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Glutamate is the principal excitatory neurotransmitter in the central nervous

system. In the periphery, glutamate acts as a transmitter and involves in the

signaling and processing of sensory input. Glutamate acts at several types of

receptors and also interacts with other transmitters/mediators under various

physiological and pathophysiological conditions including chronic pain. The

increasing amount of evidence suggests that glutamate may play a role

through multiple mechanisms in orofacial pain processing. In this study, we

reviewed the current understanding of how peripheral glutamate mediates

orofacial pain, how glutamate is regulated in the periphery, and how these

findings are translated into therapies for pain conditions.

KEYWORDS
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Introduction

Glutamate is one of the most abundant amino acids, which plays important roles
in nutrition and metabolism in addition to its role in protein structure (Meldrum,
2000; Petroff, 2002; Brosnan and Brosnan, 2013). It is discovered as a neurotransmitter
responsible for the excitatory action in the central nervous system (CNS) and involved
in a wide variety of physiological and pathological processes such as learning, memory
(Hugon et al., 1996), development, depression (Hillhouse and Porter, 2015), and
neurodegeneration (Meldrum, 2000). In addition, it is well demonstrated that glutamate
plays an important role in nociceptive processing not only at central synapses but also
in the peripheral nervous system (PNS). The involvement of glutamate in nociception
in the CNS has been extensively reviewed elsewhere (Fundytus, 2001; Zhuo, 2017). The
increasing amount of evidence has indicated that glutamate is implicated in orofacial
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pain. The aim of this review was to give an overview of
glutamate in the trigeminal system and analyze different lines of
evidence for the role of peripheral glutamate in orofacial pain.
Possible cellular mechanisms regarding the connection between
glutamate and orofacial pain in the periphery are discussed.

Nociceptive transmission of the
orofacial region

The term “orofacial pain” is used to describe pain arising
from the regions of the face and mouth (Ghurye and
McMillan, 2017). Orofacial pain-associated disorders include
but are not limited to temporomandibular muscle and joint
(TMJ) disorders, jaw movement disorders, neuropathic and
neurovascular pain disorders, headaches, and sleep disorders
(AAOP, 2022). Pain sensation from the orofacial region is
relayed to the nerve center by the trigeminal nerve system.
The primary sensory neurons innervating the orofacial region
are located in the trigeminal ganglia (TG, a cranial analog of
the dorsal root ganglia, DRG) (Huang et al., 2013; Yudin and
Rohacs, 2018), in which central processes enter the brainstem,
where trigeminal second-order neurons convey the peripheral
nociceptive information to the higher centers (Lazarov, 2002).
Pain-sensing, primary afferent neurons of TG are classified
into two main types, i.e., small diameter, slow-conducting,
myelinated A-delta fibers and slow-conducting unmyelinated C
fibers, which are responsible for rapid, acute pain and delayed,
slow pain, respectively (Bae and Yoshida, 2020). These neurons
are tightly enveloped by satellite glial cells (SGCs), and thus both
form an anatomically and probably functionally distinct unit
(Hanani, 2005). A variety of neurotransmitters and mediators
associated with nociception are known to be present in the
neurons and SGCs in the PNS (Messlinger and Russo, 2019),
of which glutamate, as a transmitter, plays an important role in
the etiology and pathogenesis of orofacial pain. Understanding
the glutamate mechanism of orofacial pain is important for
performing successful management of such painful conditions.

Glutamatergic system in primary
sensory ganglia

Glutamate is synthesized from the hydrolytic deamidation
of glutamine as part of the glutamate-glutamine cycle by
phosphate-activated glutaminase (GLS) (Miller et al.,
2011). Glutamate can also be produced via interaction
with the tricarboxylic acid (TCA) cycle (Stallard et al.,
2021). In common with many other neurotransmitters,
the action of glutamate is mediated via both ionotropic
receptors and metabotropic receptors (Scheefhals and
MacGillavry, 2018), which are summarized in Figure 1.

