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Jeremias Braid† and Fabio Richlan*†
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The present article reviews the literature on the brain mechanisms underlying reading
improvements following behavioral intervention for reading disability. This includes
evidence of neuroplasticity concerning functional brain activation, brain structure,
and brain connectivity related to reading intervention. Consequently, the functional
neuroanatomy of reading intervention is compared to the existing literature on
neurocognitive models and brain abnormalities associated with reading disability.
A particular focus is on the left hemisphere reading network including left occipito-
temporal, temporo-parietal, and inferior frontal language regions. In addition, potential
normalization/compensation mechanisms involving right hemisphere cortical regions,
as well as bilateral sub-cortical and cerebellar regions are taken into account.
The comparison of the brain systems associated with reading intervention and the
brain systems associated with reading disability enhances our understanding of the
neurobiological basis of typical and atypical reading development. All in all, however,
there is a lack of sufficient evidence regarding rehabilitative brain mechanisms in reading
disability, which we discuss in this review.
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INTRODUCTION

Reading acquisition or learning to read is a complex endeavor requiring the integration
of orthographic, phonological, and semantic information about written words together with
knowledge of spoken language and conceptual knowledge. In a considerable number of cases,
however, children struggle with the acquisition of foundational reading skills—a condition known
as reading disability (RD) or developmental dyslexia. Specifically, RD is characterized by severe and
persistent problems in reading acquisition.

In children with RD, performance in standardized reading tests is significantly below the
age-expected norm. In addition, people affected by RD often present a mixture of different
manifestations of problems in diverse aspects of literacy including reading fluency, accuracy,
comprehension, and/or spelling (e.g., Lyon et al., 2003). Importantly, the difficulties cannot be
explained by problems regarding intelligence, motivation, vision, or educational environment.
Finally, these difficulties markedly impair academic achievement or activities in everyday life
requiring reading skills (American Psychiatric Association, 2013; World Health Organization,
2016).

The present mini-review aims to concisely summarize the literature on neuroplasticity
following reading intervention and to relate it to the functional neuroanatomical models
of reading and RD. For that purpose, we review the systematic findings regarding
brain mechanisms underlying reading improvements following behavioral intervention for
RD (covering multiple rehabilitation techniques). This includes evidence of neuroplasticity
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concerning functional brain activation, brain structure, and
brain connectivity. Finally, we discuss limitations, open issues,
and future perspectives in order to pave the way for further
progress in this field.

THE FUNCTIONAL NEUROANATOMY OF
READING AND READING DISABILITY

Functional Brain Activation
During the last years, there has been considerable progress
in understanding the neurocognitive and neurobiological
mechanisms underlying reading and RD. Using brain
imaging techniques such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and
magnetoencephalography (MEG), studies have largely converged
on the brain circuits involved in typical and atypical reading.
Specifically, the functional neuroanatomical model of typical
reading involves a predominantly left-lateralized network
including occipito-temporal (OT), temporo-parietal (TP), and
frontal language regions (e.g., Dolan et al., 1997; Paulesu et al.,
2000; Cattinelli et al., 2013; Martin et al., 2015; Schuster et al.,
2016; Chyl et al., 2021).

With respect to RD, qualitative reviews and quantitative
meta-analyses have identified altered brain activation in atypical
readers during reading or reading-related tasks in this left-
hemisphere network. In particular, the most consistent finding
across studies was underactivation in people affected by RD
compared with their age-matched peers in the left ventral OT
cortex (fusiform gyrus, FFG and posterior inferior temporal
gyrus, ITG), the left posterior middle and superior temporal gyrus
(MTG and STG), and the left inferior frontal gyrus (IFG) (e.g.,
Paulesu et al., 2001, 2014; Maisog et al., 2008; Richlan et al., 2009,
2011; Martin et al., 2016).

Underactivation of the left hemisphere reading network—in
particular the language-universal dysfunction of the left ventral
OT cortex—most probably reflects the phonological speed deficit
characteristic of RD. This is in line with evidence showing
that in typical readers the ventral OT cortex subserves both
lexical whole-word recognition and sublexical serial decoding
(e.g., Richlan et al., 2010; Schurz et al., 2010; Wimmer et al.,
2010). Conversely, overactivation in atypical compared with
typical readers was identified in the left precentral cortex and
the bilateral frontal striatum (including caudate and putamen),
perhaps reflecting overreliance on sub-vocal articulatory-based
reading processes (Richlan, 2012, 2014, 2020; Hancock et al.,
2017).

