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Spiking neural networks were introduced to understand spatiotemporal

information processing in neurons and have found their application in

pattern encoding, data discrimination, and classification. Bioinspired network

architectures are considered for event-driven tasks, and scientists have looked

at different theories based on the architecture and functioning. Motor tasks,

for example, have networks inspired by cerebellar architecture where the

granular layer recodes sparse representations of the mossy fiber (MF) inputs

and has more roles in motor learning. Using abstractions from cerebellar

connections and learning rules of deep learning network (DLN), patterns

were discriminated within datasets, and the same algorithm was used for

trajectory optimization. In the current work, a cerebellum-inspired spiking

neural network with dynamics of cerebellar neurons and learning mechanisms

attributed to the granular layer, Purkinje cell (PC) layer, and cerebellar nuclei

interconnected by excitatory and inhibitory synapses was implemented. The

model’s pattern discrimination capability was tested for two tasks on standard

machine learning (ML) datasets and on following a trajectory of a low-cost

sensor-free robotic articulator. Tuned for supervised learning, the pattern

classification capability of the cerebellum-inspired network algorithm has

produced more generalized models than data-specific precision models

on smaller training datasets. The model showed an accuracy of 72%,

which was comparable to standard ML algorithms, such as MLP (78%),

Dl4jMlpClassifier (64%), RBFNetwork (71.4%), and libSVM-linear (85.7%). The

cerebellar model increased the network’s capability and decreased storage,

augmenting faster computations. Additionally, the network model could also

implicitly reconstruct the trajectory of a 6-degree of freedom (DOF) robotic

arm with a low error rate by reconstructing the kinematic parameters. The

variability between the actual and predicted trajectory points was noted to

be ± 3 cm (while moving to a position in a cuboid space of 25 × 30 ×

40 cm). Although a few known learning rules were implemented among

known types of plasticity in the cerebellum, the network model showed a

generalized processing capability for a range of signals, modulating the data

through the interconnected neural populations. In addition to potential use
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on sensor-free or feed-forward based controllers for robotic arms and as a

generalized pattern classification algorithm, this model adds implications to

motor learning theory.

KEYWORDS

cerebellum, spiking neural network, deep learning, encoding, classification,
trajectory prediction

Introduction

The brain circuits of many animals have significantly
improved their capacity to learn and process multimodal inputs
(Stock et al., 2017) at the millisecond scale that machine learning
(ML) algorithms have abstracted to classify (Albus, 1975) or
cluster data (Kohonen, 1982). Yet, these algorithms are not
as complex or efficient as the brain’s neural circuits (Luo
et al., 2019). Modern methods, such as deep learning networks
(DLN) and extending artificial neural networks (ANN), may
bring additional similarities to the computational capabilities of
neural circuits while predicting and classifying patterns within
big and small datasets (Angermueller et al., 2016), which could
also help models to learn and think like humans (Lake et al.,
2017). Studies involving DLN models suggest its application
in deducing information processing within biological networks
(Yamins and DiCarlo, 2016), in addition to disease-related
predictions attributed to impaired network activity (Yang
et al., 2014). Many DLN models have been inspired by the
brain’s microcircuit architectures, such as the visual cortex
(Kindel et al., 2019), basal ganglia (Hajj and Awad, 2018), and
hippocampus (Fontana, 2017), and these neuro-inspired models
explore novel functional relationships within data.

Spiking neural networks (SNN) exploit a biologically
observed phenomenological element in ML, allowing
optimization and parallelizability to algorithms (Naveros
et al., 2017) which may be event-driven and time-driven
and may incorporate spatiotemporal information processing
capabilities of biological neural circuits. Algorithms that are
based on different brain circuits, such as the visual cortex (Fu
et al., 2012; Yamins and DiCarlo, 2016), basal ganglia (Doya,
2000; Baladron and Hamker, 2015; Girard et al., 2020), and
cerebellum (Casellato et al., 2012; Garrido et al., 2013; Antonietti
et al., 2015; D’Angelo et al., 2016b; Luque et al., 2016; Yamaura
et al., 2020; Kuriyama et al., 2021) with spiking neural models
help understand the circuitry and in turn, help reconstruct and
train systems. EDLUT (Ros et al., 2006), SpiNNaker (Khan
et al., 2008), MuSpiNN (Ghosh-Dastidar and Adeli, 2009), and
biCNN (Pinzon-Morales and Hirata, 2013) are some of the
existing brain-inspired models which are used in the field of
control systems for robotic articulation control. In this article,
we mathematically reconstructed a cerebellum-inspired neural
circuit incorporating the training efficacy of a deep learning

classifier for applications in motor articulation control and
pattern classification.