There are three families of ionotropic receptors as
follows: N-methyl-D-aspartate (NMDA), alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
and kainite (KA) receptors (Bigge, 1999). There are three
groups of metabotropic, G protein-coupled glutamate receptors
(mGluR) as follows: Groups I, II, and III, which modify
neuronal and glial excitability through G protein subunits
acting on membrane ion channels and second messengers such
as diacylglycerol and cAMP (Niswender and Conn, 2010). In
addition to the glutamate receptor system, there are transport
systems expressed both in neurons and glial cells, which not
only move glutamate across the plasma membrane in both
directions (e.g., glutamate uptake and exocytosis) but also
refill synaptic vesicles of neurons (Olivares-Banuelos et al.,
2019). The transport system includes three neuronal glutamate
transporters and two glial transporters, of which excitatory
amino acid transporter 3 (EAAT3), excitatory amino acid
transporter 4 (EAAT4), and excitatory amino acid transporter 5
(EAAT5) are in neurons, and glutamate-aspartate transporter
(EAAT1/GLAST) and glutamate transporter-1 (EAAT2/GLT-1)
are in glial cells (Amiel and Mathew, 2007; Nikitin et al.,
2015). For example, in SGCs, glutamate is taken up by GLAST
and GLT-1 for conversion to glutamine (gln) via glutamine
synthetase (GS) (Miller et al., 2011). Once synthesized in
or taken up into neurons, glutamate is accumulated into
neurotransmitter vesicles via vesicular glutamate transporters
(VGLUTs) that are specialized proteins in the vesicular
membrane (Fremeau et al., 2004; Zhang et al., 2018). There are
three isoforms of VGLUT (1, 2, and 3), of which VGLUT1 and
VGLUT2 are in neurons and peripheral axons (Gegelashvili
and Bjerrum, 2014). Glutamate-sensing and -transporting
systems seem to play important roles in molecular mechanisms
underlying different pathological processes including chronic
pain (refer to Figure 2).

Involvement of glutamate in
orofacial pain

The early morphological studies showed that glutamate was
present in neurons of TG in the rat (Wanaka et al., 1987; Csati
et al., 2015) and cat (Lee and Ro, 2007a). Approximately 30–80%
of total neurons in TG are glutamatergic (Kai-Kai and Howe,
1991; Li et al., 2003). Glutamate receptors (ionotropic and
metabotropic) are found on the cell membranes of the primary
sensory neuron of TG. Ionotropic glutamate receptors (iGluRs)
including NMDA (NR1, NR2A, NR2B), AMPA (GluR1 and
GluR2), and KA receptors (such as GluK5) occur in TG neurons
(Sahara et al., 1997; Lee and Ro, 2007a; Chun et al., 2008; Csati
et al., 2015). In addition, NMDA subunit NR2A, KA receptor
subunit GluK2, and AMPA subunit GluR4 were immune-
labeled in SGCs (Tachibana et al., 1994; Kung et al., 2013).
Group I metabotropic glutamate receptors (mGluRs) (mGluR1α
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FIGURE 1

Molecular families of glutamate receptors. The two main glutamate receptors are each composed of three functional definition groups of the
receptor. Numerous individual subunits, encoded by different genes, make up these receptors. iGluRs, ionotropic glutamate receptors; mGluRs,
metabotropic glutamate receptors; NMDA, N-methyl-D-aspartic acid; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid.

and mGluR5), group II (mGluR2 and mGluR3), and group
III (mGluR8) mGluRs occur in TG neurons, while SGCs only
express mGluR1α and mGluR8 (Lee and Ro, 2007a,b; Kim et al.,
2009; Boye Larsen et al., 2014). All three types of ionotropic
glutamate receptors and mGluR1α and mGluR8 have been
observed in SGCs (Boye Larsen et al., 2014; Fernandez-Montoya
et al., 2017). Moreover, the machinery for the production,
release, and recycling of glutamate is present in the trigeminal
nerve including the glutaminase (GLS) (Hoffman et al., 2016),
vesicular glutamate transporters (VGLUT1, 2, and 3) (Kaneko
and Fujiyama, 2002; Kim et al., 2015, 2018; Wang et al.,
2016; Zhang et al., 2018), the GLAST, and GLT1 (Malik and
Willnow, 2019), as well as the recycling enzyme GS (Miller et al.,
2002; Weick et al., 2003). The anatomical distribution of the
glutamatergic system in TG indicates that glutamate can be an
important factor in orofacial pain.