There is an increasing number of hints on the existence
of additional functional activation abnormalities in cortical,
sub-cortical, and cerebellar regions in RD (e.g., Danelli et al.,
2012; Mascheretti et al., 2017; Alvarez and Fiez, 2018; De Vos
et al., 2020), but this has not yet been evidenced by objective
quantification through systematic meta-analysis. The reasons
for this absence most probably lie more in methodological
limitations of the meta-analyses themselves, than in the primary
studies. Obviously, any alterations in functional brain activation
strongly depend on the in-scanner tasks and baseline conditions,

as well as several other experimental considerations related
to stimulus types, presentation modalities, instructions, sample
sizes, analytical techniques, statistical thresholds and last but not
least diagnosis/inclusion criteria for the RD groups (see section
“Limitations, Open Issues, and Future Perspectives”).

Gray and White Matter Structure and
Connectivity
Quantitative meta-analyses on gray matter (GM) structural
abnormalities in RD as investigated by means of voxel-based
morphometry showed a similar picture, with limited convergence
across studies (for an in-depth discussion see Ramus et al.,
2018). The most robust and consistent finding was GM volume
reduction in atypical compared with typical readers in the right
STG and the left superior temporal sulcus (STS), but only about
half of the primary studies contributed to these meta-analytic
clusters (Linkersdörfer et al., 2012; Richlan et al., 2013; Eckert
et al., 2016).

Across different languages, the left STS is assumed to
play an important role in the integration of auditory and
visual information (e.g., Van Atteveldt et al., 2004; Blomert,
2011; Holloway et al., 2013; Richlan, 2019). Therefore, in
typical reading acquisition, it plays a pivotal role during self-
reliant learning processes based on serial grapheme-phoneme
conversion. The STG/STS GM volume reduction found in RD
might be related to a deficit in this sublexical self-teaching reading
strategy, specifically in the development of a brain system for
efficient interactive processing of auditory and visual linguistic
inputs (Blau et al., 2010).

With respect to white matter (WM) structure and
connectivity, the major pathways supporting skilled reading
are found in left TP areas and in posterior callosal tracts
including the superior longitudinal fasciculus (including the
arcuate fasciculus, AF), occipital and temporal callosal fibers,
and corona radiata fibers passing through the posterior limb
of the internal capsule (Ben-Shachar et al., 2007). In RD, these
pathways have been identified with lower fractional anisotropy
values (indicating reduced structural integrity) in diffusion
tensor imaging (DTI) studies. A prime candidate fiber tract most
consistently associated with RD is the left AF, which connects
left TP and left frontal language regions (Silani et al., 2005;
Vandermosten et al., 2012; Dehaene et al., 2015). Additional
findings point to deficits in visual thalamo-cortical connections
(Müller-Axt et al., 2017).

The left AF was reported to be among the first brain
circuits to anatomically change during reading acquisition.
Specifically, learning to read has been shown to be accompanied
by an increase in fractional anisotropy (FA) and a decrease
in perpendicular diffusivity (PD) (reflecting a microstructural
improvement) of this fiber tract (Thiebaut de Schotten et al.,
2012; Yeatman et al., 2012). Based on these findings, the left
AF is assumed to play a crucial role, especially during the
early stages of literacy development by supporting letter-speech
sound integration and grapheme-phoneme coding, which, in
turn, is required for self-reliant phonological word decoding in
beginning readers (Richlan, 2019).
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Functional Connectivity and Integration
Besides structural connectivity by means of DTI, studies on
functional and effective connectivity provide interesting insights
into how brain regions interact with each other in order to
support skilled reading (e.g., Mechelli et al., 2005; Schlaggar and
McCandliss, 2007; Vogel et al., 2013; Carreiras et al., 2014; Schurz
et al., 2014). Put simply, in typical readers, left OT, TP, and IFG
regions are functionally connected, whereas in RD this functional
coupling is disrupted, either as a cause or consequence (or both)
of reading difficulties. Reduced functional connectivity in RD
within the typical left-hemisphere reading network was found
both during reading and reading-related tasks (e.g., Paulesu et al.,
1996; Van der Mark et al., 2011; Boets et al., 2013; Olulade et al.,
2015; Cao et al., 2017; Morken et al., 2017) as well as in the
absence of a task, that is, during rest (e.g., Koyama et al., 2013;
Schurz et al., 2015).