Among the different brain regions, the cerebellum, situated
inferior to the occipital lobe of the cerebral cortex, has
a modular structure and shares a common architecture
(Standring, 2016) known to be involved with learning at
different layers. Cerebellum follows a well-organized network
structure (Figure 1A) with afferent circuitry involving two
primary excitatory inputs to the cerebellum originating through
the mossy fibers (MF) and climbing fibers (CF). Sensory and
tactile inputs from different regions, including the brain stem
and the spinal cord, are transferred by MF as input signals. At
the same time, CF has been known to provide training errors
compared with inputs from the inferior olive (IO) (Mauk et al.,
1986). IO receives input from deep cerebellar nuclei (DCN),
which are inhibited by the Purkinje neurons and considered
to be the main output neurons of the cerebellar cortex (Eccles,
1973; D’Angelo et al., 2016a). The cerebellum granular layer
has a large number of granule cells (GrC), significantly lesser
numbers of Golgi cells (GoC), and a few Unipolar Brush Cells
(UBC), while the primary neurons of the molecular layer are
the Purkinje cells (PC). Due to the error correction mechanism
by the IO onto the PC, the cerebellum has been known to
perform a supervised motor learning of sensory and movement
patterns (Porrill et al., 2004; Passot et al., 2010), although
the relationship between the cerebellum and motor learning
was suggested even earlier (Cajal, 1911). On the other hand,
GrCs have been known to involve in sparse recoding of the
different sensory modalities. The implementation of inhibition-
based looping in the network model suggests that feed-forward
inhibition of GrC may be crucial in modulating the efficacy
of pattern discrimination of the PC, which is attributed to
some of the biophysical characteristics of the PF-PC synapses.
Generalization and learning-induced accuracy (Clopath et al.,
2012) in the network model involves clustered activation
(Diwakar et al., 2011) and synchronous behavior (Maex and De
Schutter, 1998) in the GrC.

Sensorimotor control in the brain is often attributed to
the cerebellum (Kawato and Gomi, 1992; Schweighofer et al.,
1998; Thach, 1998; Ito, 2002; Nowak et al., 2007; Haith and
Vijayakumar, 2009; Popa et al., 2012), which has been known
to play roles in the error correction based control (Tseng et al.,
2007; Shadmehr et al., 2010; Luque et al., 2011; Popa et al., 2016)
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FIGURE 1

A deep layer network of the cerebellum. (A) The abstracted model was based on the simplified cerebellar microcircuitry of rat cerebellum:
Various neurons and connections in the cerebellar circuitry may attribute to pattern classification and prediction. Input patterns are presented
through the Mossy fibers (MF) which have projections on the Granule cells (Grc) extended as Parallel fibers (PF) and Golgi cells (GoC). PF
impinges onto the Purkinje cells (PC) which gives input to the output neuron Deep Cerebellar Nuclei (DCN) which in turn evokes Inferior Olive
(IO). From a deep learner perspective, the cerebellum has been known to perform supervised learning with the teaching signals send to the PC
through the IO extension Climbing fibers (CF). (B) The equivalent model of deep learning involved a spiking neural network: All the neurons
inside the cerebellum-inspired network were reconstructed as spiking models whereas the decoder was modeled with nodes. Each instance
was mapped to a convolution layer that encodes to a group of MF. Convoluted cells mapped to a dense granular layer (Diwakar et al., 2011)
representing the sparseness of the MF stimuli which is also activated by an inhibitory GoC model. Rate coding of the inputs, convolution at the
GrC layer, and SoftMax based output prediction post the pooled layer was implemented at the MF-GrC-PC circuit.

by timing and coordinating movement (D’Angelo and Zeeuw,
2008). Studies have shown that the brain-inspired NN with a
feed-forward and feedback controller could control a visually

guided robotic arm (Schweighofer and Arbib, 1998; Tseng et al.,
2007), saccades (Schweighofer et al., 1996), smooth pursuit
(Kettner et al., 1997), and eye blinking condition (Casellato et al.,
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2014). Multiple controllers have several copies of inverse and
forward models that could be coupled together to attain the
task of fast and distributed coordination (Wolpert and Kawato,
1998; Kawato, 1999) and have been mainly used in unsupervised
(Schweighofer et al., 2001) and supervised learning (Kawato
et al., 2011) but not have had much focus on reinforcement
learning (Yamazaki and Lennon, 2019; Kawato et al., 2020).
Real-time processing of information for error detection and
correction (Rodriguez-Fornells et al., 2002; Yamazaki and
Igarashi, 2013; Luo et al., 2016; Popa et al., 2016; Yamazaki
et al., 2019), predictive control (Kettner et al., 1997), the timing
of muscle synergies (Manto et al., 2012), and formation of an
internal model for supervised learning (Doya, 1999) as well as
for calculating inverse dynamics (Kawato and Gomi, 1992) was
attributed to the cerebellum because of their multi-faceted role
in motor learning (Tanaka et al., 2020).

The cerebellum has similarities to DLN models with
different learning modules and known supervised learning
attributions (Eccles et al., 1967b; Marr, 1969; Albus, 1971; Ito,
1972; Doya, 2000). The memories formed can be stored in
the cerebellar cortex and the deep nuclei. At the same time,
the cerebellum elaborates over 16 known learning mechanisms
(Mapelli et al., 2015), and the cerebellar cortex has been
experimentally observed to be critical for regulating the timing
of movements and learning is transferred partially or wholly
to the deep nuclei. Plasticity at the MF-GrC connection (Nieus
et al., 2006) has been less explored when compared with PF-
PC plasticity. Olivo-cerebellar tract has also been seen to have
a crucial role in learning new motor skills (Ito, 2006). Other
hypotheses include the cerebellum as an adaptive filter (Fujita,
1982), a motor pattern classifier (Albus, 1975), and a neuronal
timing machine that adapts to motor tasks (D’Angelo and
Zeeuw, 2008). Cerebellum-inspired models have also been used
in robotics, pattern separation, and ML applications (Ros et al.,
2006; Dean et al., 2010; Tanaka et al., 2010; Casellato et al., 2014;
Antonietti et al., 2015). Cerebellum-inspired network models
have been attributed to several functions, such as vestibulo-
ocular reflexes (VOR), optokinetic responses (OKR) (Inagaki
and Hirata, 2017), eye blink classical conditioning (EBCC), and
motor control with these different mechanisms attributed to
the same neural circuitry relating a deep learning aspect into
the cerebellum microcircuits (Wolpert et al., 1998; Hausknecht
et al., 2016).

