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Complementary and redundant relationships inherently exist between multi-modal

medical images captured from the same brain. Fusion processes conducted on

intermingled representations can cause information distortion and the loss of

discriminative modality information. To fully exploit the interdependency between source

images for better feature representation and improve the fusion accuracy, we present

the multi-modal brain medical image fusion method in a disentangled pipeline under

the deep learning framework. A three-branch auto-encoder with two complementary

branches and a redundant branch is designed to extract the exclusive modality

features and common structure features from input images. Especially, to promote the

disentanglement of complement and redundancy, a complementary group lasso penalty

is proposed to constrain the extracted feature maps. Then, based on the disentangled

representations, different fusion strategies are adopted for complementary features and

redundant features, respectively. The experiments demonstrate the superior performance

of the proposed fusion method in terms of structure preservation, visual quality, and

running efficiency.

Keywords: deep learning, image fusion, medical brain image, disentangled representation, group lasso penalty

1. INTRODUCTION

Medical image fusion is an important branch of information fusion tasks. Typical types of
medical images include Magnetic Resonance Imaging (MRI),Computed Tomography (CT), and
Positron Emission Tomography (PET). MRI images are of high resolution and provide precise
information about soft tissue, CT images provide dense structures like bones, and PET images
assess the functions of organs and tissue. The objective of medical image fusion is to combine
the complementary and redundant features from multi-modal medical images into one composite
image with all the significant information, thus facilitating the process of clinical diagnosis. Image
fusion methods can be generally divided into traditional ones and deep learning-based ones.

Traditional multi-scale transform (MST) based image fusion methods are popular in the
community as the MST tools are able to simulate the human visual system to analyze the image,
as well as to extract geometry structure and details of the image. Commonly adopted MST tools
include discrete wavelet transform(DWT) (Ben et al., 2005), shift-invariant shearlet transform (Luo
et al., 2016), and contourlet transform (Yang et al., 2010). Fused images with good quality can be
obtained through the appropriate manual design of activity level measurements and fusion rules
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on the extracted features. However, to get better fusion
performance, the manual design of fusion rules tends to
become more and more complex, which results in higher
computation costs.

Compared to the traditional methods, deep learning-based
methods have been demonstrated with the great ability to
automatically extract hierarchical and representative features of
different abstraction levels. The typical deep learning model used
for image fusion is Convolutional Neural Networks (CNN). Liu
et al. (2017) applied CNN in image fusion, where the CNN
predicts the importance of each pixel of source images. With
the output decision map, source images are combined to get the
fused image. Li et al. (2018) adopted the VGGNet pre-trained on
the ImageNet dataset to extract the features from high frequency
coefficients, which can effectively reflect the regions with
abundant information. While these methods partially depend on
the CNN and extra manual processes are required. To realize
the end-to-end image fusion process, some unsupervised CNN-
basedmethods andGenerative adversarial Network (GAN) based
methods are proposed subsequently (Huang et al., 2020; Ma
et al., 2020; Xu and Ma, 2021; Guo et al., 2022; Xu et al.,
2022). As an example for each category, Xu and Ma (2021)
adopted both subjectively defined features and deep features
to measure the activity level of input images, then adaptive
weights can be assigned to loss functions to adjust the similarity
between the fused image and each source image; Ma et al.
(2020) proposed the DDcGAN which establishes the adversarial
relationships between a generator and two discriminators to
introduce abundant information from the source images of
both modalities. Another popular pipeline for image fusion
is to fuse the deep features extracted from an auto-encoder
which has great feature extraction and image reconstruction
abilities (Li and Wu, 2018; Li et al., 2020; Jian et al., 2021).
Even though state-of-the-art performance has been achieved,
the above methods leverage the same feature representation
for different modalities to design the fusion rule or directly
fuse the multi-modal features in an intermingled way, thus
they cannot fully exploit the prior knowledge of complementary
and redundant contained in multi-modal images. Redundant
information is the common type of features such as structure
and shape, while complementary information represents the
most unique characteristics belonging to one specific modality,
which is hierarchical and hard to represent by hand-crafted
features. Thereby, fusion operations conducted on intermingled
representations can cause the degradation of discriminative
features and the introduction of distorted information.

The criteria for learning good representations discussed in
Bengio et al. (2013) show that one of the important points is
to disentangle the variable features for the explanatory factors.
If exclusive representations can be obtained for multi-modal
images to separate the complementary and redundant features,
then the more interpretable representations can improve the
accuracy of the fusion decision. Recently, some work has
researched the disentanglement representations for image fusion.
Xu et al. (2021) disentangled the features of infrared and
visible images into attribute and scene modality, for each the
weighted average fusion rule is adopted. Luo et al. (2021) believed

that all kinds of paired source images share the private and
common features, and proposed a general framework for image
fusion that takes advantage of contrastive learning for better
disentanglement. In the above two studies, the attribute and
private features are exactly the complementary ones, while the
scene and common features are the redundant ones. Both of
them have alleviated the pressure of designing appropriate fusion
strategies and achieved good fusion performance. However, there
still exist some problems: (1) In Xu et al. (2021), the attribute
modality is compressed into a vector, resulting in the loss of
spatial information and lack of interpretability. Thereby, the
weighted-average fusion rule on the attribute representation
leads to blur results and information distortion. (2) Xu et al.
(2021) force the infrared and visible attribute distribution
close to a prior Gaussian distribution, while Luo et al. (2021)
minimize the cosine similarity among private and common
representations. Both of them lack the consideration of the
importance of features in the local position of both source images,
thus weakening the ability of disentangled representations to
present the most meaningful information.

In order to achieve a more robust and controllable fusion
decision, we aim to incorporate the explicit constraints on
the deep feature maps extracted by the encoder. In the field
of machine learning, feature selection is an important stage
to reduce the data dimension and determine the relevant
features for a specific learning task. Recently, sparsity-inducing
regularization techniques are widely adopted in feature selection
methods to filter out the irrelevant features from multiple
heterogeneous feature descriptors (Zhao et al., 2015). Li et al.
(2019) proposed an adaptive sparse group lasso penalty on the
clustered genes to select the biologically significant genes. To
control the attention response and restrain the noisy information,
Wang and Guo (2021) applied sparse regularization on the
computed attention maps. Considering the redundancy may
exist among features, Wang et al. (2021) proposed using Group
lasso to prevent the selection of redundant features which may
have high correlations with other features. Inspired by these
studies, we think the learning process of complementary and
redundant representations can also be realized through the
regularization techniques on the extracted feature maps to filter
out the complementary features from the redundant ones.

