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Task-based functional MRI (fMRI) has greatly improved understanding of brain

functioning, enabling the identification of brain areas associated with specific

cognitive operations. Traditional analyses are limited to associating activation

patterns in particular regions with specific cognitive operation, largely ignoring

regional cross-talk or dynamic connectivity, which we propose is crucial

for characterization of brain function in the context of task fMRI. We use

connectotyping, which efficiently models functional brain connectivity to

reveal the progression of temporal brain connectivity patterns in task fMRI.

Connectotyping was employed on data from twenty-four participants (12

male, mean age 24.8 years, 2.57 std. dev) who performed a widely spaced

event-related fMRI word vs. pseudoword decision task, where stimuli were

presented every 20 s. After filtering for movement, we ended up with 15

participants that completed each trial and had enough usable data for our

analyses. Connectivity matrices were calculated per participant across time for

each stimuli type. A Repeated Measures ANOVA applied on the connectotypes

was used to characterize differences across time for words and pseudowords.

Our group level analyses found significantly different dynamic connectivity

patterns during word vs. pseudoword processing between the Fronto-

Parietal and Cingulo-Parietal Systems, areas involved in cognitive task control,

memory retrieval, and semantic processing. Our findings support the presence
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of dynamic changes in functional connectivity during task execution and

that such changes can be characterized using connectotyping but not with

traditional Pearson’s correlations.

KEYWORDS

fMRI, task fMRI, connectotyping, functional connectivity, cognition, dynamic
connectivity, widely spaced event-related fMRI, BOLD

Introduction

Task-based functional MRI (fMRI) has had a profound
impact on our understanding of brain functioning. Using
fMRI, it is possible to design experiments that target specific
sensorimotor, perceptual, and/or cognitive operations in
efforts to understand the brain’s basis of those functions.
Complementing neuroscientific findings based on other
methods (e.g., single cell or multiunit recording), and lesion
cases, task-based fMRI studies have identified functional
neuroanatomy underlying various sensorimotor and perceptual
systems. Examples include visual (Engel et al., 1994; Sereno
et al., 1995; Goebel et al., 1998) and auditory systems (Moerel
et al., 2014), as well as systems associated with higher-order
cognitive operations such as memory retrieval (Yonelinas and
Levy, 2002; Wheeler and Buckner, 2003; Dobbins and Wagner,
2005; Yonelinas et al., 2005; Cabeza et al., 2008; Nelson et al.,
2010; Rugg and Vilberg, 2013), semantic processing (Petersen
et al., 1988; Fiez, 1997; Thompson-Schill et al., 1997; Friederici
et al., 2000; Donaldson et al., 2001; Roskies et al., 2001; Wagner
et al., 2001; Badre et al., 2005; Gordon et al., 2014), and
cognitive control (Botvinick et al., 2001; Braver and Barch, 2006;
Dosenbach et al., 2006, 2007).

The primary measure in fMRI studies is the blood oxygen
level dependent (BOLD) signal. Although not a direct measure
of neural activity, it has been shown that the measured BOLD
signal is correlated with neural activity, particularly with local
field potentials (Logothetis et al., 2001; Logothetis, 2003). The
BOLD signal, however, is slow compared to neural activity.
After an initial stimulus, the BOLD signal peaks typically
after 6 s (Vazquez and Noll, 1998), returning to baseline in
approximately 20 s –this observed activation trend is known
as the hemodynamic response function. The signal delay in
returning to baseline needs to be considered in experimental
design (Logothetis, 2008). For example, in a typical task
experiment, participants are exposed to a given stimulus
(cognitive, visual, or auditory) or are asked to perform a task.
Given the knowledge of the delayed peak on activation, methods
are tuned to look for brain areas that respond specifically to the
experimental paradigm once peak response is achieved.

The subsequent development of resting state functional
connectivity MRI (rs-fcMRI) was another milestone in

neuroimaging. Biswal et al.’s seminal work (Biswal et al., 1995)
established that the low frequency (<0.1 Hz) resting BOLD
activity in brain regions that are typically coactivated during
task-states (or known to be members of a common brain
system e.g., left and right primary motor cortex) show a high
degree of temporal correlation. This high degree of correlation
is hypothesized to be a measure of functional connectivity
among the said regions. rs-fcMRI has since become a very
convenient technique to characterize brain function. Since it
does not require the presence of an overt cognitive task, it can
be employed in animals (Miranda-Dominguez et al., 2014b;
Stafford et al., 2014), developmental populations (Marek et al.,
2019), or in patients that may otherwise be unable to perform
intentional cognitive tasks.