Sensory modalities evoke sparse activation of neurons where
some neurons remain active all the time, whereas other neurons
respond to few stimuli (Pehlevan and Sompolinsky, 2014)
and this behavior has been observed in different parts of
the brain, such as the cortex and cerebellum. Early studies
(Marr, 1969; Albus, 1971) have suggested the sparse role of
cerebellar granular layer neurons improves pattern separation.
A measure of the sparseness or storage capacity of neurons
was used to understand the responses of the network (Brunel
et al., 2004; Pehlevan and Sompolinsky, 2014) at different

sensory stimuli conditions in areas, such as the sensory cortex
(Fiete et al., 2004), cerebellum (Clopath and Brunel, 2013;
Babadi and Sompolinsky, 2014; Billings et al., 2014), etc.
Models developed based on the cerebellum may be crucial
for simulating movement changes in related disorders, such
as spinocerebellar ataxia (Sausbier et al., 2004; Kemp et al.,
2016) and multiple sclerosis (Redondo et al., 2015; Wilkins,
2017). As sparseness and capacity indicate the amount of
computation and storage, these measures are now being
used in modeling. They are also calculated in terms of
bits of information processed (Varshney et al., 2006) which
may be employed to assess DLNs. Here, we reconstructed a
cerebellum-inspired spiking neural network with aspects of
biophysical dynamics and some of the learning mechanisms
of the cerebellum. The focus of this article was also to build
a multipurpose algorithm that could perform tasks, such as
pattern encoding, discrimination, separation, classification, and
prediction critical to motor articulation control. The modeled
network demonstrates capabilities attributed to a pattern
classifier and functions implicitly as a trajectory predictor
for motor articulation control resembling the sensorimotor
control observed in the cerebellum. The simulated cerebellar
network was analyzed for its generalization capability aiming
for pattern recognition and supervised learning. Toward
quantifying performance, the model implemented on CPUs was
compared with implementations on graphics processing unit
(GPUs) and against some of the other learning algorithms.

In the current study, we aim to reconstruct a cerebellum-
inspired spiking neural network extended from a previous
study (Vijayan et al., 2017) that could perform tasks with
multiple configurations like pattern classification and trajectory
prediction using the same network architecture. The network
has been mathematically reconstructed for two aspects: an
extension of the theory of cerebellar function (Marr, 1969;
Albus, 1971; Ito, 1982) where we looked at employing the
modern understanding of the cerebellar cortex and at the same
time, develop a neuro-inspired bio-realistic approach for low-
cost robotic control. Unlike in the previous model (Vijayan et al.,
2017), which had a granular layer with only GrCs, we have
incorporated the recoding and associative mapping properties
of the cerebellar granular layer with excitatory GrC and an
inhibitory GoC, pattern discrimination at the Purkinje layer, and
the interpretational application of DCN. Moreover, the network
size was scalable. Extending the Marr–Albus–Ito theory, we have
included learning in the granular layer, suggesting there is a
whole set of operations that are done by the granular layer
and would be performed as indicated by some experimental
studies (D’Angelo et al., 2001, 2013; Rössert et al., 2015).
The reconstructed cerebellum-inspired spiking neural network
model performed tasks of different mathematical capabilities
of this connectivity and circuit and can be repurposed to help
model disease conditions as well as in developing controller
models for sensor-free neuroprosthesis.
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Materials and methods

Neuronal models for spiking networks

A cerebellum-inspired spiking neural network model
(Figure 1B) with deep learning functionality was developed,
extending our previous implementation (Vijayan et al., 2017).
The input stimuli (MF) and the cerebellar neurons, such as
GrC, GoC, and PC, were reconstructed using the Adaptive
Exponential Integrate-and-Fire (AdEx) model (Naud et al.,
2008). The nine parameter values for the AdEx model were
obtained using a PSO algorithm (Table 1). The firing behavior
was reconstructed for a single neuron with specific current
values (Table 1) and matched the experimental recordings from
p17 to 23 rat cerebellum cerebellar neurons (D’Angelo et al.,
2001) and validated with modeling articles (Medini et al., 2012,
2014). Spiking dynamics and the neuron’s firing rate adaptation
were modeled using Eqs (1)–(3).

C
dV
dt
= −gL (V − EL)+ gL4Texp

(
V − VT

4T

)
+ I−w (1)

τw
dw
dt
= a (V−EL) (2)

If V > 0 mV then

{
V = Vr

w = w+ b
(3)

Here, C was the membrane capacitance, gL represented
leak conductance, EL denoted resting potential, 1T represented
slope factor, and VT denoted threshold potential. Variable
“w” described the adaptation factor within the membrane
potential, and “a” represented the relevance of sub-threshold
adaptation. “I” referred to the injected current applied from
an external source, and “b” referred to the spike-triggered
adaptation constant.

The cerebellum-inspired deep learning algorithm included
four component modules: an encoder to translate real-world

TABLE 1 Parameter values used in modeling the different
types of neurons.