Based on the above considerations, we propose a disentangled
representation based brain image fusion method via group lasso
penalty. A three-branch auto-encoder with two complementary
branches and one redundant branch is designed to deal with
the unique modality characteristics and common structure
information inherent in the multi-modal source images. In
the training stage, the auto-encoder should be able to
reconstruct both source images conditioned on the extracted
complementary features and redundant features. For effective
disentangled representation learning, a complementary group
lasso penalty is proposed to restrain the redundant information
in the complementary features, promoting the complementary
encoders to learn the most discriminative information. In
the fusion stage, different fusion strategies are adopted for
complementary and redundant features respectively. Then, the
fused image can be obtained by reconstructing from the fused
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features. To sum up, the contributions of the proposed method
are as follows:

• A disentangled representation based brain image fusion
method is proposed to fully exploit the redundancy
and complement prior relationships among multi-modal
source images.

• A complementary group lasso penalty is designed to promote
the disentanglement ability and ensure the complementary
feature maps of significant modality information.

• Comparison experiments conducted on MRI-CT and MRI-
PET fusion tasks with state-of-the-art deep learning-based
methods demonstrate the superior fusion performance of the
proposed method quantitatively and qualitatively.

The remaining part of the article is organized as follows. Section 2
briefly introduces the definition of group lasso penalty. Section 3
describes the proposed method in detail. The experiment results
are shown in Section 4. The conclusion and an outlook of future
study is presented in Section 5. The implementation code of the
proposed model will be available on our project page.

2. GROUP LASSO PENALTY

In 2006, Yuan (2006) proposed the group lasso penalty in a linear
model, which aims to select the grouped explanatory variables for
the accurate prediction of a regression problem. Given a response
variable y ∈ RN , a feature matrix X ∈ RN×P, and a coefficient
vector β ∈ RP, where P is the number of feature variables and
N is the number of observation values, the objective of the group
lasso estimation model is defined as follows:

argmin
β∈Rp

1

2
‖y− Xβ‖22 + λ

L∑

l=1

√
pl‖βl‖2. (1)

Here, the first term is the loss function and the second term is the
group lasso penalty. P feature variables are further divided into L
sub groups, each group contains pl variables, βl is the coefficient
sub vector corresponding to the lth group (l = 1, 2, ..., L), λ ≥ 0 is
a tuning parameter, ‖ · ‖2 is the L2 norm. Group lasso penalty is
able to exploit the group structure of variables and promote the
selection of the most relevant feature variables, thus simplifying
a model, avoiding overfitting, and enhancing the interpretability
of a model.According to the context and requirements of a
specific task, the loss function, grouping situation, and λ can be
adjusted. Inspired by the effectiveness of the group lasso penalty
in selecting significant features, we consider the feature vectors
of different pixel positions in a feature map can be regarded
as a feature waiting to be penalized, and a task like an image
reconstruction can be regarded as the loss function in Equation 1.
The difference is that the penalty in Equation 1 is imposed on the
coefficients, while in this paper, the penalty is directly imposed
on the extracted feature maps to filter out the redundant features
from the complementary ones, thus promoting the accuracy of
disentangled representations.

3. FRAMES AND METHODS

In this section, a detailed description of the disentangled
representation based image fusion framework is given first. Then,
the design of the loss functions and the adopted fusion strategies
are described, respectively.

3.1. Overall Framework
The aim of the proposed method is to separate the
complementary features from the redundant features for
each modality, thus improving the interpretability of feature
representation and the fusion accuracy. The overall framework
of the proposed method is illustrated in Figure 1, which includes
a training stage (Figure 1A) and a fusion stage (Figure 1B). The
training stage is to train an auto-encoder to learn disentangled
representation and image reconstruction ability, while the fusion
stage is to get the fused image through fusing the disentangled
representations. We denote that the input source images from
two different modalities as I1 and I2, respectively. Since the
complementary features contain the discriminative modality
information and the redundant features contain the common
structure information, two complementary encoders EnC1 and
EnC2 is used to extract the unique information, respectively,
and one shared redundant encoder EnR is designed to map the
structure information into a common space.

In the training stage, I1 and I2 are encoded by the
three encoders to get complementary and redundant features,
respectively as follows:

{C∗,R∗} = {EnC∗(I∗),EnR(I∗)}, ∗ ∈ {1, 2}, (2)

where C∗ and R∗ are the complementary and redundant features
of I∗. Then, the input images should be able to be reconstructed
from the combined features as follows:

Ĩ∗ = DeS(C∗ + R∗), ∗ ∈ {1, 2}, (3)

where Ĩ∗ is the reconstructed version of I∗. Besides, as the
complementary features are expected to represent the most
unique modality information and determine the appearance of
an image, the output image should be as similar as possible to the
input source image which provides the complementary features.
The process is described as follows:

Ĩ12 = DeS(C1 + R2),

Ĩ21 = DeS(C2 + R1),
(4)

where Ĩ12 is the reconstructed image I1 conditioned on C1 and
R2, while Ĩ21 has a similar definition. To achieve good image
reconstruction ability, Mean Square Error (MSE) and Structural
Similarity (SSIM) (Wang et al., 2004) are adopted as the image
reconstruction loss. Only using the shared-weight strategy in EnR
cannot guarantee the disentanglement, we adopted two kinds of
constraints to improve the disentangled representation learning:
a complementary group lasso penalty term and a redundant
consistency constraint term, which are introduced in Section 3.2.
The former is adopted to restrain the growth of redundant
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FIGURE 1 | The overview of the proposed method: (A) the training stage; (B) the fusion stage. The encoder-decoder architecture contains two complementary

encoders EnC1 and EnC2, one redundant encoder EnR and one shared decoder DeS. The extracted complementary and redundant features of the two source images

are denoted as C∗ and R∗(∗ ∈ 1, 2), and each of them is of size H×W × V.

information in the extracted complementary feature maps, while
the latter is designed based on the assumption that the multi-
modal images captured in the same scene should share as much
structure information as possible.

