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Since the ambiguous boundary of the lesion and inter-observer variability,

whitematter hyperintensity segmentation annotations are inherently noisy and

uncertain. On the other hand, the high capacity of deep neural networks (DNN)

enables them to overfit labels with noise and uncertainty, which may lead

to biased models with weak generalization ability. This challenge has been

addressed by leveraging multiple annotations per image. However, multiple

annotations are often not available in a real-world scenario. To mitigate

the issue, this paper proposes a supervision augmentation method (SA) and

combines it with ensemble learning (SA-EN) to improve the generalization

ability of the model. SA can obtain diverse supervision information by

estimating the uncertainty of annotation in a real-world scenario that per

image have only one ambiguous annotation. Then di�erent base learners

in EN are trained with diverse supervision information. The experimental

results on twowhitematter hyperintensity segmentation datasets demonstrate

that SA-EN gets the optimal accuracy compared with other state-of-the-

art ensemble methods. SA-EN is more e�ective on small datasets, which

is more suitable for medical image segmentation with few annotations. A

quantitative study is presented to show the e�ect of ensemble size and

the e�ectiveness of the ensemble model. Furthermore, SA-EN can capture

two types of uncertainty, aleatoric uncertainty modeled in SA and epistemic

uncertainty modeled in EN.

KEYWORDS

supervision augmentation, ensemble learning, uncertainty, deep learning, white

matter hyperintensity segmentation

1. Introduction

White matter hyperintensities (WMHs), defined as hyperintensities on T2-weighted

(T2w) or T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) magnetic

resonance (MR) images, are located in cerebral white matter tissues and of varying sizes

(Wardlaw et al., 2013; Liang et al., 2021). These abnormal signals mainly come from
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normal aging and a lot of neuropsychiatric disorders, such

as dementia and small-vessel diseases (Wallin et al., 2018).

Based on the quantitative analysis of WMHs, many studies

have shown that the quantitative characterization of WMHs

plays an important role in various clinical studies of nervous

system diseases (Brickman et al., 2018; Dadar et al., 2019).

However, manually labeling lesions is a time-consuming process,

and human error is unavoidable. Therefore, automatic MRI

segmentation of WMHs has important potential for clinical

applications.

In recent years, deep convolutional neural networks

(DCNN) have achieved state-of-the-art performance in medical

image segmentation (Litjens et al., 2017; Hu et al., 2018).

One of the fundamental facts contributing to such success is

the massive training data with reliable annotations. However,

medical image segmentation annotations are inherently noisy

and uncertain due to the ambiguous boundary of the lesion and

inter-observer variability. For White matter hyperintensities,

the lesions near the ventricles are more prominent and the

boundaries look sharper. Deeper regions tend to have blurrier

boundaries. As shown in Figure 1, high uncertainty is mainly

FIGURE 1

Visualization of uncertainty maps on two training slices computed by Bayesian U-Net. From left to right: Flair MR images, the associated ground

truth, and the associated uncertainty map.

distributed in deeper regions, especially the lesion boundary

and some smaller lesions. The manual segmentation was highly

reliable in the region close to the ventricle, even at the border.

Since the high capacity of deep neural networks (DNN), the

DL-based approaches are easy to overfit to labels with noise

and uncertainty, which may lead to biased models with weak

generalization ability (Lee et al., 2016; Kohl et al., 2018;

Zhang et al., 2021). Many methods overcome this challenge

by leveraging multiple annotations per image (Hu et al.,

2019; Mirikharaji et al., 2021). When facing an uncertain

situation in practice, humans also tend to produce multiple

plausible assumptions. Similarly, images can be better evaluated

using annotations from a group of annotators. The advantage

of multiple annotations is that they can provide diverse

supervision information during model training (Yang and Xu,

2020; Mirikharaji et al., 2021). However, in a common real-

world scenario, per image have only one ambiguous and noisy

annotation per image.

One natural question raised from the above analysis could

be can we obtain diverse supervision information based on

a single annotation? Training set biases can sometimes be
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addressed with the dataset resampling (Chawla et al., 2002;

Ren et al., 2018), i.e., choosing the correct proportion of

labels to train a network on, or more generally by assigning

a weight to each example and minimizing a weighted training

loss (Freund and Schapire, 1997; Chang et al., 2017). The

semantic segmentation task entails assigning pixel-wise class

labels to the entire image. The annotations of different pixels

contain varying degrees of ambiguity and noise. For example,

the annotation of pixels at the boundary of the lesion has high

noise and ambiguity (Lakshminarayanan et al., 2017; Beluch

et al., 2018). However, the existing deep learning models usually

lack the consideration of annotation reliability at the pixel

level when calculating the loss function, such as the commonly

used cross-entropy or dice loss. In the above regard, this

paper proposes a supervision augmentation (SA) method to

obtain diverse supervision information to achieve similar effects

of multiple annotations instead of directly obtaining multiple

annotations. Concretely, Bayesian CNN is used to estimate the

uncertainty of annotation. When calculating the loss function,

some pixels with high uncertainty will be filtered out. By

changing the filtering threshold, diverse supervision information

can be obtained when calculating the loss function. Then,

SA is combined with ensemble learning (SA-EN) for White

Matter Segmentation. Different base models train with different

supervision information in EN. The experimental results on two

white matter hyperintensity segmentation datasets demonstrate

that SA-EN can get the optimal accuracy compared with other

state-of-the-art ensemble methods. SA-EN is more effective

on small datasets. This is more suitable for medical image

segmentation with few annotations. Furthermore, the aleatoric

uncertainty (Kendall and Gal, 2017) can be modeled in SA. The

epistemic uncertainty (Kendall and Gal, 2017) can be modeled

in EN.