Parameter Values

GrC GoC PC

C (pF) 150 500 100

gL (nS) 10 13.1 10

El (mV) −70 −58 −65

1T (mV) 4 7 2

Vt (mV) −50 −54 −50

τw (mS) 13 8.7 1

I (pA) 350 0 0

a (nS) 9 −17 −13

b (pA) 250 1,033 260

data, a spiking cerebellar microcircuit-based network, a decoder
of spiking information, and a learning and adaptation module
to update weights at different layers in the algorithm (Figure 2).

Encoding of real-world data
Dataset1 used as training input consisted of different features

[x1,x2,x3...xn] ∈ X with a class label of y. The input features
were encoded (Algorithm 1) into spikes using a convoluted
Gaussian kernel function. The attributes were mapped to a
dataset-based variable in higher dimensional space, simulating
the MF-GrC elaboration. Model currents were estimated as
weighted input values while computing spikes from the encoded
data through the granular layer. In the mapping of inputs,
a normal distribution similar to postsynaptic latencies (Silver
et al., 1996) allowed a center-surround structure (Mapelli et al.,
2010) to the inputs (neuron in the center received the strongest
excitation). The neurons were made user-defined and scalable.
The convolution layer in DLN was designed to abstract the
relevant features from a dataset. In the cerebellum, the MF
have been known to bring relevant information from the higher
centers (Figure 1).

Cerebellum-inspired spiking neural network
A scalable cerebellar network was modeled (Algorithm 2)

consisting of MF, GrC, GoC, and PC models. One of the
aspects of reconstructing a cerebellar network was to employ
the modern understanding of the cerebellar cortex and to
solve motor task classification and prediction. Each feature was
represented as a set of n neurons. The number of MF inputs was
set based on the dataset feature size. For a dataset with 4 features
and with 7 neurons per feature (see Supplementary Method 5
and Supplementary Table 1), the network consisted of 28
MFs, 371 GrCs, 1 GoC, and 1 PC. Twenty-eight MFs provided
excitatory input to 371 GrCs and 1 GoC. An inhibitory GoC
connection modulated all GrCs and its projection on the PC
was considered as the output to the network. Convergence was
set as in previous studies (Solinas et al., 2010; Vijayan et al.,
2017). The weights were initialized using the standard approach
of randomly picking from a normal distribution at each layer to
avoid the explosion or vanishing of the activation layer output.
The model was simulated for 300 ms. Each MF was mapped to
53 granule cells considering the convergence–divergence ratio
(Eccles et al., 1967a). Every feature was mapped to 7 neurons,
so for a 4-featured data point, there were 28 input neurons
(MF) mapped to GrC and then to the PC. The output of the
PC was decoded to the final output through 3 layered networks.
The Purkinje layer was considered as the pooling layer where
the output from the dense granular layer was summed up. The
output from the pooled layer was sent to the second convolution
layer, where the features are extracted, pooled, and classified
(Figure 1B).

1 https://github.com/compneuro/DLCISNN
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FIGURE 2

The network topology for robotic abstraction to predict trajectory. Input parameters (kinematic parameters) were encoded to MF spike times
using a Gaussian kernel and are temporal coded. The temporal coded information is given as input to the cerebellum-inspired spiking neural
network (CISNN). CISNN is a layered network with MF, GrC, and PC layers. The output of CISNN was obtained as PC spike times which were
then rate coded by employing a stack encoder, the output obtained was presented to a low-cost robotic articulator that mapped the 4-point
trajectory. Changes in sensory and motor values were calculated and fed back to the network to learn and update the existing weights.

Algorithm 1: MF-granular input encoding using a Gaussian Kernel

based convolution.

1. Preprocess data X by normalizing the

features using Min-Max normalization

Dnorm =
xi−min(x)

max(x)−min(x) ∗ (nmax − nmin)+ nmin

Where X is the dataset [xi] ∈ X,

nmax is the new maximum, nmin is the

new minimum

2. For each instance i

3. For each attribute j

4. Compute f(Dnorm(i, j)) pdf for using

a normal distribution function

5. Compute convolution matrix C

by using a full convolution of

the pdf obtained and Dnorm(i, j).
6. Compute the scalable datapoint

for each feature Dj = [µij-3σ,

µij-2σ, µij-σ, µij, µij+σ, µij+2σ,

µij+3σ]

7. Compute w j which was f(µij)

8. Check if C contains datapoints

9. Compute I = wj*µij

10. End if

11. End for

12. For each D

13. Create spiking neurons with

the computed I as current

14. End for

15. End for

Algorithm 2: Cerebellum inspired spiking neural network.

1. Create n MF neurons with xj:NMF = n∗xj
2. Create Granular layer

3. Golgi cells GoC created based on

the MF count NMF

4. Connection weights wMF−GoC

were set to a random range of

values [0.01-0.09] of size

NMF x NGoC
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Where NGoC is the number of Golgi

cells

5. For each GoC

6. For each MF

7. Compute IGoC by adding wMF−GoC

(MF,GoC) at time TMF

Where TMF is the Mossy fiber

spike time

8. End for

9. Create Golgi neuron models

with the computed IGoC using

Eq. (1)-(3)