There is a growing interest in characterizing dynamic
changes in brain connectivity (Chang and Glover, 2010), both
at rest and during tasks. Several groups have used different
techniques to characterize the cross-talking between brain
areas (Friston et al., 1997; Chang and Glover, 2010; Ginestet
and Simmons, 2011; Cribben et al., 2012; Lindquist et al.,
2014; Billings et al., 2021; Shappell et al., 2021) but there are
controversies in the field (Laumann et al., 2016). One of the
first methods to estimate dynamics in functional connectivity
is the use of “sliding windows” (Sakoğlu et al., 2010), where
the BOLD data is split in segments, connectivity is calculated
on each segment, then changes in functional connectivity are
tracked across time. This has been mostly used in resting
state data. Another approach is to assume that functional
connectivity is a dynamic process that can be characterized by
a multivariate gaussian distribution whose mean and covariance
matrix evolves on time and there are efficient algorithms that
can estimate those statistical properties (Xu and Lindquist,
2015). Dynamic Causal Modeling (DCM), (Friston et al., 2003,
2019), is another technique that models dynamic changes in
functional connectivity. DCM can be applied on resting state
and task data. In DCM, the user specifies the brain areas
that define “the circuit” involved in a task and then, by using
differential equations and non-linear dynamics, a predicted
hemodynamic response is modeled and compared against the
measured signal within the proposed circuit. An alternative
method is to use non-linear dynamics to identify transitions
among different states in timeseries (Zhang and Saggar, 2020).
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There have also been attempts to characterize dynamic changes
in connectivity in task-fMRI experiments. An approach that has
been used by some but not all studies, relies on averaging data
across participants to increase signal to noise ratio (intrasubject
correlation analysis). In this method, dynamic changes in
connectivity are estimated after calculating the correlation of
each brain area’s timeseries against each other across participants
and averaging correlations across participants (Hasson et al.,
2004; Najafi et al., 2017). There are also methods such as
Psychophysiological Interactions (PPI, McLaren et al., 2012) and
Rissman connectivity (Rissman et al., 2004) that do not rely
on averaging data across participants but need a brain area or
areas as seed(s) to estimate changes in connectivity in reference
to that seed. The most basic implementation of PPI (McLaren
et al., 2012) consists of defining 3 regressors, the timeseries
of a) the task, b) the BOLD response of the seed, and c) the
product of those 2 signals. The BOLD response of brain areas
that can be modeled by the product of the 2 signals considered
to be functionally connected to the seed and be involved in the
task. The other 2 regressors are used to control for areas that
respond to the task but are not connected to the seed and for
areas that are in close proximity to the seed but not functionally
involved in the task. In Rissman connectivity, the BOLD data
is aligned according to the timing of events and, using the
Generalized Linear Model framework, beta-weights associated
with those events are calculated for every voxel (Rissman et al.,
2004). Resulting event-related beta-weights are correlated across
voxels to identify connections associated with the task being
studied.

One may reasonably hypothesize that there are dynamic
functional connectivity changes on the networks supporting
any mental process that may occur on the order of seconds
during the instantiation, computation, and response frame of
a given task. Hence, there is a need for a method able to
utilize whole brain connectivity to identify the brain networks
that support a task. This could be done by aligning the BOLD
data according to the phase of a task, calculating instantaneous
connectivity at each phase and tracking changes on time across
networks. Unfortunately, one of the main problems in fMRI
is that the BOLD signal is highly susceptible to noise and
correlations. The traditional method used to characterize whole
brain connectivity, may not have the resolving power to unveil
dynamic changes in connectivity.

Connectotyping (Miranda-Dominguez et al., 2014a, 2018),
a model-based method used to calculate functional connectivity
has the potential to address the above limitations. We have
shown that connectotyping is able to identify personalized
patterns of brain connectivity with an improved signal-to-noise
ratio even when using limited amounts of data as demonstrated
in a recent study where this approach was used to characterize
heritable patterns of brain functional connectivity (Miranda-
Dominguez et al., 2018). Connectotyping is based on a linear
model that proposes that the activity of a given brain region can

be described by the weighted sum of all the other brain regions
(Figure 1). The coefficients (beta-weights) of the resulting model
correspond to a connectivity matrix that is capable of identifying
a functional fingerprint in individual participants using a small
amount of data (e.g., 5 min of rs-fcMRI), which is the typical
amount of movement-free data able to be acquired in most
studies.

The aim of this current study is to determine whether
connectotyping can be applied to a task fMRI dataset to track
changes in network-network functional connectivity during the
progression of a task. This study relies on the following three
assumptions: (1) A given task will activate specific brain areas
and networks tuned to respond to the different aspects of the
progression of such task. (2) As the task evolves, the balance –
or co-activation patterns— among brain areas will change,
reflecting dynamical tuning to different aspects of the task. (3)
There is a contrast in the task that enables the differentiation
of pure activation of brain areas versus task-specific changes in
brain connectivity. With connectotyping, the activity of each
brain area is modeled as the weighted contribution of all the
other brain areas. Therefore, we can use connectotyping to
capture instantaneous connectivity maps as the task evolves.
Then, dynamic changes in functional connectivity secondary to
the evolution of the task can be characterized using statistical
testing (repeated measures ANOVA tests).

For this analysis, we first identified a task-fMRI dataset
with stimuli presented in a widely spaced manner without

FIGURE 1

Connectotyping. Functional connectivity is calculated as the
weighted sum of activity from the remaining brain regions
(Miranda-Dominguez et al., 2014a). (A) Given 3 brain areas, each
timeseries is modeled as the weighted sum of the other
timeseries. (B) All the equations can be expressed as a matrix
and solved using linear algebra. (C) This approach can be
generalized to M brain regions.
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the confounding effect of BOLD activity overlap from past
stimuli. Again, one of the characteristics of the BOLD signal
that must be considered in this context is that it takes about
20 s for the hemodynamic response function to return to
baseline following stimulus presentation. However, we avoid
overlapping responses by using data from widely spaced event-
related fMRI experiment (at least 20 s between individual
stimuli) in which subjects were performing a visually presented
word vs. pronounceable non-word (hereafter pseudoword or
PW) lexical decision task (Nardos, 2015).

Specifically, we hypothesized that connections between
networks implicated in cognitive control (Botvinick et al., 2001;
Braver and Barch, 2006; Dosenbach et al., 2006, 2007), memory
retrieval (Iidaka et al., 2006), and semantic processing (Petersen
et al., 1988; Fiez, 1997; Thompson-Schill et al., 1997; Friederici
et al., 2000; Donaldson et al., 2001; Roskies et al., 2001; Wagner
et al., 2001; Badre et al., 2005) would have dynamic network-
network functional connectivity differences as a function of the
type of stimulus (word vs. PW) being processed.