The main contributions of this article can be summarized

as follows: (1) This paper proposed a SA method, which can

obtain diverse supervision information for common single-label

scenarios without adding additional data labeling burden. (2)

The experiments show EN via supervision augmentation (SA-

EN) outperforms the state-of-the-art methods in white matter

hyperintensity segmentation. (3) SA-EN is more effective on

small datasets. (4) SA-EN can capture two types of uncertainty,

aleatoric uncertainty modeled in SA and epistemic uncertainty

modeled in EN. The notations we use throughout the paper are

summarized in Table 1.

2. Related works

2.1. Medical image segmentation

In recent years, deep learning has made great development

in medical image segmentation. The U-Net (Ronneberger et al.,

2015) is one of the most commonly used convolutional network

TABLE 1 Notations used in the paper.

Notation Description

λ Uncertainty threshold.

W Network’s weights.

p(W|X,Y) W’s posterior distribution over the training sets.

xn , yn Training Images and corresponding annotations.

x̃, ỹ Testing image and corresponding predictive label.

U(x) The uncertainty map of the training sample x.

Mask(xm) Binary mask to indicate whether the current pixel is

involved in the loss function.

L Loss function.

l The label class.

K Number of base model.

fk , pk The kth base model in the ensemble learning and

corresponding prediction probability.

θ Dropout ratio.

T The number of dropout samplings.

Mean,Var Mean probability, mean probability variation.

structures in medical image segmentation. By adopting an

encoder-decoder network structure and skip connection, it can

combine features of the different decoding layers with features of

the different coding layers (Drozdzal et al., 2016; He et al., 2016).

Some later works also achieve higher performance by improving

the architecture of U-Net, such as AttU-Net (Oktay et al., 2018)

and U-Net++ (Zhou et al., 2019). Oktay et al. (2018) introduced

the attention mechanism (Vaswani et al., 2017) into U-Net,

which can suppress irrelevant areas in the input image and

highlight the salient features of specific local areas. Zhou et al.

(2019) propose a new segmentation architecture based on nested

and dense skip connections. This designed skip connection

reduces the gap between the feature maps of the encoding

and decoding sub-networks. Many DCNNs have been proposed

in the literature for white matter hyperintensity segmentation.

Moeskops et al. (2018) proposed a patch-based deep CNN to

segment brain tissues and WMH in MR images. Guerrero et al.

(2018) proposed a network called uResNet which combines

the strengths of both U-Net and residual neural networks to

segment hyperintensities. Li et al. (2018) proposed an ensemble

of three U-Net’s with different random weight initializations to

automatically detect WMH. Sundaresan et al. (2021) propose an

ensemble triplanar network that combines the predictions from

three different planes of brain MR images to provide an accurate

WMH segmentation.

2.2. Uncertainty

In machine learning, uncertainty has been classified into

aleatoric and epistemic types. The aleatoric reflects the inherent
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FIGURE 2

The overall structure of SA-EN. It consists of two parts: supervision augmentation and ensemble learning.

noise in the data (Kendall and Gal, 2017). The epistemic

uncertainty is associated with the network’s parameters (Kendall

and Gal, 2017). It has been shown in previous research (Pereyra

et al., 2017) that the softmax output of a neural network

tends to be overconfident. Moreover, the cross-entropy loss

can interpret as a maximum likelihood estimation, which is

not suited for the estimation of a predictive distribution’s

variance (Sensoy et al., 2018). Bayesian networks are an

efficient method for modeling (epistemic) uncertainty (MacKay,

1992; Barber and Bishop, 1998). But their implementation

is difficult and computationally expensive. Arguably, Monte

Carlo dropout (MC-Dropout) (Gal and Ghahramani, 2016)

is one of the most well-known techniques to quantify the

model’s uncertainty in deep learning methods. When dropout is

applied at training and testing time, it can be used to perform

a variational approximation of a Bayesian neural network

that has Bernoulli distributions as prior. Deep ensembles are

another sampling-based approach for the estimation of the

predictive uncertainty of DNNs (Lakshminarayanan et al.,

2017). Lakshminarayanan et al. (2017) and Beluch et al. (2018)

have also shown deep ensembles often outperformMonte-Carlo

dropout, even requiring significantly less samples. In medical

image segmentation, many methods further improve the

segmentation accuracy through uncertainty analysis. Hiasa et al.

(2019b) use Bayesian U-Net for personalized musculoskeletal

modeling. Yu et al. (2019) present a novel uncertainty-

aware semi-supervised learning framework for left atrium

segmentation from 3D MR images by additionally leveraging

the unlabeled data. Tang et al. (2022) propose an uncertainty

guided network referred to as UG-Net for automatic medical

image segmentation.