10. End for

11. Compute NGrC =
(NMF∗53)

4
12. Granule cells GrC created based

on NMF, TMF, NGoC, TGoC
Where TGoC is the Golgi cell

spike timings

13. Connection weights wMF−GrC were

set to a uniform random value of

size NMF x NGrC
14. Connection weights wGoC−GrC

were set to a random range of

values [0.01-0.09] of size

NGoC x NGrC were set

15. Number of activated MF, AMF, for

each GrC was set to 4

16. For each GrC

17. For each AMF

18. Compute IGrC = IGrC+ wMF−GrC

(AMF,GrC) at TMF

19. End for

20. For each GoC

21. Compute IGrC = IGrC- wGoC−GrC
(GoC,GrC) at Golgi cell

spike time TGoC
22. End for

23. Create Granule neuron model with

the computed IGrC and the spike

train using Eq. (4)

24. End for

25. Purkinje cells PC was created based

on the number of output features yj;

NPC = count (yj)

26. Connection weights wGrC−PC were set

to a value of 0.01 of size

NGrC x NPC
27. Number of activated GrC, AGrc, for

each PC was set as 48

28. For each PC

29. For each AGrC
30. Compute IPC = f(TGrC) *

wGrC−PC (AGrC,PC) and the

spike train using Eq. (7)

31. End for

32. Create Purkinje neuron model

with the computed IPC using

Eq. (1)-(3)

33. End for

The spike trains for each neuron in the granule layer was
defined by Eq. (4)

PSPGrc =wTxMF (t)=
∑

wMFxMF (t) (4)

Where wT was the complete weight matrix for the MF-GrC
connection in which xMF was calculated using Eq. (5)

xMF (t)=
∑
tf <t

δ(t−tf ) (5)

The input spike times is represented by tf and δ (x) is a dirac
delta function which follows

δ (x)=

{
1 ifx= 0
0 otherwise

(6)

The same mathematical formulation was applied to the
Purkinje layer Eq. (7)

PSPPC =wTxGrc (t)=
∑

wGrcxGrc (t) (7)

During adaptation and learning, each of the spike train
sequences were convolved with a kernel function Eq. (8)–(9)

x̃MF (t) =
∑

tf
MF∈FMF

κ(t−tf
MF) (8)

x̃Grc (t) =
∑

tf
Grc∈FGrc

κ(t−tf
Grc) (9)

Where FMF and FGrC were the set of spike trains inputs to
the respective granular and Purkinje cell layers.

Decoding spiking information for classification
A decoder block follows the spiking cerebellar network

to decode the firing behavior to real-world information. The
decoding network consisted of an input layer with nodes based
on the time bin, a hidden layer with two nodes and an output
node. The output was decoded using rate-coded information
from the Purkinje cell spike patterns and a convoluted neural
network employing a SoftMax classifier (Algorithm 3). Rate
coding was performed by dividing the time interval into time
bins of 50 ms and counting the number of spikes in each bin.
Spike count was stored as a vector and was used as the input
layer of the convolution neural network. Values for all nodes
were computed using a weighted sum of inputs.
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Learning rules and adaptation
Optimization of the network was done by correcting

the network connection weights with calculated errors. The
predicted output was compared with the actual to compute
errors. During the training phase, connection weights were
updated at the granular layer (wMF−GrC), Purkinje layer
(wGrC−PC), and the decoding network layer (Algorithm 4).

Algorithm 3: Decoding using a rate coded convoluted network.

1. For each output feature y

2. Divide the time interval T into B

time bins of time t : T = B*t

3. Count the number of spikes in

each bin as vector

Cs = {n1,n2. . ..nB}

4. Assign [Cs] set as input layer

and No. nodes j = length(Cs)

5. Assign No. Hidden layers i = 1;

and No. hidden nodes j = 2

6. Assign No. of output node j = 1

7. Assign weights w were set at each

layer of size j * i

8. For each layer i

9. For each node j

10. Compute sj =
∑

wj,ixi+bi

11. Compute f
(
sj
)
=

1
1+e−sj

12. End for

13. End for

14. Compute output node s =
∑

w∗x+b
15. Compute f (s) = 1

1+e−s

16. Check if f (s) ≤ 0.5
17. Assign y’ = 1

18. Else

19. Assign y’ = 0

20. End if

21. End for

Algorithm 4: Learnadapt for network learning and weight adaptation.

1. Compute the error e = y-y’

Where y is the actual output and y’

is the predicted output

2. Compute the adapted weight for

wMF−GrC

3. For each MF

4. For each GrC

5. Assign learning rate lr = 0.1

6. Compute wMF−GrC(n+1) = wMF−GrC(n)

-(lr*e* wMF−GrC(n))

7. End for

8. End for

9. Compute the adapted weight for

wGrC−PC
10. For each GrC

11. For each PC

12. Assign lr = 0.35

13. Compute

wGrC−PC(n+1) = wGrC−PC(n)

-(lr*e*wGrC−PC(n))

14. End for

15. End for

16. Compute adapted weight at Rate

Coded Convoluted network

17. Compute error signal

es = (y-y’)*y’*(1-y’)

18. Assign lr = 0.15

19. Compute w(n+1) = w(n)-(lr*es*s(n))

20. For each hidden layer i

21. For each hidden node j

22. Assign y’ = sj

23. For each previous layer

node k

24. Compute 4e =
∑

esj(i+1)∗w(i)jk
25. End for

26. Compute esj (i) = 4e∗y
′

∗(1−y
′

)

27. Check if i = 1

28. Compute

wji(n+1)=wji(n)-(lr*es*xj(n))

29. Else

30. Compute

wji(n+1)=wji(n)-(lr*es*sj−1(n))

31. End for

32. End for

The learning rule for updating synaptic weights was
employed as in Eqs (10)–(12)

1wGrc (t) = λx̃Grc (t) em (10)

1wMF (t) = λx̃MF (t) es (11)

Where λ was the learning rate, es and em were the sensory error
and motor error, respectively, used for the prediction task. For
the classification task, a single error representation was used (es

and em errors were considered the same) and was calculated
using the general form,

e(t) = (yd(t)− yout(t)) (12)

Here, yd was the desired motor or sensory commands and
yout was the predicted.