In summary, our goal is to track changes in functional
connectivity between different functional networks. We
hypothesized that the distinction between word and PW
relies on the dynamic activation of higher order attention
networks and that connectotyping has enough resolving power
to characterize such changes and can do so better than using
connectivity matrices created via Pearson’s correlations.

Materials and methods

Participants

The original study sample consisted of 28 participants; after
excluding participants who had incomplete or compromised
data quality, the current study included 24 individuals.
Participants were 24 monolingual (English-speaking), right-
handed participants (12 male, mean age 24.8 years, 2.57 std.
dev) recruited from neighborhoods surrounding Washington
University in St. Louis as well as from the university student
body (Nardos, 2015). All participants had no history of
psychiatric or neurological illness and scored above the 50th
percentile on the Woodcock-Johnson III reading assessment
(Woodcock and Johnson, 2002). The Washington University
Human Studies Committee approved the study (IRB ID #
201202083) and all participants were reimbursed for their
participation.

Task

In a visually presented lexical decision task, individuals
identified words vs. PWs while in the MRI scanner via button
pressing. A set of words (50% animals; 50% artifacts; 3–9

letters; 1–3 syllables) and PWs (5 letters, 1 or 2 syllables)
were selected from the English Lexicon Project (Balota et al.,
2007; Nardos, 2015). Pseudowords were vetted by an expert,
ensuring that words and pseudowords were tightly matched
on lexical characteristics like number of letters, number of
syllables, bigram frequency, and orthographic neighborhood
size (Nardos, 2015). When in the scanner participants had two
buttons, one on each hand. Each button corresponded either
to words or PWs, participants pressed the buttons with the
thumb of either hand to identify the stimuli. Stimuli were
presented in a widely spaced manner, i.e., separated by ∼20 s,
to avoid hemodynamic response signal overlap across individual
stimuli and allow extraction of individual trial BOLD responses
(Nardos, 2015). In each trial, a word or PW stimulus was
presented for 2.5 s (1 TR or MR frame) with each letter
subtending 0.5◦ of horizontal visual angle, followed by 17.5 s
(7TRs or MR frames) of a black fixation screen with a white
cross. Participants underwent 10 functional MRI runs each with
24 stimuli (18 PWs and 6 words) per run. Out of 24 trials
within a run, 3 of those trials were catch trials, meaning that
the intertrial interval after those trials would randomly be 2,
3, or 4 times the duration of the TR (2.5 sec), i.e., 5, 7.5, or
10 s, respectively. Catch trials were run for both words and
pseudowords. While there were differences across participants
in reaction time, overall accuracy was very high (98%, see
(Nardos, 2015) for details).

Data acquisition

Structural and functional MRI data were collected
as described in Nardos (2015) from a Siemens 3 Tesla
MAGNETOM Trio system (Erlangen, Germany). The scanner
included total imaging matrix technology (TIM) and utilized
a 12-channel head matrix coil. A high resolution T1-weighted
MP-RAGE was acquired (TE = 3.08 ms, TR [partition] = 2.4 s,
TI = 1,000 ms, flip angle = 8′′, 176 slices with 1 × 1 × 1 mm
voxels). To improve atlas alignment a T2-weighted turbo
spin echo structural image (TE = 84 ms, TR = 6.8 s, 32
slices with 2 × 1 × 4 mm voxels) matching the acquisition
plane of the BOLD images were also collected. Alignment
to the anterior commissure-posterior commissure (AC-PC)
plane was performed by Siemens pulse sequence protocol.
BOLD contrast-sensitive gradient echo echo-planar sequence
(TE = 27 ms, flip angle = 90′′, in-plane resolution = 4 × 4 mm)
was used for functional data collection. Using a TR of 2.5 s, 32
contiguous, 4 mm- thick axial slices whole-brain EPI volumes
were collected. Communication with participants was facilitated
by MR- compatible headphones which were also used to reduce
noise from the scanner. Head movement was minimized by
using a molded thermoplastic mask. Stimuli were presented
using Psyscope (Cohen et al., 1993) installed on an iMAC
computer (Apple, Cupertino, CA) and projected via an LCD
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projector (Sharp model PG-C20XU) onto an MRI-compatible
rear-projection screen combined with a mirror attached to the
head coil (CinePlex).

MRI data preprocessing

Data were processed using surface-based registration
applying a modified version from the Human Connectome
Project pipeline (Glasser et al., 2013) plus in-house denoising
methods.1 Processing includes the use of FSL (Smith et al., 2004;
Woolrich et al., 2009; Jenkinson et al., 2012) and FreeSurfer
tools (Sereno et al., 1995; Fischl and Dale, 2000; Desikan
et al., 2006). Briefly, gradient distortion corrected T1-weighted
and T2-weighted volumes were first aligned to the MNI’s
AC-PC axis and then non-linearly normalized to the MNI
atlas. Later, the T1w and T2w volumes were re-registered
using boundary-based registration (Greve and Fischl, 2009) to
improve alignment. Individual brains were segmented using
recon-all from FreeSurfer. Segmentations were improved by
using the enhanced white matter-pial surface contrast of the
T2-weighted sequence. Additionally, the initial pial and white
matter surfaces were used to distinguish an initial cortical
ribbon. From these segmentations, a tailored 3D surface was
created for each participant and registered to the Conte 69
surface atlas of the Human Connectome Project.