Substantial evidence exists in support of the peripheral
glutamatergic system playing important roles in orofacial pain.
Myofascial temporomandibular disorders (TMDs) are the most
common cause of chronic pain in the orofacial region. A clinical
study showed that there were differences in the masseter muscle
levels of glutamate during acute nociception in patients with
myofascial TMD compared with healthy subjects (Bajramaj
et al., 2019). Injecting glutamate into the human masseter
muscle or temporomandibular joint causes acute pain and/or
mechanical allodynia (Svensson et al., 2005; Castrillon et al.,
2012; Suzuki et al., 2017; Exposto et al., 2018; Udagawa et al.,

2018; Shimada et al., 2020; Alhilou et al., 2021a), which is
confirmed in animals (Cairns et al., 2002; Lam et al., 2009; Jie
et al., 2018). When NMDA is injected into the rat masseter
muscle, an increase occurs in muscle afferent discharge in
a dose-related manner (Dong et al., 2007). Another study
showed that increased peripheral glutamate receptor (NMDA-
receptor) expression partly contributed to masseter muscle
pain sensitivity induced by intramuscular injection of nerve
growth factor (NGF) in healthy humans (Alhilou et al., 2021a,b).
Other studies indicate that there are increased expression levels
of glutamate receptors in the TG in orofacial pain induced
by inferior alveolar (or infraorbital) nerve injury (Li et al.,
2020, 2021; Kurisu et al., 2022) and NGF (Wong et al.,
2014). Application of glutamate receptor antagonists reduced
nociceptive trigeminal responses in different orofacial pain
models (Lam et al., 2005; Lee and Ro, 2007b; Li et al., 2013;
Csati et al., 2015). The data suggest that peripheral glutamate
may activate peripheral nociceptive afferents via its receptor,
resulting in orofacial pain. Endogenous sources of glutamate
in the periphery include plasma, macrophages, epithelial and
dendritic cells in the epidermis and dermis, odontoblasts (Cho
et al., 2016; Nishiyama et al., 2016), and Merkel cells (MCs)
(Higashikawa et al., 2019). Glutamate is released from the
mechanically stimulated odontoblast into the extracellular space
via glutamate-permeable anion channels, and higher levels of
glutamate are linked to increased sensations of pain (Cho
et al., 2016; Nishiyama et al., 2016). Glutamate increases in
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FIGURE 2

Glutamine cycle in the trigeminal nervous system. Glu can be taken up by neurons or glia. In neurons, glutamate is taken up by EAAT. Satellite
glial cells take up glutamate via EAAT for conversion to Gln via GS. Glutamine can be transported back to neurons for conversion to Glu by GLS,
and then Glu can be packaged into vesicles by VGLUT. In addition to the glutamine cycle, neuron and glial cells also produce glutamate via
interactions with the neuronal TCA cycle. Glu, glutamate; EAAT, excitatory amino acid transporter; Gln, glutamine; GS, glutamine synthetase;
GLS, glutaminase; VGLUT, vesicular glutamate transporters; TCA, tricarboxylic acid.

the TG following a chronic constriction injury of the inferior
orbital nerve, which can be released within the TG and can
contribute to nociception (Kung et al., 2013). Experimental
traumatic occlusion causes a long-lasting nociceptive response,
in which the release of glutamate increases, and AMPA
and NMDA receptors are upregulated in the TG (Abdalla
et al., 2022). Since EAATs are expressed by SGCs in the TG
(Miller et al., 2011; Laursen et al., 2014), it is likely that
SGCs participate in regulating intra-ganglionic glutamate levels.
Increased glutamate within the TG evokes afferent discharge
and significantly reduces muscle afferent mechanical threshold.
The glutamate-evoked discharge is attenuated by an NMDA
receptor antagonist (Laursen et al., 2014). Recent studies showed
that glutamate was released from SGCs and could potentially
play a role in trigeminal sensory transmission (Wagner et al.,
2014; da Silva et al., 2015). These data indicate that glutamate

contributes to the initiation and/or maintenance of orofacial
pain.

The interaction of glutamate and
other neurotransmitters/
neuromodulators in orofacial pain

Inflammatory pain is initiated by tissue damage/
inflammation and neuropathic pain by nervous system lesions
(Latremoliere and Woolf, 2009). The mechanisms underlying
chronic inflammatory and neuropathic pain pathology involve
peripheral and central sensitization characterized by increased
excitability of primary sensory and central neurons, respectively
(Woolf and Salter, 2000). The central mechanisms of glutamate
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involved in pain have been well reviewed elsewhere (Fundytus,
2001; Zhuo, 2017). The mechanisms of peripheral glutamate
in acute and chronic inflammatory and neuropathic pain were
reviewed as follows.