The weights across the network were modified (10.11) based
on the architecture of the modeled network and were critical
to the changes observed in the input layer of the model as
observed in deep convolution networks (Diehl et al., 2015;
Pfeiffer and Pfeil, 2018). Only a small portion of the granule
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cells was turned silent, and this sudden sparseness itself was
important for the learning process (Galliano et al., 2013).
Bidirectional plasticity was introduced at both the synapses, with
the weight at MF-GrC and GrC-PC being updated based on a
Hebbian-like learning rule (error instead of inputs), and weights
at the decoding network were updated based on a modified
backpropagation learning rule. Optimized learning rates were
used for the study, which was obtained from an extensive trial-
and-error method (see Supplementary Method 3) based on
the rate of cerebellar learning at various synapses, with PF-PC
having the fastest learning to the PC-DCN with the slowest
learning (Schweighofer and Arbib, 1998; D’Angelo et al., 2016b;
Herzfeld et al., 2020). For the cerebellar network, the learning
rates for the algorithm were kept as low as 0.1, 0.35, and 0.15
[optimal choice based on trial-and-error (see Supplementary
Method 3 and Supplementary Figure 3)] for the MF-GrC,
PF-PC, and PC-DCN connections, respectively.

The MATLAB (Mathworks, USA) source code for
the cerebellar network for classification is available at
https://github.com/compneuro/DLCISNN and will be made
available on ModelDB.

Dataset

To train and validate this model (Algorithm 5), various
datasets from the UCI repository (Lichman, 2013) were used.
The algorithm was tested on autism spectrum disorder (ASD)
for children, adolescents and adults dataset (Thabtah, 2017),
Iris dataset, play tennis (Soman et al., 2005), and robotic arm
dataset (Vijayan et al., 2013). All the 3 ASD datasets had 19
features with more than 100 instances, iris and play tennis
had 4 features, and the robotic arm dataset had 9 features.
WEKA data mining platform (Witten et al., 2011) and the deep
cognition platform (deepcognition.ai) were used for comparing
the cerebellum model with other ML algorithms.

Algorithm 5: CISNN training and testing.

1. Get the dataset DT from the user

2. Split DT into training (DTr) and

test data (DTs) using 66% split

3. For each DTr

4. Encoding the realworld data

Tmfspiketime = MF-Granular input

Encoding (DTr)

5. Create spiking neural network

Tpcspiketime = Cerebellum Inspired

Spiking Neural Network (Tmfspiketime)

6. Decode the spiking information to

output y’ = Decoding (Tpcspiketime)

7. Compute the error e = y-y’

8. End for

9. For each epoch

10. Update network weights using

Learnadapt(e)

11. End for

12. For each DTs

13. Encoding the realworld data

Tmfspiketime = MF-Granular input

Encoding (DTs)

14. Create spiking neural network

Tpcspiketime = Cerebellum Inspired

Spiking Neural Network (Tmfspiketime)

15. Decode the spiking information to

output y’ = Decoding (Tpcspiketime)

16. End for

Modeling motor articulation control

A modified version of the cerebellum-inspired spiking
neural network (Vijayan et al., 2017; Figure 2) was also
used to predict the inverse kinematics of a simple sensor-
free robotic articulator. However, inverse kinematics was ill-
posed concerning the solution’s existence, uniqueness, and
stability, and solving this required multilayer networks with
different regularization functions (Ogawa and Kanada, 2010).
The current model was designed to solve these problems. The
model input features were the kinematic parameters which
were end-effector coordinates or motor values or both, that
were provided to the network model to predict the output
in the form of class labels or motor angles. Both input and
output were decided based on the task. A 6-degree-of-freedom
(DOF) robotic arm dataset generated from the robotic arm was
used to test the predicted result (Nutakki et al., 2016; also see
Supplementary Figure 1). In this case, the cerebellar network
model for prediction consisted of 21 MF, 279 GrC, 1 GoC,
and 6 PC for encoding seven features per neuron. The neurons
were scaled up for different tasks based on the input features
and user-defined MF count (see Supplementary Method 5
and Supplementary Table 1). As the cerebellum is known
for error-driven motor learning, a dual error representation
(sensory error and motor error) was considered for the error
correction (Popa et al., 2016). Decoded values were used to
calculate the two types of errors: sensory error and motor error.
The motor error was considered as the difference between the
desired and the predicted motor angle, while sensory error
represented the change in end-effector coordinates defined in
the Cartesian space. A geometric estimate was used to calculate
the end-effector coordinates from predicted motor angles, and
this change in end-effector coordinates was considered as a
sensory error. The sensory error feedback was to minimize the
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error, which biologically would have been done by the other
loops in the circuit (Doya, 2000). In the case of motor error, it
represents the error signal through the CF to the PC. Learning
at the different layers has been designed based on the two types
of errors. The sensory error was used to update the weight at
the MF-GrC and the motor error at the GrC-PC and the layers
in the decoder. Normalization functions were used to optimize
the predicted joint angles, which was considered a regularization
function. The predicted values were normalized using a min-
max normalization function from a 0–1 range to 0–4.45, which
corresponded to the angle in radians.