The BOLD data were corrected for field distortions (using
FSL’s TOPUP) and processed by doing a preliminary 6 degrees
of freedom linear registration to the first frame. After this initial
alignment, the average frame was calculated and used as a final
reference. Next, the BOLD data were registered to this final
reference and to the T1-weighted volume, all in one single
step, by concatenating all the individual registrations into a
single registration. To allow steady state magnetization, the first
four volumes of each run were discarded. The cortical ribbon
defined by the structural T1-weighted and T2-weighted volumes
was used to define a high-resolution mesh used for surface
registration of the BOLD data. This cortical ribbon was also used
to quantify the partial contribution of each voxel in the BOLD
data in surface registration. Timecourses in the cortical mesh
were calculated by obtaining the weighted average of the voxels
neighboring each vertex within the grid, where the weights are
given by the average number of voxels wholly or partially within
the cortical ribbon. Voxels with a high coefficient of variation,
indicating difficulty with tissue assignment or containing large
blood vessels, were excluded. Next, the resulting timecourses
in this mesh were downsampled into a standard space of
91, 282 anchor points (grayordinates), which were defined
in the brain atlas and mapped uniquely to each participant’s
brain after smoothing them with a 2 mm full-width-half-max
Gaussian filter. Subcortical regions were treated and registered

1 https://github.com/DCAN-Labs

as volumes. Two-thirds of the grayordinates are vertices located
in the cortical ribbon while the remaining grayordinates are
subcortical voxels. Subsequently, resulting timecourses (surface
registration for cortex and volume registration for subcortical
gray matter) were detrended. The following steps involved
regression of (1) 6 degrees of freedom obtained by rigid-body
head motion correction, (2) whole brain signal, (3) ventricular
signal averaged from ventricular regions of interest (ROIs),
(4) white matter signal averaged from white matter ROIs, (5)
first-order derivative terms and the squares for whole brain,
ventricular and white matter signals to account for variance
between regressors. Finally, timecourses were filtered using a
first-order Butterworth band-pass filter with frequency range
from 9 to 80 mHz. This filter was applied in the forward and
backward direction to remove phase distortions.

Regions of interest and functional
networks

Collected BOLD data were parcellated using the Gordon
schema that has 333 regions of interest (ROIs) grouped into
12 networks (Gordon et al., 2014). Each grayordinate was
assigned to a region and network within this parcelation.
The networks, their abbreviation and the number of ROIs
included are: Auditory (Aud, n = 24), Cingulo-Opercular (CiO,
n = 40), Cingulo-Parietal (CiP, n = 5), Default (Def, n = 41),
Dorsal Attention (DoA, n = 32), Fronto-Parietal (FrP, n = 24),
Retrosplenial Temporal (ReT, n = 8), Somato-sensory hand
(Sml, n = 38), Somato-sensory mouth (SMm, n = 8), Salience
(Sal, n = 4), Ventral Attention (VeA, n = 23), and Visual (Vis,
n = 39). From the 333 ROIs, 47 ROIs were not assigned to any
network. The location of each functional network is shown in
Figure 2. Per our hypothesis, on this pilot study we excluded
primary somatosensory and unimodal networks and included
only the Cingulo-Parietal, Default, Dorsal Attention, Fronto-
Parietal, Salience, and Ventral Attention, ending up with 129
brain areas from 6 brain networks that were grouped into 36
functional network pairs (CiP-CiP, CiP-Def,. . .). Table 1 shows
all the functional network pairs including the count of unique
connectotyping’s beta-weights.

Motion censoring

Correction for head motion was completed by calculating
six parameters of head movement, movement and rotation
along the x, y, and z axes. The absolute sum of movement along
these parameters was evaluated after each change of frame and
termed “frame displacement” (FD). For our study, we set our
FD threshold at 0.3 mm and set the FD of the first frame at zero.
This measure was only used as a way to detect motion and was
not used for regression (Power et al., 2012; Siegel et al., 2014).
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FIGURE 2

Gordon parcelation schema. The (Left panel) displays a visual representation of the 13 defined cortical networks in the Gordon Parcelation.
Networks are color coded with the number of regions of interest shown in parentheses. The (Right panel) shows the average connectivity
matrix calculated as the average beta-weights of all the data included in this study. Each row and column correspond to a particular brain
region, and each cell is a connection. Connections are grouped by functional network pair.

Grouping data for connectotyping

We calculated instantaneous connectotypes for each
participant at each phase (Frame 1–8) of the progression
of each task (i.e., for words and PWs) ending up with 16
connectotypes per participant, as shown in Figure 3. Each
resulting connectotype captures the instantaneous cross-talking
among brain areas at each phase of the progression of each task.
To do this, for each participant, at each frame and stimulus
type, we concatenated the BOLD data from the same frame,
relative to the frame at which stimuli was presented for each
participant (as shown in Figure 3A). We did this because these
replica frames correspond to the same point in time in the
dynamic evolution of the task. This created a matrix with the
dimension 333 by the number of replica frames. The dimension
333 is due to the number or ROIs included in the Gordon
parcelation schema (Gordon et al., 2014). Next, we used that
stack of replica frames to calculate a connectotype that reflects
the crosstalking between ROIs at this phase of the task. This
approach was repeated for each phase of the experiment. We
only included trials that had a length of 8 TRs for a total of
20 s, with the additional constraint that the preceding trial
in the experiment took place at least 20 s prior, ensuring that
the timecourse for the current trial under consideration is not
adulterated by that previous trial. Frames were excluded if
head movement was higher than a given frame displacement

(FD) threshold of 0.3 mm (Power et al., 2014). Participants
were included only if they had enough data (40 replica frames
or more) to calculate personalized connectotypes on each of
the 16 conditions. Fifteen participants met this condition.
Each connectotype was calculated using 40 “replica” frames to
avoid the confounding factor that some connectotypes from
specific participants could be calculated with different numbers
of frames. For each condition and participant, we calculated
connectotypes using 40 frames selected randomly within
condition from the surviving frames with head movement
lower than the pre-selected threshold. We decided to select
frames randomly instead of the ones with the lowest FD to avoid
bias and batch effects secondary to head movement. We ended
up with 15 participants that successfully completed each trial
(word and PW) for 20 s and had at least 40 low head-movement
replica frames for each condition (16).