2.3. Ensembles learning

Ensemble learning is a powerful machine learning paradigm

that has exhibited apparent advantages in many applications

(Zhou, 2021). By using multiple learners, the generalization

ability of an ensemble can be much better than that of a

single learner (Hansen and Salamon, 1990). Ensembles are

widely used in machine learning (Dietterich, 2000), such as

Adaboost (Schapire, 1990), Bagging (Breiman, 1996), Stacking

(Wolpert, 1992), etc. Similarly, the network ensemble is a

popular approach to improving the generalization of DL

networks (Ganaie et al., 2021). Typically, the most network

ensemble approach is the k-fold cross-validation strategy that

trains multiple networks with different subsets of training

data and random initialization of the networks (Krogh and

Vedelsby, 1994; Li et al., 2018; Sundaresan et al., 2021).

Many works also use different network structures to realize

a network ensemble (Garipov et al., 2018; Herron et al.,

2020; Chen et al., 2021). There are also methods of the

implicit ensemble with dropout-like schemes (Srivastava et al.,

2014; Huang et al., 2016). DL has large parameters, which

are easy to converge to the local minimum, so it is also

suitable for network ensembles. Li et al. (2018) proposed
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FIGURE 3

(A) 2D U-Net Architecture. (B) Bayesian U-Net. The U-Net inserts the dropout layer before each max pooling layer and after each

up-convolution layer.

FIGURE 4

Visualization of the uncertainty maps and generated binary masks on two training slices. The green areas indicate ground truth.

an ensemble of three U-Net’s with different random weight

initializations to automatically detect WMH. Li et al. (2022)

present a pipeline using deep fully convolutional network

and ensemble models, combining U-Net, SE-Net, and multi-

scale features, to automatically segment WMHs and estimate

their volumes and locations. Sundaresan et al. (2021) achieves
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TABLE 2 Performance (Dice, %, higher is better) of di�erent methods on two datasets.

Task Method Base model 1 Base model 2 Base model 3 Base model 4 Base model 5 Ensemble

MICCAI dataset

Baseline ✗ ✗ ✗ ✗ ✗ 80.60

Dropout ✗ ✗ ✗ ✗ ✗ 80.92

Sub-sampling 79.85 79.82 79.95 79.71 79.50 81.21

Snapshot 80.63 80.39 80.40 80.65 80.34 81.02

AdaBoost 80.59 80.99 80.88 81.02 80.90 81.73

Bagging 80.34 79.76 79.69 80.51 80.71 81.93

SA-EN 80.82 81.33 81.18 80.56 81.27 82.58

Local dataset

Baseline ✗ ✗ ✗ ✗ ✗ 86.43

Dropout ✗ ✗ ✗ ✗ ✗ 86.61

Sub-sampling 86.43 86.36 86.37 86.33 86.25 86.88

Snapshot 86.19 86.29 86.37 86.47 86.38 86.72

AdaBoost 86.43 86.45 86.56 86.54 86.61 87.05

Bagging 85.82 85.63 85.75 85.72 85.74 86.80

SA-EN 86.51 86.43 86.57 86.44 86.33 87.51

Note that “Baseline” represents the original U-Net. “Base model k” represents different base models in EN, and “Ensemble” represents the trained base models that are fused.

ensemble by combining three different planes of brain

MR images.

3. Methods

Figure 2 shows the overall structure of SA-EN, which

consists of two parts: SA and EN. In the part of SA, Bayesian

CNN with the U-Net architecture, using Monte Carlo dropout

is used to estimate the uncertainty map of annotation. By

changing the threshold λ of the filter, different binary masks

can obtain for calculating the loss function. The generated

binary mask indicates which pixels are involved in the loss

function. In EN, different base models train with different

masks. Finally, the trained base models are fused to obtain

the final results. It extends traditional single-loss, single-output

network structures to multiple outputs by SA and EN. As shown

in Figure 2, SA-EN can get segmentation results and model

uncertainty simultaneously.

3.1. Supervision augementation

Supervision augementation: The segmentation model

based on multi-annotation is more robust in reducing the

effects of label noisy and ambiguity (Hu et al., 2019; Mirikharaji

et al., 2021). The advantage of multiple annotations is that

they can provide diverse supervision information during model

training (Yang and Xu, 2020; Mirikharaji et al., 2021). Instead

of directly acquiring multiple annotations, this paper proposes

a SA method to obtain diverse supervision information to

achieve similar effects of multiple annotations. With the

guidance of the estimated annotation uncertainty, supervision

augmentation filter out some pixels with unreliable annotations

and preserves only the reliable ones (low uncertainty) when

calculating the loss function. As shown in Figure 2, Bayesian

convolutional neural networks are used to estimate the

uncertainty map of annotation. The annotation of pixels with

high uncertainty usually has large ambiguity and is noisy

(Lakshminarayanan et al., 2017; Beluch et al., 2018). Then, we

can set an uncertainty threshold λ. Accordingly, one binary

mask can be made by comparing the uncertainty with λ.