In the fusion stage, the complementary and redundant
features are extracted from source images firstly as in the training
stage, while before combining them, different fusion strategies
(Section 3.3) are defined for them. After obtaining the fused
complementary and redundant feature (Cf and Rf ), they are
added together and input to DeS to get the final fused image If
as follow:

Ĩf = DeS(Cf + Rf ). (5)

The input images are assumed as gray scale images. If the
input is an RGB image, it is first converted into YCbCr color
space, and the Y(luminance) component is used for fusion. After
getting the gray scale fused image, it is combined with Cb and
Cr(chrominance) components and inversely converted into the
RGB fused image.

As for the network architecture, in each encoder, there are
three 3 × 3 convolutional blocks with ReLU activation, except
for the first one, each followed by a Batch Normalization layer.
The weights of the first three layers in VGG-19 (Simonyan
and Zisserman, 2015) are used to initialize the complementary
and redundant encoders, as VGG-19 is a well-trained feature
extractor that can relieve the training pressure. The architecture
of the decoder is symmetric as the encoder, while in the output
layer, Sigmoid is adopted as the activation function to constrain

the value between [0,1]. Detailed information about the network
is shown in Table 1.

3.2. Loss Function
1) Complementary group lasso penalty term: The extracted
feature maps are considered with the size of H ×W × V , where
H, W, and V correspond to the height, width, and channel
dimensions, respectively. Each 1× 1×V vector in position (x, y)
is treated as a feature waiting to be penalized. We denote the
features of I1 and I2 extracted by the complementary encoder in
position (x, y) as C1(x, y) and C2(x, y). To determine the type of a
feature, the similarity between C1(x, y) and C2(x, y) is computed
by cosine similarity as follows:

r(x, y) = C1(x, y) · C2(x, y)

‖C1(x, y)‖2‖C2(x, y)‖2
, (6)

The high similarity means the information is redundant, on the
contrary, complementary. The importance φ∗ of a feature is
measured based on the L1 norm and average operator in a local
block around C∗(x, y) as follow:

φ∗(x, y) =
∑r

i=−r

∑r
j=−r Ĉ∗(x+ i, y+ j)

(2r + 1)2
, (7)

where Ĉ∗(x, y) is the L1 norm of C∗(x, y) computed as follows:

Ĉ∗(x, y) = ‖C∗(x, y)‖1. (8)
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TABLE 1 | The architecture of encoder and decoder.

Layer Size Stride
Channel Channel

Activation Normalization
(input) (output)

Encoder

Conv1 3 x 3 1 1 64 ReLU /

Conv2 3 x 3 1 64 64 ReLU Batch

Conv3 3 x 3 1 64 128 ReLU Batch

Decoder

Conv1 3 x 3 1 128 64 ReLU Batch

Conv2 3 x 3 1 64 64 ReLU Batch

Conv3 3 x 3 1 64 1 Sigmoid /

Conv means the convolutional block with activation and normalization layer.

Then, a complementary Group lasso penalty Lc is proposed to
restrain the redundancy and promote complement in C1 and C2:

Lc =
W×H∑

i=1

(ω1‖C1(x, y)‖2 + ω2‖C2(x, y)‖2), (9)

where ω1 and ω2 are defined in the form of a Sigmoid function
as follows:

ω1 =
1

1+ exp(k(φ2(x, y)− φ1(x, y)))
,

ω2 = 1− ω1.

(10)

In Equation (10), k is the parameter that controls the shape of the
function and is defined based on the similarity:

k = 1

r2(x, y)
. (11)

The smaller the similarity between C1(x, y) and C2(x, y) is,
the larger the k is. Then, the shape of the sigmoid function
becomes steeper.

Figure 2 shows the function of ω1 in Equation 10. The
smaller the similarity is, the closer the weight assignment is to
choose-max, on the contrary, close to average-weighting. Then,
the weight value is further determined by the φ∗(x, y). When
Equation 9 is going to be minimized in an iteration if φ1(x, y)
is much larger than φ2(x, y), which means C1(x, y) is much
more important than C2(x, y). At this time, φ1(x, y) − φ2(x, y)
is a positive value, and ω1 tends to become zero. Then, less
penalty is imposed on C1(x, y), while C2(x, y) is greatly penalized
and filtered out from the complementary feature maps. On the
contrary, C1(x, y) is greatly penalized. If C1(x, y) is similar to
C2(x, y), it means they share a lot of redundant information,
and φ1(x, y) − φ2(x, y) becomes close to zero. Thereby both of
them are equally penalized and gradually pushed intoR1(x, y) and
R2(x, y). Finally, the complementary feature maps should contain
the most significant modality characteristics.

2) Redundant consistency constraint term: As the multi-
modal medical images are captured from the same brain, they
must contain redundant information like structure and shape. It
is expected that both R1 and R2 maintain a similar information.
However, the multi-modal medical images provide an unequal

amount of information, and they show their own biases toward
some specific parts of the brain. Moreover, a shared EnR is
adopted to extract the redundant feature, thus R1 and R2 cannot
be the same. Compared to constraining the similarity of the
extracted features, the redundant consistency constraint term Lr
is conducted on the reconstructed results of R1 and R2 as follows:

Lr = ‖DeS(R1)− DeS(R2)‖1, (12)

3) Image reconstruction loss:The image reconstruction loss is to
enforce the output images to have high reconstructed precision
with the input images, thus ensuring that the auto-encoder has
both good feature extraction and image reconstruction ability.
The image reconstruction loss Lrec is defined based on pixel loss
LMSE and SSIM (Wang et al., 2004) LSSIM is as follows:

LMSE = ‖I1 − Ĩ1‖2 + ‖I1 − Ĩ12‖2 + ‖I2 − Ĩ2‖2 + ‖I2 − Ĩ21‖2,
LSSIM = (1− SSIM(I1, Ĩ1))+ (1− SSIM(I1, Ĩ12 ))

+ (1− SSIM(I2, Ĩ2))+ (1− SSIM(I2, Ĩ21 )),

Lrec = λSSIMLSSIM + LMSE,

(13)

where λSSIM is the parameter to balance the pixel loss and
SSIM loss.

Thus, the overall loss is defined as follows:

L = Lrec + λrLr + λcLc, (14)

where λr and λc are the parameters to control the tradeoff of Lr
and Lc.