Connectotyping

As described in the original publication (Miranda-
Dominguez et al., 2014a), connectotyping mathematically
represents a brain region’s signal as the weighted sum of the
signal from every other brain region using values termed beta-
weights (β). Such weights are optimized by regularization and
cross-validation. The result is a directional connectivity map
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that calculates the interaction between brain regions, allowing
the identification of individual connectivity patterns among
brain areas and networks. Briefly, in an example application
on a hypothetical parcelation schema with only three brain
regions, “a,” “b,” and “c”; this technique models the functional
connectivity of region “a” as a weighted sum of regions “b”
and “c’s” connectivity. The model for the signal resulting from
region “a” would be: â = βa,bb+ βa,cc. This same model is
then applied to the remaining brain regions “b” and “c” until

TABLE 1 List of all 36 functional network pairs tested in the ANOVA
with the number of ROI connections between networks listed in the
third column. Grouping of connections per functional system pair.

# Name Number of connections

1 CiP and CiP 20

2 Def and CiP 205

3 DoA and CiP 160

4 FrP and CiP 120

5 Sal and CiP 20

6 VeA and CiP 115

7 CiP and Def 205

8 Def and Def 1640

9 DoA and Def 1312

10 FrP and Def 984

11 Sal and Def 164

12 VeA and Def 943

13 CiP and DoA 160

14 Def and DoA 1312

15 DoA and DoA 992

16 FrP and DoA 768

17 Sal and DoA 128

18 VeA and DoA 736

19 CiP and FrP 120

20 Def and FrP 984

21 DoA and FrP 768

22 FrP and FrP 552

23 Sal and FrP 96

24 VeA and FrP 552

25 CiP and Sal 20

26 Def and Sal 164

27 DoA and Sal 128

28 FrP and Sal 96

29 Sal and Sal 12

30 VeA and Sal 92

31 CiP and VeA 115

32 Def and VeA 943

33 DoA and VeA 736

34 FrP and VeA 552

35 Sal and VeA 92

36 VeA and VeA 506

Total 16,512

FIGURE 3

Experimental design. The widely spaced design of the word
versus pseudoword experiment allows us to characterize
dynamic changes in functional connectivity using
connectotyping. (A) The collected whole-brain BOLD data is
represented as the central colored strip. Each bar corresponds
to data acquired at each TR and is color-coded according to the
stimuli (Green for “Word” and purple for “PW”). A word or
pseudoword is displayed for 2.5 s with no new stimuli after 20 s.
The bars in black represent “catch” trials. Frames collected at the
same time, relative to the exposure to the stimuli, are
concatenated to create a stack of frames of size 333 times
replica frames. Those frames are used to calculate a
connectivity matrix. This approach generates 16 connectivity
matrices per participant. (B) Temporal evolution of the
theoretical hemodynamic response. (C) Resulting
connectotypes from each participant (A) are grouped according
to their phase and stacked with the connectotypes of all the
participants included in the study.

the signal for each region in the system is represented by an
equation (see a schematic representation of connectotyping in
Figure 1).
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FIGURE 4

Distribution of connectivity values per functional network pair and condition. Beta-weights were calculated for each condition as indicated in
our experimental design (Figure 3) and grouped by functional network pair. Each boxplot highlights the mean values using a circle and the
dispersion is indicated with a bar covering 1.15 times the standard deviation of the connectivity values. Data is color-coded by stimuli:
pseudoword (purple) and word (green). X-axis indicates the time, in frames (TR of 2.5 s each). In this study we included the following six
networks: Cingulo-Parietal (CiP, n = 5 Regions of Interest), Default (Def, n = 41), Dorsal Attention (DoA, n = 32), Fronto-Parietal (FrP, n = 24),
Salience (Sal, n = 4), and Ventral Attention (VeA, n = 23).

After applying the connectotyping approach to our filtered
and grouped and timely aligned task-fMRI data, we ended
up with 15 participants each with 16 connectotypes that
characterize the instantaneous connectivity map as each trial
evolved (word and PW).

To note, in the original manuscript (Miranda-Dominguez
et al., 2014a), which aimed to characterize functional
connectivity in resting state data, the first step was to account
for the spurious effect of autocorrelations. In contrast, in
task-based fMRI, autocorrelations are not spurious; they are
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part of the temporal evolution of the task. For this reason, in
this study we did not remove autocorrelations from the data.

Additionally, while connectotyping created individualized
connectivity patterns, our study performed analyses on
concatenated connectotypes from 15 participants resulting in a
group level analysis.

Statistical analysis

To identify dynamic changes in functional connectivity,
we ran independent repeated measures ANOVA tests for each
functional network pair (N = 36, as described before) testing for
changes in functional connectivity for the interaction of time
(frame 1 to 8) and stimulus type, (i.e., word/PW) using the 16
connectotypes from all the surviving participants (Figure 3).
All statistical analyses were performed in MATLAB. Before
statistical testing, connectivity values (i.e., connectotyping beta-
weights) were box-cox transformed to normalize distributions
(Montgomery, 2005) and the logarithmic base was optimized by
gradient descent. In MATLAB, the repeated measures ANOVA
tests are performed in two steps. First, a linear mixed effects
model is fit to predict outcome values (in this case connectivity
values) as a function of the repeated factors time (frames 1 to
8), stimulus type (word and PW) and the interaction between
the two of them. Next, the resulting corrected beta-weighted
values are grouped according to the factors time, stimulus,
and the interaction of time and stimulus type, to characterize
statistical differences using regular ANOVA tests (See Figure 4
for a visualization of the distribution of the marginal means
of the data per functional network pairs included in this
study). Mauchly’s test of sphericity was used to test for
differences in variance among the groups being compared, and
p-values were adjusted accordingly using the correction factor
epsilon. Epsilon-adjusted p-values were corrected for multiple
comparisons using the Tukey–Kramer method, and 0.05 was
used as threshold for significance (Rudolph et al., 2018; Kovacs-
Balint et al., 2019; Miranda-Domínguez et al., 2020).