For example, when the uncertainty of one pixel is greater

than λ, the mask corresponding to this pixel is set to 0

and will not be involved in the loss function. By setting

different thresholds λ, multiple binary masks can obtain on

a single annotation. Different supervision information can

obtain by calculating loss functions using different binary

masks. Last, different base models train by different masks in

EN. This paper uses Bayesian convolutional neural networks

with the U-Net architecture, using Monte Carlo dropout to

estimate the uncertainty map of annotation. The details are as

follows:

Uncertainty estimation: Gal and Ghahramani (2016)

developed a new theoretical framework casting dropout training

in DNNs as approximate Bayesian inference in deep Gaussian

processes. This paper follows Gal and Ghahramani (2016)

to estimate uncertainty, which used the dropout at the

inference phase. The details of Bayesian U-Net are shown in

Figure 3B. Bayesian U-Net allows the computation of epistemic

uncertainties by modeling a posterior distribution p(W|X,Y)

over the network’s weights W. Suppose we have a training data

set of images X = {xn} and their labels Y = {yn}, n = 1, 2, ...N.

In traditional deep learning, the predictive label ỹ of a testing
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FIGURE 5

Box plots of di�erent methods in terms of Dice, F1, Recall, and H95. The boxplots show the median and the 25 and 75% percentiles of the

metrics distribution.

image x̃ can be expressed as p(ỹ|x̃) = Softmax[f (x̃;W)]. The

Bayesian neural network is given by the marginalization of W

as:

p(ỹ = l|x̃,X,Y) =

∫

p(ỹ = l|x̃,W)p(W|X,Y)dW (1)

where ỹ is the output label of a pixel, l is the label class,

and p(W|X,Y) is the posterior distribution. However, finding

the exact posterior is intractable, but an approximation q(W)

can be obtained using variational inference, by minimizing

the Kullback-Leibler (KL) divergence KL[q(W̃)||p(W̃|X,Y)].

Gal and Ghahramani (2016) proved that approximation of

the posterior distribution is equivalent to the dropout masked

distribution q(Ŵ), where Ŵ = W · diag(z) and z ∼

Bernoulli(θ), and θ is the dropout ratio. Then, Equation (1) can

be approximated as

p(ỹ = c|x̃,X,Y) ≈

∫

p(ỹ = l|x̃, W̃)q(W̃)dW̃

≈
1

T

T
∑

t=1

Softmax[f (x̃, W̃)]

(2)

where T is the number of dropout samplings. Dropout is used

at test time to retrieve multiple Monte Carlo (MC) samples

by processing the input x̃, T times. This paper use probability

variation as uncertainty, given as follows.

Mean probability: For each pixel on a training sample,

a mean probability was calculated from the T pixel-level

probability maps.

Mean(ỹ = c|x̃,X,Y) ≈
1

T

T
∑

t=1

Softmax[f (x̃, W̃)] (3)

Mean probability variation: For each pixel on a training sample,

probability variation was defined as the SD of the T pixel-level

probability maps. If the model is certain, the measure should be

close to 0.

Var(ỹ = c|x̃,X,Y)

≈
1

T

T
∑

t=1

Softmax[f (x̃, W̃)]TSoftmax[f (x̃, W̃)]

− p(ỹ, x̃,X,Y)Tp(ỹ, x̃,X,Y)

(4)

As shown in Figure 4, the pixels with higher uncertainty are

mainly distributed at the lesion boundary and contain more

ambiguity and noise. U(x) represents the uncertainty map of

the training sample x and is obtained by normalizing the result

of Formula 4. The binary mask Mask(xm) is used to indicate

whether the current pixel is involved in the loss function. m

represents the index of the pixel in the current image.

Mask(xm) =

{

1, U(xm) ≤ λ

0, U(xm) > λ

(5)

λ is the uncertainty threshold. If the uncertainty of one pixel xm
is greater than λ,Mask(xm) is set to 0 and is not involved in the

loss function. Figure 4 shows some examples of the generated

binary masks.

3.2. Ensembles learning via supervision
augementation

In contrast to ordinary machine learning approaches,

which learn one hypothesis from training data, ensemble
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methods try to construct a set of hypotheses and combine

them to use (Hansen and Salamon, 1990; Zhou, 2021).

The generalization ability of EN can be much better than

that of a single learner. It is helpful to reduce the over-

fitting problems of a complex model on the training

data. This paper proposes to addresses the automated

white matter hyperintensity segmentation problem by an

ensemble approach to combine several models with the

same architecture. Different from the previous methods,

this work uses diverse supervision information to train

different base learners. The following experiments will show

the effectiveness of the ensemble model via qualitative

and quantitative analysis.

The intention to use ensemble models includes two aspects:

1) networks trained with different supervision information

can learn different attributes of the training data, thus the

ensemble of them could boost the segmentation results.

2) bias-variance trade-off (Bauer and Kohavi, 1999; Zhou

et al., 2002). Bias and variance are critical for determining

the behavior of prediction models and understanding

the occurrence of overfitting and underfitting. This work

aims to lower the model variance by averaging the model

output. Deep learning with millions of parameters and

overtrained on different boot-strapped/subsampled training

sets can qualify for unbiased and highly variant models.