3.3. Fusion Strategy
The complementary features are exclusive for each modality,
here, three kinds of fusion strategies are considered, including the
addition strategy, max-selection strategy, and L1-norm strategy.
Their impact on the results is compared in Section 4. The
addition strategy is formulated as follows:

Cf (x, y) = C1(x, y)+ C2(x, y), (15)

The max-selection strategy preserves the features of higher
magnitude and is formulated as follows:

Cf (x, y) =
{
C1(x, y), C1(x, y) ≥ C2(x, y),

C2(x, y), C2(x, y) < C1(x, y).
(16)
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FIGURE 2 | The shape of the function of ω1.

The L1-norm strategy is designed based on the importance of
each pixel position to adjust the information preservation degree
of each source image. The L1-norm of complementary feature
maps is computed as Equation 8 and is treated as the activity level
measurement A∗(x, y), ∗ ∈ {1, 2}, then, the L1-norm strategy is
formulated as follows:

Cf (x, y) = µ1 × C1(x, y)+ µ2 × C2(x, y), (17)

where

µ1 =
A1(x, y)

A1(x, y)+ A2(x, y)
,

µ2 = 1− µ2.

(18)

The redundant information is mapped to the same space,
thereby, a simple average strategy is adopted as follows:

Rf =
R1(x, y)+ R2(x, y)

2
. (19)

The final fused image is reconstructed by decoding the added Cf

and Rf .

4. EXPERIMENTS AND ANALYSES

In this section, we compare the proposed method with several
typical deep learning-based image fusion methods on MRI-CT

and MRI-PET image fusion tasks. First, the ablation study is
conducted on the proposed complementary group lasso penalty
term to verify its effectiveness. Then, the comparative study is
conducted qualitatively and quantitatively. Finally, the time cost
comparison of different methods is also conducted.

4.1. Experimental Settings
The training and testing dataset is built on the Harvard medical
dataset (Summers, 2003), providing a brain image with a size
256×256. The slices with effective information are selected and
there are a total of 180 pairs of MRI-CT images and 260
pairs of MRI-PET images. Considering that the number of the
image is limited, when in the training phase, 10-fold verification
experiments are performed and all the input images are randomly
cropped into image patches of size 120×120, as well as randomly
flipped and rotated. The setting of parameters are as follows: the
batchsize is 8, the learning rate is 1e-4, and the size of a local block
to measure the importance of a feature is 3, thus r is defined as
1. The other parameters like λSSIM , λr , and λc are set as 1,000,
10, and 10. The proposed method was implemented in Pytorch,
and all experiments are conducted on a platform with Intel Core
i7-6850K CPU and GeForce GTX 1080Ti GPU.

In the testing phase, the proposed method is compared with
6 deep learning-based methods, including CNN based methods
EMFusion (Xu and Ma, 2021), U2Fusion (Xu et al., 2022), GAN
based method DDcGAN (Ma et al., 2020), auto-encoder based
method IFSR (Luo et al., 2021), DRF (Xu et al., 2021), and
SEDR (Jian et al., 2021). All the code of the comparison methods
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are publicly available and the parameter settings are set according
to the reference paper. Besides, the proposed method takes three
different fusion strategies for the complementary features and
they are also compared, which are denoted as proposed-add,
proposed-max, and proposed-l1, respectively. For the proposed
method, the average results of the quantitative evaluations and
their corresponding variances of the 10 groups of the multi-
fold verification experiments are presented in the table. The
other comparison methods are also tested on the 10 groups
respectively and the average values and variances of the 10 groups
are computed.

4.2. Objective Metrics
Eleven objective metrics are adopted to conduct a comprehensive
evaluation, including standard deviation (SD), spatial frequency
(SF) (Ma et al., 2019), normalized mutual information
(QMI) (Hossny et al., 2008), nonlinear correlation information
entropy (QNCIE) (Qiang et al., 2005), gradient-based fusion
performance (QG) (Xydeas and Pv, 2000), a multiscale scheme
based metric (QM) (Wang and Liu, 2008), Piella’s Metric
(QS) (Piella and Heijmans, 2003), multi-scale structural
similarity (MSSSIM) (Ma et al., 2015),the sum of the correlations
of differences (SCD) (Aslantas and Bendes, 2015), Chen-Blum
Metric (QCB) (Chen and Blum, 2009), and visual information
fidelity based method (VIFF) (Han et al., 2013). Among them,
SD reveals the distribution of gray levels and reflects the contrast
of an image. SF measures the vertical and horizontal gradients,
reflecting the changes in texture. QMI measures the amount
of information transferred from source images to the fused
images. QNCIE reveals the nonlinear correlation between source
images and fused images. QG measures the amount of edge
information transferred from source images to the fused images,
while QM measures the amount of multi-scale edges. Both QS

and MSSSIM reflect the structural similarity between source
images and fused image, as well as quantifying the perceived
distortion, while the former is edge-dependent and the latter
is conducted based on multi-scale decomposition. SCD reveals
how the complementary information is obtained by the fused
image from source images. QCB and VIFF are human perception
inspired metrics. QCB measures the similarity between source
images and fused images based on the characteristics of a human
visual system such as contrast and masking phenomenon, while
VIFF measures the effective visual information contained in the
fused image based on the natural scene statistics theory. A larger
value of all the mentioned metrics corresponds to a good fusion
performance.

4.3. Ablation Study
In this section, we verify the effectiveness of the complementary
group lasso penalty term Lc. The proposed method trained
without Lc is denoted as the proposed method without Lc,
and the fusion evaluation is conducted based on the addition
strategy. In Figure 3, the extracted feature maps of one MRI-
CT sample and one MRI-PET sample is presented. It can
be seen that the proposed method without Lc provides the
redundant and complementary features (Figures 3B,C) quite
similar to the source images, but with different pixel intensity,

which means a relatively weak disentanglement ability. On the
contrary, Lc is able to promote the disentanglement and extract
the complementary features with sharper details (Figure 3E).
From the fused results in Figures 3F–I, the edge and texture
of (Figures 3F,H) are a bit blur, and (Figure 3H) loses a
lot of MRI information. We also present the corresponding
quantitative evaluation in Tables 2, 3. Lc is able to improve
the performance on almost all the metrics. In the MRI-
PET task, proposed without Lc achieves the best QCB, which
reveals that the fused results should have good visual contrast,
while the results of the rest metrics show that there is
much loss of details and structural information. The ablation
study demonstrates the function of Lc to better exploit the
complementary and redundant relationships among multi-
modal images.