The idea that RD results from disrupted connections between
brain regions supporting vision and brain regions supporting
language has been around for decades (Geschwind, 1965a,b;
Paulesu et al., 1996). As evidenced by modern-day neuroimaging,
this disruption of brain systems might reflect the characteristic
visual-verbal speed deficit in the behavioral manifestation of
RD, which, in turn, is attributed to inefficient access from
letters to speech sounds. This deficit in RD was hypothesized
to underlie the universal reading speed impairment across
languages (Wimmer, 1993; Ramus and Szenkovits, 2008; Blomert,
2011; Richlan, 2019). As pointed out in the following section,
behavioral interventions for people affected by RD often focus
on letter-speech sound integration and on linking sub-lexical and
lexical orthographic and phonological information (e.g., Fraga
González et al., 2015).

READING INTERVENTION AND
NEUROPLASTICITY

Behavioral Effects of Reading
Intervention
RD poses a significant burden for those affected (American
Psychiatric Association, 2013; World Health Organization, 2016).
Fortunately, many studies have shown that reading intervention
can be beneficial for people with RD (e.g., Wanzek et al., 2018).
By and large, explicit phonics instruction can be regarded as
the gold standard in reading intervention programs due to its
beneficial effects on a large amount of RD people (Galuschka
et al., 2014). This includes interventions aimed at teaching (a)
letter-speech sound correspondences, (b) decoding strategies that
involve blending or segmenting individual letters or phonemes,
and (c) dividing spoken or written words into syllables or
onsets and rimes.

Systematic meta-analyses revealed moderate effect sizes
regarding improvement in reading ability after reading
intervention (Wanzek et al., 2013, 2016, 2018). The examined
intervention programs, however, differed significantly in a
number of aspects such as skills targeted, duration, intensity,
modality, and group size. In addition, marked individual

differences between participants within particular studies impede
generalization. Therefore, specific conclusions on the efficacy of
intervention programs must be drawn with caution.

Brain Effects of Reading Intervention
Functional Brain Activation
Recently, Perdue et al. (2022) conducted a quantitative
meta-analysis using seed-based d mapping (Albajes-Eizagirre
et al., 2019) on changes in brain activation pre/post reading
intervention in people with—or at risk for—RD. In sum,
eight fMRI studies that met predefined inclusion criteria (total
aggregated sample size = 151 participants, mean age per study
= 5.6–44 years) were included in the meta-analysis, which
followed the strict PRISMA statement for transparent reporting
of systematic reviews and meta-analyses evaluating the effects
of interventions (Page et al., 2021). Intervention duration lasted
from three to twelve weeks and various (in part commercially
available) training programs were used, aimed at different reading
component skills (e.g., phoneme awareness, morpheme-based
spelling, grapheme-phoneme conversion, or reading fluency).

No statistically significant brain effects of reading intervention
could be observed in this meta-analysis. According to the
authors, one possible explanation could be the small set
of included studies due to the exclusion of studies for
methodological reasons. Additionally, even the studies that met
the inclusion criteria suffered from small sample sizes. The
primary limiting factor, however, is the use of region/volume
of interest (ROI/VOI) analysis instead of whole-brain analysis,
which renders objective coordinate-based meta-analysis difficult
if not impossible and therefore has been a methodological
exclusion criterion. Discussing their findings, Perdue et al. (2022)
suggest, that future reading intervention studies should employ
exploratory, spatially unrestricted whole-brain analysis in larger
samples to adequately assess the effects of reading intervention
on brain activation.

Furthermore, Barquero et al. (2014) reported an activation
likelihood estimation (ALE) meta-analysis with a slightly
different set of eight fMRI studies (seven studies with children
and adolescents and one study with adults, total aggregated
sample size = 173 participants) assessing functional activation
patterns after reading intervention. Across the included studies,
intervention periods ranged from 3 weeks up to two school years.
As in the Perdue et al. (2022) meta-analysis, various different
intervention programs were administered in the single studies.

Increased activation in RD participants following reading
intervention was observed in the following brain regions of the
typical reading network: left thalamus, right insula/IFG, left IFG,
right posterior cingulate gyrus, and left middle occipital gyrus. In
conclusion, and similar to the previously discussed meta-analysis,
the authors note that the results must be interpreted with caution
due to several methodological limitations at this relatively early
stage of research, such as the high degree of heterogeneity in
data acquisition and analysis methodology across studies and the
generally limited number of published studies.