Methods’ recap

We aimed to characterize dynamic changes in functional
connectivity in a task fMRI study where participants were asked
to identify whether they were exposed to a word or a PW. Stimuli
(word of PW) was shown for 2.5 s, and fMRI data was collected
every 2.5 s from the beginning of the exposure and for 20 s
in total. Trials were repeated several times. Each participant
included in the study was exposed to two types of stimuli and
we used the same amounts of trials to calculate personalized
connectivity maps via connectotyping at each time point of
each trial. Next, we used series of repeated measures ANOVA
tests on group level data to identify changes in functional

connectivity for each possible functional network pairs among
six networks of interest, the Cingulo-Parietal, Default, Dorsal
Attention, Fronto-Parietal, Salience, and Ventral Attention
networks from the Gordon parcelation (Gordon et al., 2014).
The ANOVA examined differences in functional connectivity
for the interaction of time (frames 1–8) and stimulus type, for
each network pair. Data are available from the corresponding
author upon reasonable request. Code is available in https://
fconn-anova.readthedocs.io/en/latest/

Results

Changes in functional connectivity for
the interaction of time and stimulus
type

The 8(time) × 2(condition) ANOVA showed a significant
interaction between the Cingulo-Parietal and Fronto-Parietal
Networks (F = 3.7155; p = 0.001, uncorrected; p = 0.047,
corrected), as shown in Figure 5. Post-hoc analysis revealed
that differences were driven by changes in connectivity values
at frames 3 (paired t-test word vs non-word, p = 2.65e−5)
and 4 (paired t-test word vs non-word, p = 2.68e−4). To note,
we repeated this analysis including the Visual Network and
found no significant results. The strongest effect was found for
connectivity values between the Cingulo-Parietal and Fronto-
Parietal networks (p = 0.06, corrected) but none of the functional
network pairs including the Visual network showed differences
for this interaction, as shown in Supplementary Figure 1.

Robustness of results at different
motion censoring thresholds

To test the robustness of our analysis using a more stringent
threshold, we repeated analyses calculating connectotypes using
a FD of 0.25. Only thirteen participants survived filtering
at this threshold. While results did not pass corrections for
multiple comparisons (p = 0.508, corrected) given the reduced
sample size, the Cingulo-Parietal and Fronto-Parietal networks
also exhibited the same temporal evolution in beta-weights
for the interaction of time and stimulus type, as shown in
Supplementary Figure 2A. In addition, we also recalculated our
analysis with an FD of 0.5, allowing data from 17 participants,
and found a similar difference in beta-weight response between
these two networks. However, when correcting for multiple
comparisons, the findings were not significant (p = 0.941,
corrected) (Supplementary Figure 2B). These similarities
in observed connectivity between the Cingulo-Parietal and
Fronto-Parietal networks at different thresholds displayed
a similar trend in temporal connectivity response as the
original finding above.
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FIGURE 5

Significant difference observed in how the Cingulo–Parietal and Fronto–Parietal networks interact due to both progression of task and stimulus
type. (Top panel) Shows the topological representation of cortical areas for both the Fronto-Parietal (yellow) and Cingulo Parietal (blue)
networks. (Middle panel) Shows the mean sub-connectivity matrices between all the Cingulo Parietal and Fronto-Parietal ROIs (5 × 24
matrices) across participants for each stimuli (Word vs. Pseudowords) and each frame. The (Bottom panel) shows the distribution of marginal
means of connectivity values for each frame and stimuli for connections belonging to the Fronto–Parietal and Cingulo–Parietal networks. Mean
values shown as a circle and the dispersion is indicated with a bar covering 1.15 times the standard error of the connectivity values. When testing
for how these values changed across frame and stimuli type, this functional system pair was found to be significant with a corrected p-value of
0.047.

Characterizing changes in connectivity
values in connectivity matrices
calculated using pearson-correlations

We repeated all the previous analysis using connectivity
matrices calculated via Pearson correlations instead of
connectotypes using the same frames used to calculate
connectotype. No FD threshold led to significant differences
in functional connectivity. Figure 6 shows the distribution
of marginal means of connectivity values when connectivity

matrices were calculated using an FD threshold of 0.3 (i.e., the
same threshold used for connectotyping). These data highlight
potential improvements in fMRI analyses using connectotyping.

