection patterns under intoxication, and the corresponding patterns characterize the clinical manifestations of volunteers. As a valuable imaging biomarker, dynamic functional network connectivity (dFNC) offers a new approach and basis for further explorations on brain network alterations after alcohol consumption and the alcohol-related mechanisms for neurological damage.