The following experiments will quantitatively analyze that

the ensemble model served as the typical bias-variance

trade-off.

L = −
1

N

1

M

∑

n

∑

m

C
∑

c=1

Mask(xn,m)yn,mlog(p
c
n,m) (6)

As shown in Figure 2, K U-Net models with the same

architecture are trained with different supervision information.

Formula 6 is the loss function used in base model training.

It introduces a binary mask in the cross-entropy loss

function. N and M represent the number of samples

and the number of pixels, respectively. C represents the

number of categories. This training creates sufficient

diversity in the trained base models fk to allow the

averaged predictions of the ensemble to outperform the

individual models significantly. Each trained base model

will predict the test image and generate a probability map

pk. Then, the resulting K probability maps will be averaged
1
K

∑K
k=1 pk. Finally, the averaged map is transformed into

the segmentation result. Referring to Formula 4, we can

also estimate the model uncertainty according to these

probability maps pk. The details of the algorithm are given

in Algorithm 1.
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Intput: Data set D = (x1, y1), (x2, y2), ..., (xn, yn);

Loss function L;

Number of learning rounds K.

Process:

for k = 1,...,K:

Select one value from [0-1] as λ; % Generate

different binary mask Maskλ

fk = L(D,Maskλ) % Train a base model fk by

applying the different binary mask.

end.

Output: F(x) = argmax{ 1
K

∑K
k=1 pk}; % Segmentation

results

U(x) = Var(pk). % Uncertainty estimation

Algorithm 1. Ensembles learning via Supervision Augementation.

4. Experiments

4.1. Datasets

MICCAI dataset: The dataset is provided by the WMH

segmentation challenge in MICCAI 2017 (Kuijf et al., 2019). It

consists of 60 cases of brain MRI images (3D T1-weighted image

and 2D multi-slice FLAIR image) with manual annotations of

white matter hyperintensity (binary masks) from three different

institutes/scanners. The manual reference standard is defined on

the FLAIR image. So, a 2D multi-slice version of the T1 image

was generated by re-sampling the 3D T1-weighted image to

match with the FLAIR one. In this paper, all cases are randomly

assigned into 5-folds. Then, the 5-folds are randomly assigned

into a training set (4-fold) and a testing set (1-fold).

Local dataset: The local dataset is retrospectively collected

by the First Hospital of Jilin University, China. All the MRI data

were collected with the approval of the local ethics committee.

It consists of 300 cases of brain MRI images (3D T1-weighted

image and 3D FLAIR image) with manual annotations of

white matter hyperintensity (binary masks). The subjects were

between the ages of 33 and 87 (including 129 males and 171

females). For this study, the dataset was designated as a local

dataset for simplicity. All patients are randomly assigned into

5-folds. Then, the 5-folds are randomly assigned into a training

set (4-fold) and a testing set (1-fold).

4.2. Implementation details

This paper performed intra-subject coregistration between

Flair and T1 using FSL FLIRT affine transformation (Jenkinson

and Smith, 2001; Jenkinson et al., 2002). After coregistration,

global inhomogeneity corrections of T1 and Flair were

performed by advanced normalization tools (ANTs) (Tustison

et al., 2010). Gaussian normalization was employed to normalize

the voxel intensities of each subject with a mean zero and

a standard deviation of one. In this study, all the networks

train using Pytorch using NVIDIA TESLA V-100 (Pascal) GPUs

with 32 GB memory. This paper adopts the architecture of

a fully convolutional network 2D U-Net (Ronneberger et al.,

2015) initialized by a random Gaussian distribution, as shown

in the Appendix. We optimized all configurations with the

Adam optimizer with the learning rate 1e-4 and the weight

decay 1e-5 (Kingma and Ba, 2014). The batch size is set to

16. For the MICCAI dataset and local dataset, images and

annotation labels were randomly cropped to 128 × 192 patches

and 192 × 192 patches, respectively. At the inference stage, the

segmentation probabilitymaps and label maps were predicted by

the sliding windows technique with 50% overlaps. The standard

data augmentation techniques are used to avoid overfitting (Li

et al., 2018), including randomly flipping, randomly rotating,

and randomly mirroring. To ensure the experiment’s objectivity,

this paper strictly guarantees that the training parameters of

comparative experiment are consistent. Four metrics were used

to evaluate the performance of different methods based on the

segmentation results: (1) Dice, (2) a modifiedHausdorff distance

(95th percentile; H95), (3) recall: the ratio of true positives

from each method to the manually traced WMHs, and (4)

F1-score (F1).