Sparseness and capacity measures

The sparseness index (SI) (Tartaglia et al., 2015) of the
granular layer cells was calculated to measure the sparseness
involved in the coding scheme at the granular layer. The SI was
calculated as in Eq. (13).

SI =
1− A
1− 1

n
(13)

Where A was calculated as in Eq. (14) and n is the number
of stimuli.

A =
(
∑n

1 vi/n)
2∑n

1 (vi2/n)
(14)

Where vi represents the mean firing rates to a set of stimuli,
and SI can take only values between 0 and 1.

SI =

{
0 when vi = v for all i (A = 1)

1 when vi = v and vj6=i = 0 (A = 1
n )

(15)

Analytically, it was difficult to estimate the number of
input-output associations that can be stored in a neuron as it
depended on the weights’ dimensionality and the number of
labeled patterns. Extensive computer simulations were required
to calculate the number of input-output associations stored in
a neuron (Memmesheimer et al., 2014). The storage capacity
(αc) of the Purkinje cells (Rubin et al., 2010; Clopath et al.,
2012; Vijayan et al., 2015) in the network was also calculated
to quantify the number of input-output associations that can
be stored. The storage capacity with respect to stability constant
(κ) and mean rate of output spike time (rout τ) was calculated
Eqs. (17) (18) based on the duration of input pattern (T) for
both the granule cell and Purkinje cell and the number of active
MFs (Nτ) in a particular time window. The stability constant
of the neuron was estimated using the Eq. (16) (Rubin et al.,
2010), where τs and τm represent the synaptic time constant and
membrane time constant.

κ =
T
√

τsτm
(16)

αc =
lnlnκ

2ln2
(17)

T
Nτ

= αc(routτ) (18)

The membrane time constant (τm) for the Purkinje cell was
taken as 64 ± 17 ms (Roth and Hausser, 2001) and the granule
cell was taken as 1.4 ± 0.12 ms (Delvendahl et al., 2015). The
synaptic time constant (τs) was calculated as τm/4 (Rubin et al.,
2010). When MF inputs were provided, the granule cells had
a rout in the range 10–50 Hz (Gabbiani et al., 1994; D’Angelo
et al., 2001). In the case of PC, which was a spontaneous firing
neuron model has a rout of 30 Hz, and as PF impinged onto the
PC dendrites, the rout had a range of 30–500 Hz (Khaliq and
Raman, 2005; Masoli et al., 2015). For the theoretical calculation
of storage capacity, two inequalities exist; in the case of GrC, the
routτ < = 0.1 was used and for PC routτ > = 1.

Graphics processing unit
implementation of the cerebellar input
layer model

To compare the computational costs during scaling, a
modified version of the network implementation on the GPU
platform was employed (see Supplementary Figure 2). Several
network modules resembling the cerebellar microzones were
reconstructed by maintaining the realistic neural density as
reported in Solinas et al. (2010). Since granule neurons were
more numerous than the other types of neurons reconstructed
in the cerebellar cortex and the computations in the granular
layer were embarrassingly parallel, GPU was used as a candidate
to parallelly execute the cerebellar granular layer neurons.
For GPGPU simulations, data-parallel processing mapped data
elements to parallel processing threads, and the memory
requirements for GPU processes were calculated at runtime,
suggesting our model was automatically scalable in terms of
both computational units and memory requirements (Nair et al.,
2014).

Results

Cerebellar circuit operates as a deep
learning neuronal machine

The encoding algorithm attributed spike timing and
precision as a data-dependent coding feature. Reliability of input
transformation has been associated with the efficacy of spike
generation attributed to MF-GrC relays as well as spike precision
and timing (Cathala et al., 2003). The initial convolution layers
represented transformation by the granular layer followed by
aggregations at the Purkinje layer representing the bidirectional
plasticity modulated by PF-PC input convergence (Jörntell and
Hansel, 2006). For classification and trajectory prediction-based
studies, the number of spiking neurons in the input layer and
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the convolution layer increased with an increase in the number
of features. Each feature set was encoded as an input pattern
of spike trains. The number of MF was chosen at the user’s
discretion, and in the current model, seven neurons were used
as they could represent the center-surround spread of data.
The input data were mapped to a higher hyperspace allowing
seven different sets of patterns for each feature in an instance,
suggesting the cerebellum input layer mapping modalities
involve input transformations like those reported for sensory
tasks, such as VOR and EBCC (Medina and Mauk, 2000).

An inhibitory Golgi behavior was modeled to provide
inhibitory input to the network, and it was observed that when
an inhibitory spike train was introduced to the network, the
granular layer showed a synchronous behavior (Figure 3A).
From the average firing rate of the GrCs, it was also observed
that minimal learning happens at the MF-GrC (Figures 3B,C)
when compared with the PF-PC synapse. After learning, it
was also observed that some of the granule cells turned silent
(Figure 3A). There were also cases wherein after the initial
iteration there were granule cells that were in a quiescent
state and as learning progresses these neurons tend to fire and
other neurons tend to change to a quiescent state. Learning at
the different layers was representative of the plasticity-based
learning at the MF-GrC, PF-PC, and PC-DCN. PC-DCN in
the model was a transformation function that has error-based
learning. It was observed that for a classification-related study
when the learning rate was increased from 0.01 to 0.23 at the PC-
DCN synaptic model, the training was fine-tuned at less than 5
iterations, thus mimicking the cerebellar fine-tuning behavior.