4.4. Qualitative Evaluation
Two typical pairs of MRI-CT images and two typical pairs of
MRI-PET images are presented in Figures 4, 5, respectively.
MRI images depict accurate and abundant soft tissue, CT
images provide dense structures with less distortion, and
PET images provide a detailed function of focus of infection
and metabolism information. From the visual results, it can
be seen that the fused images of DDcGAN show a lot of
distorted information in Figures 4C,N, and it almost loses all
the MRI information in Figures 5C,N. This is caused by the
instability of GAN, and it is inappropriate for the adopted
loss function to represent the information of MRI as gradients
only. The fused images of IFSR, U2Fusion, and SEDR lose
much saliency of soft tissue and dense structures and present
a low contrast on the whole. DRF provides relatively blurred
results and loses a lot of sharp details. Besides, the color
of the PET image is severely distorted in its fused results.
Among these methods, U2Fusion measures the amount of
gradient in each source image to assign the weights of the loss
function, realizing the adaptive control of similarity between
fused images and source images. However, such assignments
are conducted evenly on the whole image, thus leading to
the degradation of image contrast. SEDR maps both source
images into the same space, ignoring the unique modality
information. Fusion operations on such features can lead to
loss of significance. IFSR and DRF all take into account
the disentanglement, however, they lose the consideration of
the corresponding relationship of source images in different
positions. Moreover, DRF compresses the modality information
into a vector, which can cause the distortion of spatial
information. On the whole, EMFusion and the proposed method
taking different fusion strategies can all provide the fused
image with abundant details and clear edges. EMFusion is able
to enhance the PET information with MRI details, while the
proposed method can show the CT and MRI information with
higher brightness.

4.5. Quantitative Evaluation
The quantitative results of MRI-CT and MRI-PET fusion tasks
are presented in Tables 4, 5. From the average values, DDcGAN
obtains the best SD and SF in the MRI-CT task, which means
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FIGURE 3 | The illustration of visualized feature maps and fused results without and with complementary group lasso penalty term Lc. (A) source images; (B) the

redundant features of the proposed method without Lc; (C) the redundant features of the proposed method; (D) the complementary features of the proposed method

without Lc; (E) the complementary features of the proposed method; (F,H) the fused results of the proposed-add without Lc; (G,I) the fused results of the

proposed-add.

the fused results a higher dispersion degree of the gray value and
many details of high frequency. However, SD and SF can only
reflect the quality of the fused image itself and fails to measure
the information transferred from source images, meanwhile,
Figures 4C,N contains much distorted information. SEDR is

able to achieve the best QMI and QNCIE in the MRI-CT fusion
task, which reveals the fused image shows a higher correlation
with both source images. But it shows weaker performance on
MRI-CT tasks, as Figures 4H,S shows that the image contrast
is degraded. EMFusion shows the best performance on QG, QS,
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TABLE 2 | The quantitative evaluation of the proposed method (addition strategy) without and with Lc on the MRI-CT dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

proposed-add 80.38 ± 2.12 25.41 ± 1.30 0.78 ± 0.02 0.81 ± 0.00 0.68 ± 0.02 0.14 ± 0.01 0.65 ± 0.23 0.91 ± 0.01 1.12 ± 0.09 0.54 ± 0.19 0.43 ± 0.01

without Lc

proposed-add 84.92 ± 2.64 27.23 ± 0.27 0.80 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.02 0.82 ± 0.01 0.91 ± 0.01 1.37 ± 0.10 0.66 ± 0.01 0.45 ± 0.03

The results of the proposed method are shown as average± variance of 10-fold verification experiments.

TABLE 3 | The quantitative evaluation of the proposed method (addition strategy) without and with Lc on the MRI-PET dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

proposed-add 80.20 ± 1.75 26.19 ± 1.78 0.65 ± 0.01 0.81 ± 0.00 0.62 ± 0.02 0.17 ± 0.02 0.76 ± 0.02 0.91 ± 0.01 1.36 ± 0.05 0.58 ± 0.01 0.52 ± 0.01

without Lc

proposed-add 89.28 ± 1.21 34.41 ± 0.55 0.76 ± 0.01 0.81 ± 0.00 0.77 ± 0.00 0.51 ± 0.08 0.80 ± 0.01 0.94 ± 0.00 1.65 ± 0.03 0.50 ± 0.01 0.59 ± 0.00

The results of the proposed method are shown as average± variance of 10-fold verification experiments.

FIGURE 4 | Experiments results of the proposed method with six deep learning-based methods on two typical MRI and CT image pairs. (A,L) MRI images; (B,M) CT

images; (C,N) fused results of DDcGAN; (D,O) fused results of EMFusion; (E,P) fused results of IFSR; (F,Q) fused results of U2Fusion; (G,R) fused results of DRF;

(H,S) fused results of SEDR; (I,T) fused results of proposed-add; (J,U) fused results of proposed-max; and (K,V) fused results of proposed-l1.
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FIGURE 5 | Experiments results of proposed method with six deep learning-based methods on two typical MRI and PET image pairs. (A,L) MRI images; (B,M) PET

images; (C,N) fused results of DDcGAN; (D,O) fused results of EMFusion; (E,P) fused results of IFSR; (F,Q) fused results of U2Fusion; (G,R) fused results of DRF;

(H,S) fused results of SEDR; (I,T) fused results of proposed-add; (J,U) fused results of proposed-max; (K,V) fused results of proposed-l1.

TABLE 4 | The quantitative evaluation of different comparison methods on the MRI-CT dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

DDcGAN 88.13 ± 0.89 32.40 ± 0.57 0.58 ± 0.01 0.80 ± 0.00 0.57 ± 0.01 0.17 ± 0.00 0.25 ± 0.01 0.71 ± 0.00 1.24 ± 0.02 0.23 ± 0.01 0.25 ± 0.00

EMFusion 80.36 ± 0.59 20.76 ± 0.30 0.81 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.00 0.81 ± 0.00 0.89 ± 0.00 1.20 ± 0.05 0.67 ± 0.02 0.42 ± 0.01

IFSR 68.91 ± 0.46 19.81 ± 0.42 0.67 ± 0.01 0.81 ± 0.01 0.54 ± 0.01 0.11 ± 0.01 0.62 ± 0.00 0.89 ± 0.01 1.01 ± 0.03 0.34 ± 0.00 0.40 ± 0.00