4.3. Results

4.3.1. Comparison of segmentation accuracy

We compare the proposed method with prior ensemble

methods, including Dropout (Srivastava et al., 2014; Huang

et al., 2016), Sub-sampling (Krogh and Vedelsby, 1994),

Snapshot (Gao et al., 2017), AdaBoost (Schapire, 1990), and

Bagging (Breiman, 1996). Sub-sampling strategy trains multiple

base networks with different subsets of training data. In this

paper, we randomly divide the training set into five subsets to

train the base network. Table 2 shows the quantitative results

of different methods on the MICCAI dataset and local dataset

segmentation. For a fair comparison, the base models used in

various ensemble methods adopt the U-Net model with the

same structure. All ensemble methods use five base models. The

base model structure of U-Net is described in the Appendix,

as shown in Figure 3A. All ensemble methods use the same

fusion method. First, the resulting probability maps obtained

from different base models are averaged. Then, the averaged

map is transformed into the segmentation result. It can be seen

from the Table 2 that the EN method can effectively improve

the performance of baseline U-Net. SA-EN achieves a significant

dice gain over baseline U-Net for the MICCAI dataset (↑1.98)

and the local dataset (↑1.08) segmentation. SA-EN gets the

optimal accuracy compared with other state-of-the-art ensemble

methods (Bagging, AdaBoost, and Snapshot). Figure 5 also

shows the four evaluation metrics (Dice, F1, Recall, and H95)
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FIGURE 6

Detailed segmentation results of five base models and the ensemble. (A) T1 image; (B) Flair image; (C) Label; (D) Base model 1; (E) Base model 2;

(F) Base model 3; (G) Base model 4; (H) Base model 5; (I) Ensemble. The red area in columns Base model 1, Base model 2, Base model 3, Base

model 4, Base model 5, and Ensemble is the overlap between the segmentation result and label. The blue ones are the prediction errors. For

better visualization, the regions inside the smaller yellow bounding box are zoomed into the larger bounding box.

TABLE 4 Performance (Recall) on small and large lesions, respectively.

MICCAI dataset Local dataset

Large lesion Small lesion Large lesion Small lesion

Methods Recall p-value Recal p-value Recal p-value Recal p-value

Baseline 85.26 0.001 62.78 0.389 81.73 <0.001 52.56 0.223

SA-EN 86.83 ✗ 62.67 ✗ 82.01 ✗ 52.74 ✗

Statistical analysis (p-value) of SA-EN compared with baseline. Note that “Baseline” represents the U-Net.

of the different methods. Table 3 shows the quantitative results

of the four evaluation metrics (Dice, F1, Recall, and H95). The

p < 0.05 in Table 3 also proves that the difference is statistically

significant. Especially on the Local dataset, SA-EN has the best

performance on all four metrics. After checking the original

slices and segmentation results, the outliers (hard examples) in

Figure 5 contain relatively many small lesions and fuzzy slices.

Small lesions have always been a difficulty of segmentation, and

the corresponding segmentation accuracy is low. Fuzzy slices

will also lead to low segmentation accuracy.

Table 2 shows the accuracy of an ensemble is much

stronger than base learners. For example, the base models

of SA-EN on the local dataset have similar segmentation

accuracy. However, the performance after the ensemble has been

effectively improved. Although the segmentation accuracy of

these base models is similar, the base models are diverse due

to different supervision information. Figure 6 shows six cases

segmented by five base models and their ensemble. The five base

models generated significantly different results on the boundary.

The model ensemble avoided the worst segmentation result.
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FIGURE 7

Performance of SA-EN and baseline U-Net under di�erent training set sample sizes. When the training set sample size is small, the e�ect of

SA-EN is greater.

TABLE 5 Performance (Dice, %, higher is better) of SA-EN and baseline U-Net under di�erent training set sample size.

Task Size Baseline U-Net Base model 1 Base model 2 Base model 3 Base model 4 Base model 5 Ensemble

Local dataset

1/10 81.89 82.37 82.43 82.44 82.87 81.82 83.95

2/10 83.44 83.11 82.98 83.35 83.35 83.45 84.69

4/10 85.46 85.23 85.37 85.31 85.38 85.47 86.22

8/10 86.43 86.51 86.43 86.57 86.44 86.33 87.51

Furthermore, we compare SA-EN with prior ensemble

methods for white matter hyperintensity segmentation,

including RWI (Li et al., 2018) and Triplanar (Sundaresan

et al., 2021). RWI (Li et al., 2018) combines multiple U-

Nets with different random weight initializations. Triplanar

(Sundaresan et al., 2021) achieves ensemble by combining

three different planes of brain MR images. Table 3 shows that

SA-EN outperforms RWI and Triplanar on three metrics (Dice,

F1, and Recall) on MICCAI datasets. SA-EN outperforms

RWI and Triplanar on three metrics (Dice, F1, and H95) on

Local datasets. Compared with SA-EN, the base model of the

Triplanar ensemble method is limited to a maximum of 3. The

value of P < 0.05 in Table 3 also proves that the difference is

statistically significant.

4.3.2. Performance on small and large lesions

We also analyzed the performance of SA-EN on large and

small lesions, respectively. For each subject, the recall will be

computed separately for individual lesions smaller than or equal

to the median lesion size and for lesions larger than the median

lesion size. The median size of lesions for Local and MICCAI

datasets was 96 and 133, respectively. Table 4 shows that SA-EN

significantly improves the segmentation accuracy of large lesions

on the two datasets but has little effect on small lesions.We think

that the differences between different masks generated by SA

are mainly pixels with high uncertainty. As shown in Figure 1,

a large number of pixels with high uncertainty are distributed

on the edges of large lesions. Therefore, this may lead to the

improvement of our proposed method for large lesions. The P
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TABLE 6 Performance (Dice, %, higher is better) of SA-EN on three di�erent scanners in the MICCAI dataset, respectively.