Transient receptor potential (TRP) ion channels mediate
various types of sensory reception such as pain, temperature,
different kinds of tastes, pressure, and vision (Chung et al.,
2011). Several members of the TRP family, such as transient
receptor potential vanilloid 1 (TRPV1) and transient receptor
potential ankyrin 1 (TRPA1), play essential roles in pain
sensation (Chung et al., 2011). Approximately 30% of TG
neurons innervating the lateral facial skin expressed both
TRPV1 and TRPA1, and approximately 64% of TRPA1-positive
neurons also expressed TRPV1 (Zurborg et al., 2007; Akopian,
2011; Honda et al., 2014). TRPA1 may serve as a downstream
target of pro-nociceptive ion channels and mediate acute muscle
mechanical hypersensitivity induced by glutamate (Asgar et al.,
2015). Capsaicin, a TRPV1 agonist, produces acute nociceptive
behaviors when injected into the mouse upper lip (de Oliveira
et al., 2020). Nifedipine can suppress nociceptive behavior
through the NMDA receptor system (de Oliveira et al., 2020).
In addition, sensitization of TRPA1 and/or TRPV1 through
mGluR5 signaling via PKCε is involved in facial thermal and
mechanical hypersensitivity (Cesare et al., 1999; Lee and Ro,
2007b; Chung et al., 2015; Honda et al., 2017). NMDA receptor
subunits and TRPV1 are colocalized in masseter afferents, and

NMDA treatment sensitizes capsaicin responses in dissociated
TG neurons (Lee et al., 2012; Chung and Ro, 2020). Masseter
injection of NMDA increases serine phosphorylation of TRPV1
(Lee et al., 2012; Chung and Ro, 2020). The data suggest
that crosstalk between glutamate receptors and TRP channels
contributes to the development and maintenance of orofacial
pain. Clinically, topical application of capsaicin is used for
reducing orofacial pain (Epstein and Marcoe, 1994; Campbell
et al., 2017), the mechanisms of which might be attributed
to central inhibitory pathways triggered by the painful stimuli
of capsaicin (Campbell et al., 2017). Since glutamate signaling
pathways functionally interact with TRP channels, whether
such mechanisms are operative in orofacial pain needs to be
confirmed further.

Adenosine is an endogenous purinergic nucleoside present
in many cells (Ciruela et al., 2011). Inside the cell, adenosine
is formed from ATP, cAMP, or S-adenosyl-L-homocystein,
while outside the cell, it arises from equilibrative nucleoside
transporter-mediated release or metabolism from ATP or cAMP
(Sawynok and Liu, 2003). In the periphery, adenosine is
released from both neuronal and non-neuronal sources (Guieu
et al., 1996; Liu et al., 2001). Adenosine can activate signaling
pathways through their receptors such as A1R, A2AR, A2BR,
and A3R, which can act as a neuromodulator, and is involved
in pain transmission and sensitization (Chen et al., 2013).
Other studies indicate that the administration of glutamate

FIGURE 3

Peripheral glutamate mechanisms. Peripheral glutamate plays an important role in the transmission of nociception under normal and
pathological conditions. Macrophages, mast cells, and dendritic cells in the epidermis and dermis are important endogenous sources of
glutamate, which can be transported by EAAT. Glutamate binds to receptors and activates PLC, leading to intracellular Ca2+ release and PKCε

activation, which ultimately activates TRP ion channels to mediate peripheral sensation. TG neurons store glutamate in vesicles (black circles)
for release in the peripheral and central nervous. With the presence of noxious stimulation, nerve endings release glutamate stored in vesicles
into peripheral tissues. Glutamate released from the same or a nearby terminal can interact with Glu R to activate or sensitize the terminals.
CNS, central nervous system; PLC, phospholipase C; PKCε, protein kinase C epsilon; Glu R, glutamate receptor; TRP, transient receptor
potential; SGC, satellite glial cell.
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evokes peripheral adenosine release and that NMDA and AMPA
receptors are involved in such release. The released adenosine
may provide a negative feedback control on nociception (Zahn
and van Aken, 2000; Liu et al., 2002).

Calcitonin gene-related peptide (CGRP) is a peptide
neurotransmitter and is expressed in TG neurons (Edvinsson
et al., 2018). Moreover, CGRP receptors are composed of the
calcitonin receptor-like receptor (CLR), the receptor activity-
modifying protein 1 (RAMP1), and the receptor component
protein (RCP) (Messlinger et al., 2020). Overall, the expression
pattern of CGRP and CGRP receptors in the TG is consistent
with a model of CGRP signaling in which C-type sensory
neurons release CGRP from the soma, and CGRP acts
on receptors on Aδ-type sensory neurons and SGCs to
modulate pain sensitivity and transmission within the ganglion
(Ambalavanar and Dessem, 2009; Goto et al., 2017; Edvinsson
et al., 2018). CGRP is expressed in a considerable number
of VGLUT pulpal axons in humans and rats (Cho et al.,
2021). The activation of AMPA and KA receptors in dental
pulp may contribute to the peripheral release of CGRP, which
mediates a neurogenic component of inflammation and, thus,
may involve in the development of inflammatory pain (Jackson
and Hargreaves, 1999), but Andreou et al.’s study showed that
the activation of the peripheral iGluR5 KA receptors was able to
inhibit neurogenic dural vasodilatation probably by inhibition
of prejunctional release of CGRP from trigeminal afferents
(Andreou et al., 2009). The different regulation of CGRP release
by KA receptors remains to be established.