Despite the slightly disappointing and inconclusive meta-
analytic (null-) results, a systematic qualitative review of
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reading intervention studies—also including MEG studies, which
could not be part of the coordinate-based meta-analysis due
to methodological reasons—essentially showed the following
findings: fMRI and MEG studies identified pre-to-post changes
in (a) the typical reading network as detailed in section “The
Functional Neuroanatomy of Reading and Reading Disability”,
thus indicating normalization of functional activation in RD
and (b) additional cortical, sub-cortical, and cerebellar regions
usually not included in this network, probably associated with
compensatory reading mechanisms (Perdue et al., 2022).

In particular, multiple studies reported elevated levels of
activation following reading intervention in the left hemisphere
reading areas (Shaywitz et al., 2004; Richards et al., 2006b;
Horowitz-Kraus et al., 2014; Heim et al., 2015). Importantly,
this indicates that—through specific training—functions of
the typical reading network can recover in people with RD.
Additionally, initial group differences in activation levels between
RD and typically developing controls were normalized in some
studies, that is, differences before intervention were no longer
detectable after intervention (Aylward et al., 2003; Richards et al.,
2006a; Meyler et al., 2008).

In some of these studies, this normalization of functional
activation also involved increases in the right hemisphere and
sub-cortical regions (e.g., Meyler et al., 2008; Gebauer et al., 2012;
Nugiel et al., 2019; Partanen et al., 2019). Equal levels of right-
hemispheric activation in RD following reading intervention—
compared with typical readers—could indicate a shift toward the
typical engagement of these regions. Previous literature instead
largely suggested that such changes may reflect compensatory
processes, in the sense that people with RD engage regions
outside of the typical reading network in order to make up
for their deficits.

Across studies, the most consistent normalization effects could
be observed in the right IFG (Temple et al., 2003; Meyler et al.,
2008; Odegard et al., 2008; Horowitz-Kraus et al., 2014; Partanen
et al., 2019). The right IFG is already activated during reading
and reading-related processes before intervention and people
with higher initial activation showed greater engagement after
intervention (Hoeft et al., 2011). Functionally, the right IFG is
thought to support articulatory recoding, working memory, and
attention during reading (Shaywitz et al., 2002; Hancock et al.,
2017).

Neuroplasticity associated with reading intervention in the
right hemisphere was also identified in homologous regions
of the left hemisphere reading network, that is, STG, OT
cortex, and inferior parietal lobule (IPL) (Perdue et al.,
2022). The exact functional role of greater activation following
reading intervention in these right hemisphere sub-components,
however, still remains unclear (for an in-depth discussion on this
topic see Perdue et al., 2022). To conclude, contrary to previous
findings, newer studies suggest that enhanced right-hemispheric
activation in RD following reading intervention might reflect
normalization rather than compensation.

Gray and White Matter Structure and Connectivity
With respect to GM volume, structural changes related to reading
intervention in children with RD were identified in hubs of

the typical reading network, sub-cortical and right hemisphere
regions. This included increases in GM volume relative to the pre-
intervention assessments in the left anterior OT cortex extending
into the hippocampus, bilateral precuneus, right hippocampus,
and right cerebellum (Krafnick et al., 2011). After an 8-week
period without intervention, these effects were stable and an
additional cluster of GM volume increase was identified in
the right caudate.

Romeo et al. (2017) investigated neuroplasticity by means
of cortical thickness in 65 children with RD (aged 6–9
years) of which n = 40 participated in a summer reading
intervention program, that lasted for 6 weeks. The remaining
n = 25 children constituted the waiting-list control group.
A commercial multisensory program (centered on orthographic
and phonological processing) was used. Results showed that
the intervention group maintained their reading scores, whereas
the waiting control group decreased in performance. On an
individual basis, children who improved their reading scores—in
the intervention group—had lower socioeconomic backgrounds
than children that declined in reading performance. Comparing
responders with non-responders, greater change in cortical
thickness could be observed in responders in the following
regions: bilateral middle-inferior temporal cortex, IPL, precentral
cortex, and paracentral/posterior cingulate cortex, right STG and
insula, and left MTG.