U2Fusion 58.77 ± 0.38 21.06 ± 0.29 0.68 ± 0.01 0.81 ± 0.00 0.67 ± 0.01 0.13 ± 0.00 0.34 ± 0.00 0.89 ± 0.01 0.76 ± 0.03 0.28 ± 0.00 0.35 ± 0.01

DRF 75.42 ± 0.70 9.58 ± 0.14 0.51 ± 0.01 0.80 ± 0.00 0.22 ± 0.01 0.11 ± 0.00 0.22 ± 0.00 0.74 ± 0.00 1.19 ± 0.08 0.18 ± 0.00 0.31 ± 0.01

SEDR 63.78 ± 0.68 20.75 ± 0.35 0.81 ± 0.01 0.81 ± 0.00 0.56 ± 0.02 0.14 ± 0.00 0.32 ± 0.01 0.87 ± 0.00 0.85 ± 0.05 0.24 ± 0.00 0.36 ± 0.01

Proposed-add 84.92 ± 2.64 27.23 ± 0.27 0.80 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.02 0.82 ± 0.01 0.91 ± 0.01 1.37 ± 0.10 0.66 ± 0.01 0.45 ± 0.03

Proposed-max 80.48 ± 2.62 30.23 ± 1.05 0.80 ± 0.01 0.81 ± 0.00 0.74 ± 0.01 0.21 ± 0.03 0.82 ± 0.01 0.88 ± 0.01 1.16 ± 0.07 0.68 ± 0.01 0.41 ± 0.04

Proposed-l1 81.59 ± 2.49 29.28 ± 1.43 0.81 ± 0.02 0.81 ± 0.00 0.75 ± 0.01 0.22 ± 0.01 0.82 ± 0.01 0.88 ± 0.01 1.20 ± 0.10 0.68 ± 0.00 0.41 ± 0.04

The evaluation is shown as average± variance of testing results on 10-group image pairs, which the proposed method adopts for 10-fold verification experiments.
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TABLE 5 | The quantitative evaluation of different comparison methods on the MRI-PET dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

DDcGAN 57.93 ± 0.23 22.93 ± 0.14 0.53 ± 0.00 0.81 ± 0.00 0.53 ± 0.01 0.16 ± 0.01 0.57 ± 0.00 0.80 ± 0.00 0.67 ± 0.00 0.34 ± 0.00 0.35 ± 0.00

EMFusion 75.97 ± 0.11 32.03 ± 0.06 0.68 ± 0.00 0.81 ± 0.00 0.77 ± 0.00 0.42 ± 0.02 0.91 ± 0.00 0.91 ± 0.00 1.02 ± 0.01 0.62 ± 0.00 0.46 ± 0.00

IFSR 69.21 ± 0.15 25.29 ± 0.09 0.60 ± 0.00 0.81 ± 0.00 0.63 ± 0.00 0.15 ± 0.01 0.80 ± 0.00 0.92 ± 0.00 1.17 ± 0.02 0.55 ± 0.00 0.51 ± 0.00

U2Fusion 72.90 ± 0.07 26.05 ± 0.05 0.64 ± 0.00 0.80 ± 0.00 0.63 ± 0.00 0.17 ± 0.00 0.70 ± 0.01 0.89 ± 0.00 1.29 ± 0.00 0.60 ± 0.01 0.51 ± 0.00

DRF 71.40 ± 0.65 12.76 ± 0.09 0.46 ± 0.00 0.80 ± 0.01 0.34 ± 0.00 0.10 ± 0.00 0.46 ± 0.00 0.74 ± 0.00 0.82 ± 0.02 0.38 ± 0.00 0.36 ± 0.00

SEDR 84.47 ± 0.10 31.01 ± 0.06 0.76 ± 0.00 0.81 ± 0.00 0.73 ± 0.00 0.34 ± 0.01 0.84 ± 0.00 0.92 ± 0.00 1.52 ± 0.02 0.57 ± 0.00 0.55 ± 0.00

Proposed-add 89.28 ± 1.21 34.41 ± 0.27 0.76 ± 0.01 0.81 ± 0.00 0.77 ± 0.00 0.51 ± 0.08 0.80 ± 0.01 0.94 ± 0.00 1.65 ± 0.03 0.50 ± 0.01 0.59 ± 0.00

Proposed-max 86.84 ± 1.16 35.24 ± 0.49 0.72 ± 0.12 0.81 ± 0.00 0.70 ± 0.11 0.39 ± 0.20 0.77 ± 0.13 0.87 ± 0.08 1.31 ± 0.21 0.54 ± 0.02 0.49 ± 0.07

Proposed-l1 88.72 ± 2.17 36.05 ± 1.43 0.72 ± 0.15 0.81 ± 0.00 0.70 ± 0.14 0.38 ± 0.09 0.74 ± 0.06 0.86 ± 0.07 1.36 ± 0.17 0.52 ± 0.04 0.49 ± 0.06

The evaluation is shown as average± variance of testing results on 10-group image pairs, which the proposed method adopts for 10-fold verification experiments.

TABLE 6 | Time cost comparison.

Methods DDcGAN EMFusion IFSR U2Fusion DRF SEDR Proposed

Image size 256× 256 256× 256 256× 256 256× 256 256× 256 256× 256 256× 256

Time cost 0.589s 0.448s 2.499s 0.086s 1.176s 0.900s 0.037s

and QCB in the MRI-PET task. Compared to other methods,
EMFusion makes use of the MRI images to enhance the details of
chrominance channels in PET images, instead of only fusing the
luminance channel separately from the chrominance channels.
Thus, EMFusion is capable of presenting high-quality color
information with clear gradients. The proposed method which
adopts different fusion strategies is able to achieve the best
results on QM , MSSSIM, SCD, and VIFF in both tasks, and
it also shows second-best performance on the most of the
rest metrics. By comparing the three different fusion strategies
on complementary features quantitatively and qualitatively, the
addition strategy is good at showing more texture details as
it directly combines all the information together. Thereby,
it can also maintain the integral structure in both MRI-CT
and MRI-PET tasks. The L1-selection strategy shows better
performance in MRI-CT as it can adaptively assign the fusion
weights. Max-selection can preserve the position with strong
pixel intensity, however, it cannot avoid the loss of information
to some degree. From the variance, the proposed method
shows larger fluctuation than other methods on SD and SF.
We assume this is because the content of training images in
different folds of dataset can affect the generalization ability of
a neural network to some degree. Besides, SD and SF evaluate
the image quality by measuring the statistical features of the
fused image, without considering the source image. To make a
comprehensive assessment, the two metrics should be combined
with the rest metrics which reflect the transfer ability of the
fusion methods. In general, the proposed method presents a
good ability in transferring edge details and preserving structural
information, able to provide images with good visual quality.
Such advantage is attributed to the disentanglement of redundant

and complementary features, which makes the fusion process
more accurate.