Nitric oxide (NO) is a free radical gas that has been shown
to be produced by nitric oxide synthase (NOS) and recognized
to act as a neurotransmitter or neuromodulator in the nervous
system (Saha and Pahan, 2006), which may play an important
role through multiple mechanisms in pain processing (Fan
et al., 2012). Activation of NMDA receptors can induce NO
production and release from the SGCs (Li et al., 2008; Laursen
et al., 2013). Such release of NO may provide a negative
regulation to NMDA receptor signaling (Fan et al., 2012). In
addition, blockade of peripheral NMDA receptors significantly
reduces mustard oil- and hypertonic saline-induced nocifensive
behaviors, i.e., edema formation in the masseter (Ro, 2003),
which suggests that glutamate may contribute to tissue edema
and enhance inflammation and pain.

Repeated acute injury, neuroinflammation, and
modification of pain processing systems have been linked
to the development of chronic pain states (Woolf and Salter,
2000). Alterations of glutamatergic receptors and transporters
in TG following damage of peripheral tissues and sensory
nerves act partly on the periphery and partly on the CNS
and contribute to peripheral and central sensitization. The
development of acute to chronic pain is a progressive and
complex process (Pak et al., 2018). Targeting the peripheral
glutamatergic system may result in novel treatment options for
the prevention and/or treatment of orofacial pain.

Clinical applications

The glutamatergic system plays a key role in the
pathogenesis of orofacial pain. Glutamate was injected
into the masseter muscle in healthy participants and elicited
pain and muscle-referred sensations (Suzuki et al., 2017;
Exposto et al., 2018; Udagawa et al., 2018; Shimada et al., 2020).
Masseteric injection of NGF and glutamate increased expression
of peripheral NMDA receptors and could be associated with
masseter muscle pain sensitivity in healthy humans (Alhilou
et al., 2021a,b). The levels of glutamate in the masseter muscle
during acute nociception in healthy subjects and in patients
with TMD are different (Bajramaj et al., 2019). Inhibition of
glutamate release, or of glutamate receptors, in the central
or periphery attenuates orofacial pain in animal models. The
idea that glutamate does act as a therapeutic target for pain
has been tested in some clinical trials. However, the results
have been inconsistent. Antagonists at NMDA and AMPA/KA
receptors, such as intra-articular ketamine injections in patients
with TMD, have been used clinically with some limited success
(Fundytus, 2001; Ayesh et al., 2008). Metabotropic GluRs play
a vital role in pain (Lee and Ro, 2007b; Chung et al., 2015;
Seven et al., 2021) and may therefore be a potent new target
for future drug development. In addition, the development of
more specific GluR inhibitors such as antibodies or antisense
oligonucleotides is highly demanded. Local delivery of GluR
inhibitors or siRNA strategy may also be considered.

Conclusion

The neuronal and non-neuronal release of glutamate and
their implications for orofacial pain signaling are summarized
in Figures 2, 3. The excitatory amino acid glutamate and the
receptors on which it acts play an important role in orofacial
nociceptive processing. The regulation of the glutamatergic
system is crucial not only in the CNS but also in the
PNS to prevent disturbances in sensory transmission. The
importance of glutamate as a neurotransmitter in the CNS is
well documented, but less is known about the regulation of
glutamate in the PNS, compared with the CNS, especially in
the trigeminal nervous system. The progress in understanding
glutamate in the CNS would be helpful for exploring the
glutamate mechanisms in the PNS. Similarly, the data about
the role of glutamate obtained in trunk and limb pain could
also be operative in orofacial pain, which would be worthy to
be confirmed, although the pathophysiology of the trigeminal
nerve is in many ways different from that found in spinal nerves
(Fried et al., 2001; Latremoliere et al., 2008). Regulating the
glutamatergic system in the trigeminal nerve may provide a
viable new target for treating orofacial pain. A comprehensive
understanding of the underlying mechanisms for the observed
effects of the glutamate system in the periphery will be necessary
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before their use can be evaluated in clinical applications for the
prevention and/or treatment of orofacial pain.
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