Discussion

Recent advances in rs-fcMRI analysis approaches have
led to increased understanding of brain functioning – where
experimental designs have been able to identify brain areas
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FIGURE 6

Distribution of mean connectivity values calculated using Pearson correlations per functional network pair and condition. Same description as
in Figure 4.

supporting consciousness (Lloyd, 2002), moral judgment
(Greene et al., 2001), as well as heritable patterns of brain
connectivity (Miranda-Dominguez et al., 2018). Successful
execution of mental tasks might require the collaboration of
different brain networks in a timely manner. One approach
that has been used to characterize dynamic changes in brain

connectivity in task fMRI relies on correlations and averaging
signals across participants (Hasson et al., 2004). For example,
Najafi and colleagues used this approach to keep track of
the changes in connectivity during anxious anticipation and
found changes in connectivity between and within the Salience,
Executive and Default Mode Networks (Najafi et al., 2017).
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Given the noisy nature of functional MRI, some studies
average data from multiple participants to improve the signal
to noise ratio. While the result is a smoother signal, it
comes at the price of blurring individual differences and
dynamic changes in functional connectivity. In this study,
we aimed to track temporal changes in brain connectivity
during task performance using connectotyping, an efficient
way to calculate functional connectivity between brain regions.
Previously we showed that connectotyping can identify stable
fingerprints efficiently (Miranda-Dominguez et al., 2014a,
2018). Connectotyping models how the activity of each brain
area can be modeled as the weighted contribution of all the
other areas. Resulting beta-weights correspond to a functional
connectivity matrix. Changes in functional connectivity at
a particular functional network pair for the interaction of
time and stimulus might indicate that that specific functional
network responds differently to a given stimulus. Here we
tested the viability of connectotyping on task data from a
lexical decision-based fMRI study that used a widely spaced
event-related design (∼20 s trials). The use of this particular
dataset, capitalizing on the widely spaced design, allowed for
the hemodynamic response function corresponding to a single
stimulus to be detected without signal interference from the
next or preceding stimulus. Our approach has the potential
to reveal how functional connections between ROIs (i.e., here,
at the network level) progress during the performance of
a task not just at the peak of activation. As hypothesized,
application of connectotyping to the word vs PW dataset
revealed significant dynamic (i.e., across frames) connectivity
differences between the Cingulo-Parietal and Fronto-Parietal
networks, as a function of stimulus type (i.e., word vs. PW).
Our interpretation of these findings is further elaborated
below.

The significantly different dynamic temporal relation
occurring as a function of stimulus type between the Cingulo-
Parietal and Frontal-Parietal networks suggest that the evolving
contributions between the Fronto-Parietal and the Cingulo-
Parietal network are distinct in pattern depending on whether
participants were viewing something meaningful (i.e., word)
vs. meaningless (i.e., PW). It is important to mention that the
proposed approach is able to discriminate between areas that
respond specifically to the task because (a) the experimental
design includes a contrast (Word vs PW) and (b) the repeated
measures ANOVA is looking for differences in connectivity
for the interaction of time and stimulus type. While there
are other functional networks that also display dynamic
changes, they are not distinct across stimuli (see for example
Default and Cingulo-Parietal networks on Figure 4), hence
they are not related to this task. Importantly, repeating
analysis using connectivity matrices calculated via Pearson’s
correlations, as opposed to connectotyping, did not have
the resolving power to identify dynamic changes in brain
connectivity.

After further testing and creating connectotypes with both
more and less stringent movement thresholds (at 0.25 and
0.5 frame displacement thresholds), this observed Cingulo-
Parietal and Frontal-Parietal network pattern of differentiated
coactivation persisted, implying the stability of the findings
(Supplementary Figure 2). Although these additional analyses
did not withstand multiple-comparisons correction given the
reduced sample size or signal to noise ratio, respectively, the
presence of the same pattern of results supports the robustness
of our primary finding.

The presence of dynamic connectivity differences between
the Cingulo-Parietal and Fronto-Parietal networks support
our principal hypothesis that task dependent regional brain
communication changes during task progression; a finding
that to our knowledge is the first of its kind. Our findings
consequently also validate the use of connectotyping as a tool
for task fMRI analysis which can provide a novel depiction
of brain activity including dynamic temporal changes in
functional connectivity. Additionally, we believe our findings
are not simply a result of coactivation of networks. The
original work by Nardos (2015) on this same dataset reported
activation maps for the same contrast (Nardos, 2015). While
there is some overlap for the Cingulo-Parietal network,
most of the results. Nardos found that, in addition to
areas within the Cingulo-Parietal network, areas belonging to
the default, motor, ventral attention and Cingulo-Opercular
system are behind the discrimination between words and PW
(Nardos, 2015). In contrast, we found that dynamic changes
in connectivity between the Cingulo-Parietal and Fronto-
Parietal networks support discrimination between words
and PW. Importantly, the Fronto-Parietal network was not
identified as significant by Nardos. Since our findings do
not coincide with the activation map, we do not believe
that our analyses are a reflection of the activation of these
networks.

Although our current approach differs from prior
traditional task fMRI analyses, we did expect some overlap
with findings from similar studies. Exposure to words vs. PWs
resulted in significantly different temporal connectivity patterns
between areas known to have a role in cognitive control,
semantic processing, and memory retrieval. The Fronto-
Parietal network is characterized as a task control network
that has a particular role in the adaptive moment-to-moment
requirements of a cognitive task such as task instantiation and
dynamic feedback or error detection (Dosenbach et al., 2007).
Cole et al. published evidence suggesting that the Fronto-
Parietal network works as a cognitive hub by communicating
with other control and processing networks to allow cognitive
adaptation during tasks (Cole et al., 2013). This network also
initiates and adjusts cognitive control to produce higher-level
cognitive functions (Marek and Dosenbach, 2018). Here,
the fact that such an adaptive control network displays
distinct relations as a function of stimulus type is consistent
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with an expectation that resolution of the identity of a
word vs. non-word may have different cognitive control
demands.