4.6. Time Cost Comparison
The running efficiency of a method is an important index to
measure the performance as well. The average running time of
different methods on all the test MRI-CT and MRI-PET image
pairs is presented in Table 6. All methods are conducted on
the same platform with Intel Core i7-6850K CPU and GeForce
GTX 1080Ti GPU. From the time cost comparison, the proposed
method is the most efficient than other comparison methods.

5. CONCLUSION

In this article, a disentangled representation based brain
image fusion method is proposed. A three-branch auto-
encoder architecture is designed to fully explore the significant
features and correlations benefit of image fusion tasks, dealing
with the unique modality characteristics. Based on the prior
knowledge of complementary and redundant relationships, a
complementary group lasso penalty is proposed for effective
disentangled representation learning, which is able to separate
the discriminative modality information from the structure
information. The disentangled representations show better
interpretability to allow simple fusion strategies and improve
the precision of fusion results. The experiments on MRI-CT
and MRI-PET fusion tasks demonstrate the effectiveness of the
proposed method in retaining structure and details, as well as
presenting good visual quality.

Nevertheless, the proposed method only focuses on the fusion
of gray-scale images, and the chrominance channels of PET
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images are kept and directly combined with the fused gray-scale
images, which leads to the degradation of texture information.
In the future, how to embed the chrominance channels into a
disentangled framework should be considered.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: http://www.med.harvard.edu/aanlib/. Code and
pre-trained models are available at https://github.com/qqchong/
A-Disentangled-Representationbased-Brain-Image-Fusion-via-
Group-Lasso-Penalty.

AUTHOR CONTRIBUTIONS

AW and ZZ conceived the study. AW and XL designed the
specificmethod. ZZ, XL, and X-JW analyzed the experiment data.
AWwrote the draft. All authors gave critical revision and consent
for this submission.

FUNDING

This study was supported in part by the National Natural
Science Foundation of China under Grant No. 61772237,
and the Six Talent Peaks Project in Jiangsu Province under
Grant XYDXX-030.

REFERENCES

Aslantas, V., and Bendes, E. (2015). A new image quality metric for

image fusion: the sum of the correlations of differences. AEU-

Int. J. Electron. Commun. 69, 1890–1896. doi: 10.1016/j.aeue.2015.

09.004

Ben, H. A., Yun, H., Hamid, K., and Alan, W. (2005). A multiscale approach

to pixel-level image fusion. Integrated Comput. Aided Eng. 12, 135–146.

doi: 10.3233/ICA-2005-12201

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review

and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.

doi: 10.1109/TPAMI.2013.50

Chen, Y., and Blum, R. S. (2009). A new automated quality assessment

algorithm for image fusion. Image Vis. Comput. 27, 1421–1432.

doi: 10.1016/j.imavis.2007.12.002

Guo, K., Hu, X., and Li, X. (2022). MMFGAN: a novel multimodal brain

medical image fusion based on the improvement of generative adversarial

network. Multimed Tools Appl. 81, 5889–5927. doi: 10.1007/s11042-021-1

1822-y

Han, Y., Cai, Y., Cao, Y., and Xu, X. (2013). A new image fusion performance

metric based on visual information fidelity. Inform. Fusion 14, 127–135.

doi: 10.1016/j.inffus.2011.08.002

Hossny, M., Nahavandi, S., and Creighton, D. (2008). Comments on ’information

measure for performance of image fusion’. Electron. Lett. 44, 1066–1067.

doi: 10.1049/el:20081754

Huang, J., Le, Z., Ma, Y., Fan, F., Zhang, H., and Yang, L. (2020). MGMDcGAN:

Medical image fusion using multi-generator multi-discriminator

conditional generative adversarial network. IEEE Access 8, 55145–55157.

doi: 10.1109/ACCESS.2020.2982016

Jian, L., Yang, X., Liu, Z., Jeon, G., Gao, M., and Chisholm, D. (2021).

Sedrfuse: a symmetric encoder-decoder with residual block network for

infrared and visible image fusion. IEEE Trans. Instrum Meas. 70, 1–15.

doi: 10.1109/TIM.2020.3022438

Li, H., and Wu, X.-J. (2018). Densefuse: a fusion approach to infrared

and visible images. IEEE Trans. Image Process. 28, 2614–2623.

doi: 10.1109/TIP.2018.2887342

Li, H., Wu, X.-J., and Durrani, T. (2020). Nestfuse: an infrared and

visible image fusion architecture based on nest connection and

spatial/channel attention models. IEEE Trans. Instrum. Meas. 69, 9645–9656.

doi: 10.1109/TIM.2020.3005230

Li, H., Wu, X.-J., and Kittler, J. (2018). “Infrared and visible image fusion using

a deep learning framework,” in 2018 24th International Conference on Pattern

Recognition (ICPR) (Beijing: IEEE), 2705–2710.

Li, J., Wang, Y., Xiao, H., and Xu, C. (2019). Gene selection of

rat hepatocyte proliferation using adaptive sparse group lasso

with weighted gene co-expression network analysis. Comput.

Biol. Chem. 80, 364–373. doi: 10.1016/j.compbiolchem.2019.

04.010

Liu, Y., Chen, X., Peng, H., and Wang, Z. (2017). Multi-focus image fusion

with a deep convolutional neural network. Inform. Fusion 36, 191–207.

doi: 10.1007/978-3-319-42999-1

Luo, X., Zhang, Z., and Wu, X. (2016). A novel algorithm of remote sensing

image fusion based on shift-invariant shearlet transform and regional

selection.AEU-Int. J. Electron. Commun. 70, 186–197. doi: 10.1016/j.aeue.2015.