Scanners Method Base model 1 Base model 2 Base model 3 Base model 4 Base model 5 Ensemble p-value

Amsterdam
U-Net ✗ ✗ ✗ ✗ ✗ 76.16 0.001

SA-EN 77.03 76.52 76.92 77.16 76.74 79.97 ✗

Singapore
U-Net ✗ ✗ ✗ ✗ ✗ 80.07 0.033

SA-EN 79.96 79.40 80.12 79.04 79.42 82.01 ✗

Utrecht
U-Net ✗ ✗ ✗ ✗ ✗ 75.46 0.019

SA-EN 75.53 75.08 75.28 75.55 74.99 78.07 ✗

Note that “Baseline” represents the original U-Net. “Base model k” represents different base models in EN, and “Ensemble” represents the trained base models are fused. Statistical analysis

(p-value) of SA-EN compared with baseline U-Net.

FIGURE 8

E�ect of the ensemble size. (A,B) indicate the average and SD of the dice on testing set with respect to ensemble size, respectively. The

horizontal axis represents the number of base models in the ensemble.

< 0.05 in Table 4 also proves that the difference is statistically

significant.

4.3.3. E�ect of sample size on model
performance

It can be seen from Table 2 that the improvement of SA-EN

on the MICCAI dataset is better than the local dataset. The total

number of samples in the local dataset is significantly larger than

MICCAI dataset. To this end, we analyzed the performance of

SA-EN under different training set sample sizes based on the

local dataset. First, the testing set was fixed. Then, the sample

size of the training was set to 30, 60, 120, and 240, respectively.

As shown in Figure 7, the performance of the baseline U-Net

and SA-EN both improve with increasing training set sample

size. The training set sample size has a significant impact on

the model accuracy. Furthermore, the effect of SA-EN gradually

reduces with the increase in training set sample size. This

result indicates that SA-EN is more effective on small data sets.

The detailed results of base models and ensemble are shown

in Table 5.

The MICCAI dataset includes 60 subjects acquired

by three different scanners in three different hospitals

(Utrecht, Singapore and Amsterdam, 20 subjects each).

To further verify the generalization of SA-EN under fewer

subjects, we experiment on three different individual

scanners on the MICCAI dataset, respectively. For three

different scanners, 20 samples are randomly assigned to the

training set (15 samples) and the test set (5 samples). As

seen in Table 6, SA-EN achieves a significant Dice gain over

the baseline U-Net for all the three different scanners of

Amsterdam (↑3.81), Singapore (↑1.94), and Utrecht (↑2.61)

segmentation. This result indicates that SA-EN is useful for

small datasets. The p <0.05 in Table 6 prove that the results are

statistically significant.

4.3.4. E�ect of the ensemble size

Ensemble learning aims at aggregating different base models

to boost the segmentation performance. The optimal size

of an ensemble, i.e., how many models in the ensemble

are needed, remains an open issue and, as in many related

EN tasks, a task specific parameter that needs to be
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FIGURE 9

Visualization of the predictive uncertainty computed by Bayesian U-Net and SA-EN. From top row to bottom row: ground truth, the uncertainty

computed by Bayesian U-Net and the uncertainty computed by SA-EN. The green areas indicate ground truth. The magnitude of uncertainty

corresponds to the color bar in the lower right corner of the plot.

optimized. To this end, we set the uncertainty threshold

λ from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and train the

corresponding base model respectively. For each model with

different sizes of ensembles, the training process was repeated

five times.

Figure 8A shows the curves of segmentation performance

on dice metrics w.r.t different ensemble sizes. It could

be seen that (1) the ensemble with multiple base models

outperformed the ensemble with only one base model. (2)

when ensemble sizes increased, performance tended to saturate.

Figure 8B shows SD of segmentation performance between five

repeated trained ensemble models with respect to different

ensemble sizes. The variation of segmentation performance was

reduced on dice metrics when the ensemble size increased.

It demonstrated that the ensemble model not only boosts

the segmentation performance but also guarantees a robust

segmentation result.

4.3.5. Uncertainty estimation

Supervision augmentation can obtain diverse supervision

information by estimating the aleatoric uncertainty of

annotation. Therefore, SA reflects aleatoric uncertainty

to some extent. Then, diverse supervision information

is used to train different base models in EN. Ensembles

can also be used to estimate epistemic model uncertainty

(Lakshminarayanan et al., 2017). Figure 2 shows that SA-EN can

get segmentation results and epistemic uncertainty at the same

time. Figure 9 shows the epistemic uncertainty of the Monte

Carlo dropout method and SA-EN. It can be seen that SA-EN

can capture a wider range of prediction uncertainty. The Monte

Carlo dropout method can only capture small uncertainty

regions. SA-EN uses diverse supervision information to train

the base models. This results in a diversity of underlying

models after convergence and thus can capture a wide range

of uncertainties.
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5. Discussion

This paper proposes a SA method and combines it with

EN to reduce the impact of label noise and ambiguity. SA

can obtain diverse supervision information, which is suitable

for common single-label scenarios without adding additional

data labeling burden. We verify that SA-EN outperforms

other state-of-the-art ensemble methods on two white matter

hyperintensity segmentation datasets. SA-EN is more effective

on small datasets, which is more suitable for medical image

segmentation with few annotations. Furthermore, SA-EN can

capture two types of uncertainty, aleatoric uncertainty modeled

in SA and epistemic uncertainty modeled in EN.