Regarding WM structure and connectivity, neuroplasticity
associated with reading intervention could be observed in a
number of studies (Perdue et al., 2022). Specifically, several
DTI studies reported changes in structural connectivity and
WM integrity linked to enhancement of reading performance
after intervention (Davis et al., 2010; Richards et al., 2017;
Huber et al., 2018). Increased FA and decreased mean and
radial diffusivity might indicate that WM pathways increased in
efficiency by improving communication among distant cortical
and sub-cortical structures involved in reading.

Impressively, structural changes already occurred after only
2–3 weeks of intervention (same program as in Romeo et al.,
2017) when children aged 7–12 years were scanned multiple
times over the period of 8 weeks (Huber et al., 2018). Therefore,
the brain delivers a fast adaptation response following the high
demands of intensive training, i.e., detectable neuroanatomical
rewiring processes as a consequence of reading intervention.
The links between reading skill improvement and WM
microstructure deviated from typical developmental trajectories
during intervention. Consequently, this does not support the
assumption of neuroanatomical normalization as reported in
some functional activation studies. Study designs similar to
the one employed by Huber et al. (2018), however, are costly
and therefore rarely used, even though they provide important
insights into the temporal progress of ongoing brain changes.

Davis et al. (2010) reported that changes in structural
connectivity in response to a small group reading intervention
(duration = 17 weeks) in eleven first graders (mean age =
7.5 years) were consistent with behavioral changes. Moreover,
associations between functional connectivity and WM structure
(Richards et al., 2018), together with incremental changes in
WM microstructure during reading intervention as described
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before provide valuable insights into possible mechanisms
of neuroplasticity in brain networks that enhance reading.
Essentially, neural optimization in terms of rewiring of
network connections might be related to the establishment of
stronger brain circuits on the one hand and the reduction
of inefficient connections on the other hand. Therefore, the
strict distinction between neuroanatomical normalization vs.
compensation mechanisms may not apply in these studies.

Functional Connectivity and Integration
Evidence regarding altered functional connectivity following
reading intervention suggests that integrating dispersed
functional networks facilitates reading improvements in RD
(Perdue et al., 2022). Intervention-related neuroplasticity effects
were found both during task-based and resting-state fMRI in
diverse brain systems including fronto-parietal and cingulo-
opercular networks (Horowitz-Kraus et al., 2015; Richards et al.,
2016, 2017), and among low-level visual, dorsal attentional, and
executive function networks distributed in various brain regions
(Horowitz-Kraus et al., 2019).

Specifically, Horowitz-Kraus et al. (2019) examined changes
in functional connectivity during task-based fMRI using a
lexical decision task. They compared three groups (n =
18 each): RD, comorbid attention-deficit and hyperactivity
disorder and RD (ADHD + RD), and typically developing
(TD) in a computer-based intervention program targeting
reading skills and executive functions, which lasted for 4
weeks. Independent component analysis was used to extract
networks for connectivity analysis. Across the three groups,
results showed positive correlations between reading speed gains
and both increased functional network connectivity between
the executive function component (bilateral superior frontal
gyri) and the low-level visual component (bilateral FFG) and
increased functional connectivity between the dorsal attention
component (bilateral precuneus/posterior cingulate) and the
low-level visual component.

In contrast, Richards et al. (2018) also found decreases in
local functional connectivity following a computerized program
focused on reading and writing (duration = 18 lessons). The
sample consisted of N = 42 students (mean age = 11 years,
10 months). For example, during a multi-sentence reading
comprehension task, local functional connectivity in the right
middle frontal gyrus decreased in two RD groups, whereas
it increased in a dysgraphia and a TD group. The above-
reported findings were interpreted as reflecting modulation of
attention-linked networks during reading. Since both increases
and decreases in functional connectivity were observed, one
could argue that this pattern reflects a process of re-adjustment
toward an optimal level of integration and separation within and
between different functional brain networks.

LIMITATIONS, OPEN ISSUES, AND
FUTURE PERSPECTIVES

Studies on the brain mechanisms underlying reading
improvements following behavioral intervention for RD

have provided tremendously valuable insights into the
neurobiology of typical and atypical reading development.
Taken together, however, there is only limited consistency
across studies regarding possible neuroplasticity effects,
as illustrated by the absence of (or only weak) meta-
analytic evidence (Barquero et al., 2014; Perdue et al.,
2022). Reasons for this heterogeneity of results are
discussed below.