11.004

Luo, X., Gao, Y., Wang, A., Zhang, Z., and Wu, X.-J. (2021). IFSepR: a general

framework for image fusion based on separate representation learning. IEEE

Trans. Multimedia 1–16. doi: 10.1109/TMM.2021.3129354

Ma, J., Ma, Y., and Li, C. (2019). Infrared and visible image fusion

methods and applications: a survey. Inform. Fusion 45, 153–178.

doi: 10.1016/j.inffus.2018.02.004

Ma, J., Xu, H., Jiang, J., Mei, X., and Zhang, X.-P. (2020). DDcGAN: a

dual-discriminator conditional generative adversarial network for multi-

resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995.

doi: 10.1109/TIP.2020.2977573

Ma, K., Zeng, K., and Wang, Z. (2015). Perceptual quality assessment for

multi-exposure image fusion. IEEE Trans. Image Process. 24, 3345–3356.

doi: 10.1109/TIP.2015.2442920

Piella, G., and Heijmans, H. (2003). “A new quality metric for image fusion,”

in Proceedings 2003 International Conference on Image Processing (Cat.

No.03CH37429), Vol. 3 (Barcelona), III-173.

Qiang, W., Yi, S., and Jian, Q. Z. (2005). A nonlinear correlation

measure for multivariable data set. Physica D 200, 287–295.

doi: 10.1016/j.physd.2004.11.001

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for

large-scale image recognition,” in 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, eds eds Y. Bengio and Y. LeCun (San Diego, CA).

Summers, D. (2003). Harvard whole brain atlas,

www.med.harvard.edu/aanlib/home.html. J. Neurol. Neurosurg. Psychiatry 74,

288–288. doi: 10.1136/jnnp.74.3.288

Wang, J., Zhang, H., Wang, J., Pu, Y., and Pal, N. R. (2021). Feature

selection using a neural network with group lasso regularization and

controlled redundancy. IEEE Trans. Neural Netw. Learn. Syst. 32, 1110–1123.

doi: 10.1109/TNNLS.2020.2980383

Wang, Q., and Guo, G. (2021). DSA-Face: diverse and sparse attentions for

face recognition robust to pose variation and occlusion. IEEE Trans. Inform.

Forensics Security 16, 4534–4543. doi: 10.1109/TIFS.2021.3109463

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE Trans. Image

Process. 13, 600–612. doi: 10.1109/TIP.2003.819861

Wang, P., and Liu, B. (2008). “A novel image fusion metric based on multi-scale

analysis,” in 2008 9th International Conference on Signal Processing (Beijing),

965–968.

Xu, H., and Ma, J. (2021). EMFusion: an unsupervised enhanced medical image

fusion network. Inform. Fusion 76:177–186. doi: 10.1016/j.inffus.2021.06.001

Frontiers in Neuroscience | www.frontiersin.org 12 July 2022 | Volume 16 | Article 937861

http://www.med.harvard.edu/aanlib/
https://github.com/qqchong/A-Disentangled-Representationbased-Brain-Image-Fusion-via-Group-Lasso-Penalty
https://github.com/qqchong/A-Disentangled-Representationbased-Brain-Image-Fusion-via-Group-Lasso-Penalty
https://github.com/qqchong/A-Disentangled-Representationbased-Brain-Image-Fusion-via-Group-Lasso-Penalty
https://doi.org/10.1016/j.aeue.2015.09.004
https://doi.org/10.3233/ICA-2005-12201
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1016/j.imavis.2007.12.002
https://doi.org/10.1007/s11042-021-11822-y
https://doi.org/10.1016/j.inffus.2011.08.002
https://doi.org/10.1049/el:20081754
https://doi.org/10.1109/ACCESS.2020.2982016
https://doi.org/10.1109/TIM.2020.3022438
https://doi.org/10.1109/TIP.2018.2887342
https://doi.org/10.1109/TIM.2020.3005230
https://doi.org/10.1016/j.compbiolchem.2019.04.010
https://doi.org/10.1007/978-3-319-42999-1
https://doi.org/10.1016/j.aeue.2015.11.004
https://doi.org/10.1109/TMM.2021.3129354
https://doi.org/10.1016/j.inffus.2018.02.004
https://doi.org/10.1109/TIP.2020.2977573
https://doi.org/10.1109/TIP.2015.2442920
https://doi.org/10.1016/j.physd.2004.11.001
https://doi.org/10.1136/jnnp.74.3.288
https://doi.org/10.1109/TNNLS.2020.2980383
https://doi.org/10.1109/TIFS.2021.3109463
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/j.inffus.2021.06.001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Brain Image Fusion

Xu, H., Ma, J., Jiang, J., Guo, X., and Ling, H. (2022). U2Fusion: a unified

unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell.

44, 502–518. doi: 10.1109/TPAMI.2020.3012548

Xu, H., Wang, X., and Ma, J. (2021). DRF: Disentangled representation for

visible and infrared image fusion. IEEE Trans. Instrum Meas. 70, 1–13.

doi: 10.1109/TIM.2021.3056645

Xydeas, C. S., and Pv, V. (2000). Objective image fusion performance measure.

Military Techn. Courier 56, 181–193. doi: 10.1049/el:20000267

Yang, S., Min, W., Jiao, L., Wu, R., and Wang, Z. (2010). Image

fusion based on a new contourlet packet. Inform. Fusion 11, 78–84.

doi: 10.1016/j.inffus.2009.05.001

Yuan, M. (2006). Model selection and estimation in regression with grouped

variables. J. R. Stat. Soc. 68, 49–67. doi: 10.1111/j.1467-9868.2005.

00532.x

Zhao, L., Hu, Q., and Wang, W. (2015). Heterogeneous feature

selection with multi-modal deep neural networks and sparse group

lasso. IEEE Trans. Multimedia 17, 1–1. doi: 10.1109/TMM.2015.24

77058

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wang, Luo, Zhang and Wu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2022 | Volume 16 | Article 937861

https://doi.org/10.1109/TPAMI.2020.3012548
https://doi.org/10.1109/TIM.2021.3056645
https://doi.org/10.1049/el:20000267
https://doi.org/10.1016/j.inffus.2009.05.001
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1109/TMM.2015.2477058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
	1. Introduction
	2. Group Lasso Penalty
	3. Frames and Methods
	3.1. Overall Framework
	3.2. Loss Function
	3.3. Fusion Strategy

	4. Experiments and Analyses
	4.1. Experimental Settings
	4.2. Objective Metrics
	4.3. Ablation Study
	4.4. Qualitative Evaluation
	4.5. Quantitative Evaluation
	4.6. Time Cost Comparison

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