Typically, an ensemble is constructed in two steps. First, a

number of base learners are produced. Then, the base learners

are combined to use. Generally, to get a good ensemble, the

base learners should be as more accurate as possible, and as

more diverse as possible. As shown in Figure 4, the difference

between these masks is mainly pixels with high uncertainty.

These high-uncertainty pixels are mainly distributed at the edges

of lesions. The loss function calculated based on these different

masks is also diverse. Thus, we can train multiple diversity base

networks through these different masks. As shown in Table 2,

the segmentation accuracy of these base models is similar.

However, the accuracy can be significantly improved after fusing

these base models. This also proves that the SA method can

provide diverse supervised information. It should be noted

that EN based on supervision augmentation is different from

the existing ensemble methods based on random initialization,

multiple different structures, and sample weighting. We do

this by analyzing the annotation quality, which is a new and

more efficient implementation. The experiments on two white

matter hyperintensity segmentation datasets also show that SA-

EN outperforms other state-of-the-art ensemble methods. SA-

EN is trained independently and can be easily appended to any

existing segmentation tasks and researchers could easily build

themselves’ segmentation models.

The λ is the uncertainty threshold. As shown in Figure 4,

the calculation of the loss function includes more uncertain

pixels when λ is set higher. When λ is set low, a large number

of uncertain pixels do not participate in the calculation of

the loss function. In this paper, after the uncertainty map is

normalized, λ is randomly selected from {0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0}. Then, different base models are trained

based on the binary masks generated by different λ. Generally,

to get a good ensemble, the base learners should be as more

accurate as possible, and as more diverse as possible. Table 2

shows that λ has little impact on the performance of the base

model. The improved effect after fusion shows that these base

models are diverse. SA actually discards some pixels with high

uncertainty through λ. Thus, SA is not equivalent to providing

under-segmented or over-segmented manual segmentation.

The ensemble methods has K times more parameters than

a single network. For memory-constrained applications, the

ensemble needs to be distilled into a simpler model. In this

paper, the base models used in various ensemble methods

adopt the U-Net with the same structure. The training time

of a single base model on the MICCAI and Local datasets

is about 3 and 4 h, respectively. Ensemble methods lead to

increased complexity due to multiple base models. But when

training base models through SA, they can be trained in parallel.

Similarly, they can also be parallel in prediction. However, the

complexity of the model parameters is still high. In future

work, it would be also interesting to investigate meta-learning

and dynamic convolutional networks to solve this problem.

These two methods enable a single network to learn multiple

objectives simultaneously.

We also analyzed the performance of SA-EN on large and

small lesions, respectively. Table 4 shows two methods perform

worse in recalling small lesions compared to large lesions. SA-EN

significantly improves the segmentation accuracy of large lesions

on the two datasets but has little effect on small lesions.We think

that the differences between different masks generated by SA

are mainly pixels with high uncertainty. As shown in Figure 1, a

large number of pixels with high uncertainty are also distributed

on the edges of large lesions. Therefore, this may lead to the

improvement of our proposed method for large lesions. In the

future, we will try to improve themodel’s ability to segment small

lesions, so that the model can significantly improve both large

and small lesions.
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Appendix

The U-Net used in this paper is shown in Figure 3A. For

each patient, the FLAIR and T1 modalities are fed into the

U-Net jointly as a two-channel input. It consists of a down-

convolutional part that shrinks the spatial dimensions (left

side), and up-convolutional part that expands the score maps

(right side). The skip connections between down-convolutional

and up-convolutional were employed. Here, two convolutional

layers are repeatedly employed, each followed by a rectified

linear unit (ReLU) and a 2×2 max pooling operation with stride

2 for downsampling. At the final layer, a 1×1 convolution is used

to map vector to two classes. Convolutional layers with 3 × 3

kernel size are heavily used in this paper.

In this paper, the uncertainty estimates follows that of Gal

and Ghahramani (2016) which used the dropout at the inference

phase. This allowed approximation of the posterior distribution

based on the probabilistic softmax output obtained from the

stochastic dropout sampling. As in the paper (Hiasa et al.,

2019a), the U-Net model was extended as Bayesian U-Net by

inserting the dropout layer before each max pooling layer and

after each up-convolution layer, as shown in Figure 3B. We call

the U-Net extended by MC dropout “Bayesian U-Net.” The

dropout layer here is the same as the commonly used regularized

dropout (Srivastava et al., 2014). In this paper, the dropout rate

of p= 0.3 was used. The dropout layer allows to simultaneously

optimize the weights to prevent overfitting while modeling the

weights distribution. Dropout can be then used at test time to

retrievemultipleMC samples by processing the inputX,T times.

The resulting outputs can then be averaged to recover a single

estimate of the segmentation, and the SD between samples can

be taken as an estimate of the uncertainty.
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