Meta-analyses are generally limited in scope due to strict
inclusion/exclusion criteria. This is particularly evident in meta-
analyses of brain effects. Specifically, in the recent meta-
analysis by Perdue et al. (2022), 31 out of 39 thematically
relevant primary studies had to be excluded because of
ineligible imaging modalities, regionally restricted analysis
strategies, imaging time points, and other methodological
considerations. In addition, even the included studies used a
variety of different fMRI activation tasks and methodological
parameters for image preprocessing and statistical analysis, and
generally suffered from small sample sizes, thus increasing the
probability of both false positive and false negative results
(Button et al., 2013).

The next issue concerns the participants in these studies
themselves. In the reviewed studies, participants differed
in terms of several aspects known to have an influence on
reading development, such as age, home literacy environment,
socioeconomic status, and initial skills. With respect to
age, Suggate (2010) reported an interaction between
grade at intervention and focus of intervention. In earlier
grades, greater effects were elicited by phonics training,
whereas in later grades, greater effects were elicited by
comprehension training. Orthographic depth of the written
language may also play a considerable role in this regard
(e.g., Paulesu et al., 2001; Richlan, 2014, 2020; Martin et al.,
2016).

In addition, there is the potential problem of (mis-) diagnosis
and comorbidity. In particular, RD is often comorbid with
atypical or delayed oral language development (Catts et al., 2009;
Peterson et al., 2009), writing disabilities, ADHD, and math
disabilities (e.g., Landerl and Moll, 2010; Willcutt et al., 2010).
This, together with the generally large inter-individual differences
with respect to responsiveness to reading intervention, may lead
to higher variability of (potential) neuroplasticity effects, which,
in turn, may lead to weaker meta-analytic results.

There is no clarity about whether specific regions or
patterns of activation are required in order to provoke
improvements in reading ability in RD. Numerous studies
have shown effects within the typical reading network as well
as outside. The differentiation between “normalization” vs.
“compensation” effects is more complex than detecting activation
in certain brain areas because multiple brain regions linked
to the typical reading network are associated with other, more
general cognitive networks as well (e.g., attention and executive
function networks).

Future studies should try and identify networks of activation
in addition to fundamental structural changes linked to
improvement in reading ability. Furthermore, several
factors regarding individual differences and interventions
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should guide research on the neural mechanisms of reading
intervention. One way of providing more thorough evidence
would be via longitudinal studies with a longer time frame (i.e.,
going beyond sole pre-/post-intervention assessments). Although
extremely expensive and challenging to conduct, such studies
would be desperately needed (Chyl et al., 2021).

Another desirable and extremely worthwhile approach would
be to conduct multi-center studies with sufficient sample sizes,
where the same methodologies are applied in a concerted
and standardized effort. For example, Paulesu et al. (2001)
investigated cultural differences across people with RD in the
course of a cross-European PET project, whereas Jednoróg
et al. (2015) conducted a large-scale multi-center, multi-
language VBM study. Recently, another study showed that
brain-wide association between inter-individual differences in
brain structure or function and complex cognitive or mental
health phenotypes, such as reading disability and its remediation,
requires thousands of individuals (Marek et al., 2022).

Last but not least, the general issue of publication bias (i.e.,
withholding null findings and publishing statistically significant
results) might create a false impression of substantial and
reliable brain changes linked to reading intervention. This could
explain some of the observed contradictory findings between
studies reviewed here. To summarize, systematic and robust
neuroplasticity effects in response to reading improvements
across many studies could not yet be found. Therefore, further
(pre-registered) research on the interplay between behavioral
reading intervention and the brain mechanisms underlying
typical and atypical reading is needed.

CONCLUSION

In recent years, outstanding progress has been made in
understanding the functional neuroanatomy of typical
reading, RD, and reading intervention for RD. Our review
of studies suggests that enhanced activation in right-
hemispheric homologous regions of the typical left hemisphere
reading network following behavioral intervention might
reflect functional neuroanatomical normalization rather than
compensation of brain mechanisms for reading. With respect
to rewiring of white matter network connections in response
to intervention, neural optimization might be related to both,
the establishment of stronger brain circuits and the reduction of
inefficient connections in RD.

Nevertheless, the field suffers from a lack of consistent
neuroplasticity effects associated with improvement in reading
ability across studies. Future studies should examine inter-
individual differences and developmental trajectories more
closely over a longer time frame. Additionally, the common
dichotomy between “normalization” vs. “compensation” seems to
be insufficient to explain the complex underlying neurobiology
and a more integrated view of the brain mechanisms related to
reading intervention should be employed.
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