The regions corresponding to the Cingulo-Parietal network
have previously been linked with memory retrieval processes
(Power et al., 2011). Parts of the Cingulo-Parietal network are
found in the precuneus and near the posterior cingulate, regions
that have previously been linked with semantic processing.
For instance, the regions have been shown to distinguish
between words and PWs in prior work using traditional fMRI
analysis (Binder et al., 2009). The same two regions have
also previously been associated with supporting word learning
in young adults (Nardos, 2015). In addition, there is ample
prior work that has associated those same two regions with
memory retrieval (Yonelinas and Levy, 2002; Wheeler and
Buckner, 2003; Dobbins and Wagner, 2005; Yonelinas et al.,
2005; Cabeza et al., 2008; Nelson et al., 2010; Rugg and Vilberg,
2013). In aggregate, the aforementioned findings linking regions
in the Cingulo-Parietal network with semantic processing
and memory retrieval is consistent with our finding that
dynamic functional connectivity between this network and the
Fronto-Parietal network supporting adaptive cognitive control
is what distinguishes meaningful words from meaningless
PWs.

The proposed approach is unique in the fact that it
tracks dynamic changes in whole brain functional connectivity
contrasting the response to different stimuli at each functional
network pair. This method does not require a priori knowledge
of potential brain areas (seeds) involved in the task. This is
made possible because we characterized functional connectivity
using connectotyping (Miranda-Dominguez et al., 2014a, 2018),
a method with an improved signal-to-noise ratio (compared
to traditional correlations) to characterize personalized maps
of functional connectivity. In addition, the experimental design
includes a contrast (word versus PW) enabling the identification
of networks that respond differentially to each stimuli type.
This contrast, we believe, makes possible the specificity to
identify connections as opposed to merely co-activation. In
other approaches, such as PPI, the distinction between co-
activation and connectivity is made possible by including a
regressor that is the product of the hypothesized hemodynamic
response of the task and the timeseries of a seed that is a priori
known to be involved in the task. It is important to mention
that the proposed method is similar to Rissman connectivity
(Rissman et al., 2004) in the fact that it aligns data according to
their temporal evolution. In Rissman connectivity, the aligned
data is used to estimate beta-weights associated with each event
for every voxel. Resulting beta-weights are correlated across
voxels to identify connections that respond to a given stimulus.
Our approach, however, is different since we align whole-
brain connectivity matrices and then characterize differences
at each network pair for the interaction of time and stimulus
type.

Limitations and future work

Because of our stringent motion censoring, our analyses
are based on the data of only 15 participants of a narrow age
range, which may limit the generalizability of our results. In
this exploratory study, due to our limited data and our focus
on higher order heteromodal networks, we decided to exclude
the primary sensory cortex in our analysis. Studies with a larger
number of participants and different tasks might allow the
inclusion of more networks and display additional significant
interactions among networks. Our additional analysis including
the visual network, however, supports our assumption that the
visual network might not be involved in this particular paradigm
of word discrimination. The usage of a widely spaced dataset
was ideal to test the feasibility of using connectotyping to track
dynamic changes in functional connectivity. A widely spaced
design, however, limits the number of contrasts that can be
performed and measured and might lead to fatigue in the
participants. Fortunately, participants succeeded in identifying
words and PW with an accuracy of 98% suggesting that this slow
paradigm did not lead to reduced attention in the participants
that could compromise our findings. As we succeed in using
a linear model to track dynamic changes, superposition and
convolution can be used in event-related experiments where
stimuli can be changed at each TR. By applying those validated
methods to deconvolve the beta-weights corresponding to each
frame and stimulus, the same statistical analysis (i.e., repeated
measures ANOVA) can be used to track dynamic changes in
functional connectivity. This approach is something we intend
to continue exploring using task data from the Adolescent
Brain Cognitive Development (ABCD) Study (Casey et al.,
2018).

Conclusion

Task execution requires the orchestrated involvement of
different brain networks. Here we showed that by calculating
connectivity matrices using connectotyping at each time
point during the execution of a task, we can identify
the changes in brain connectivity that support semantic
discrimination in a word versus PW paradigm using fMRI.
We showed that connectotyping has a resolving power
that cannot be achieved by using traditional correlations.
While limited by the constraints of our data and the
novelty of our approach, our group level findings serve
to expand on the roles and functions of the Cingulo-
Parietal and Fronto-Parietal networks as an incentive for
others to pursue analyses which account for patterns of
dynamic whole-brain connectivity and provide temporal
resolution. The application of connectotyping to additional
studies exploring other tasks and with differentially spaced
study designs will not only further validate the use of this
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approach but also has the potential to expand our understanding
of brain activity during the performance of a task.
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SUPPLEMENTARY FIGURE 1

Distribution of mean connectivity values per functional network pair and
condition including the visual network. Beta-weights were calculated
for each condition as indicated in our experimental design (Figure 3)
and grouped by functional network pair. Each boxplot highlights the
mean values using a circle and the dispersion is indicated with a bar
covering 1.15 times the standard deviation of the connectivity values.
Data is color-coded by stimuli: pseudoword (purple) and word (green).
X-axis indicates the time, in frames (TR of 2.5 s each). In this study we
included the following networks: Cingulo-Parietal (CiP, n = 5 Regions of
Interest), Default (Def, n = 41), Dorsal Attention (DoA, n = 32),
Fronto-Parietal (FrP, n = 24), Salience (Sal, n = 4), and Ventral Attention
(VeA, n = 23) Visual (Vis, n = 39).

SUPPLEMENTARY FIGURE 2

Difference of how the Cingulo-Parietal and Fronto-Parietal networks
interact over time at other thresholds of head-movement suggest
robust initial finding. The (A) shows the change in beta-weights between
the Fronto-Parietal and Cingulo-Parietal networks at a movement
threshold of 0.25 mm. After correcting for multiple comparisons, this
functional system pair was not found to be significant (p = 0.508). The
(B) shows the results from the same analysis as the left information
when the movement threshold was set at a higher value of 0.5mm.
When this data underwent corrections for multiple comparisons, this
functional system pair was not found to be significant (p = 0.941).
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