Cerebellum-based model noisily
encodes input patterns

The degree of sparseness for granule layers neurons was
analyzed using the SI measure. The SI depended on the firing
rate based on the stimulus, and the mean SI for the granular
layer neurons was observed to be 0.9855 ± 0.0625 before the
training and 0.6276± 0.22 after the training (Figure 4A). As the
SI increased, the signal-to-noise ratio increased, thus increasing
the memory capacity, thereby decreasing classification error
(Babadi and Sompolinsky, 2014; Rössert et al., 2015).

After the training, the PC spikes increase and tend to
increase the firing average also (Figures 5A,B). The storage
capacity (or the length of sequence that could be learned) of
the modeled neurons was analyzed to understand the neurons’
ability to store stimuli-response associations. The mean output
spike times for the PC range from 30 to 500 Hz (Khaliq and
Raman, 2005; Masoli et al., 2015) and with an increase in
firing frequency, storage capacity decreased (Figure 5C). For
the granule cells whose mean output spike times range from
10 to 50 Hz (Gabbiani et al., 1994; D’Angelo et al., 2001), the
capacity of the cell was found to reduce with an increase in

the firing frequency (Figure 4C). The reliability of the neuronal
models was calculated from the storage capacity (Figures 4B,
5D). As the reliability factor (k) increased, the firing frequency
also increased without increasing the information capacity of
the neuron. It was observed that the PC showed a higher
storage capacity compared with the GrC. The PC was attributed
to an increase in storage capacity (Varshney et al., 2006).
A comparison study (Vijayan et al., 2015) was previously carried
out on the storage capacity estimated and indicated a similar
result of∼0.2–0.3.

Comparison with other machine
learning algorithms

ML algorithms, LibSVM, MLP classifier, Dl4jMlp classifier,
and RBF network were used to compare the performance of
the cerebellum-inspired neural network model (Figure 6A). The
cerebellar network showed an increase in accuracy with training
epochs when the learning rate at PC-DCN was less than 0.01
and saturated slowly compared with the other ML methods. It
was also observed that as the learning rate at PC-DCN increases
from 0.01 to 0.23 accuracy reaches optimum by less than 5
epochs which is one of the features of DLNs. Although less
efficient on small datasets, deep learning algorithms show 100%
accuracy, which may be attributed to rote learning. Among the
classifiers, the Dl4jMlpClassifier, which resembled the cerebellar
model had a higher test efficiency of 96.96% for ASD_adolescent
dataset, 95.6% for ASD_adult dataset, 100% for ASD_adult
dataset, 78.4% for Iris dataset, 80% for play_tennis, and 64.28%
for robotic arm data.

Feature generalization capability was
input dependent

The model was used to evaluate the classification accuracy
on different ML datasets using a 66% split. To test the
generalization capabilities of the cerebellum-like spiking
network model, various ML datasets were used, and the
number of instances involved in the training process was: 131
(ASD_adult), 65 (ASD_adolescent), 164 (ASD_child), 99 (Iris),
27 (robotic arm), and 10 (play_tennis). Training time and test
time increased with an increase in the number of features as
the network formed was based on the number of input features
(Figures 6B,C). Since input organization was not strictly
connected to a layered set of neurons, the complexity of a feature
in relation to all other features seemed more relevant while
recruiting a dataset-driven architecture. Scaling to very large
datasets, required parallelization of the inputs layer geometry
reducing the time complexity associated with the network. In
this direction, we attempted a simpler input code as volume
geometry without adaptation (Supplementary Figure 2).
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FIGURE 3

Firing rate distribution encoded input data in the modeled granule cells in the network. (A) Firing dynamics of GrCs pre and post-learning for
300 ms show the spread of temporal data in the input granular layer resulting from a combination of 4 random MF connections. The red dots
represent the spike times of 279 GrC pre-learning and the blue dots represent the updated spike times post-learning. The inset shows the
change in the firing dynamics at a particular time point for 1 GrC. Post-learning, some of the granule cells which were firing (e.g., only red raster
in GrC1) turn quiescent. (B) Average voltage traces of granule neurons with standard deviation showed minimal change in the firing dynamics
before (red) and after (blue) learning (C). Weights before (red) and after (blue) learning suggest, post learning some GrCs adapt the weights to
remain in a state of non-firing.
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FIGURE 4

Quantification of stored information in the granule layer neurons of the cerebellum-inspired model. (A) Granular layer encoding relied on
connection sparseness. The sparseness index of 279 granule neurons in the network with the encoded stimuli as input was calculated after 50
epochs. As iterations increase the granule cells tend to be sparser (SI nearing 1) as seen from the cumulative frequency. (B) Storage capacity (αc)
of granule neurons with respect to stability constant (κ) represents the formation and storage of new patterns. The red dot represents αc for a
GrC whose membrane time constant (τm) was 1.4 ± 0.12 ms. (C) Storage capacity (αc) of GrC with a firing frequency of 10–50 Hz was
calculated and as the mean firing output spike time (routτ) increases, the storage capacity decreases steeply suggesting that a reduction in firing
frequency leads to an increase in pattern storage.

With the granular layer computations being inherently
parallel, we compared the implementation efficacy of 3.5
million granule neurons (Supplementary Figure 2). Large-
scale implementations were feasible on GPGPUs with code
parallelization. A smaller network model was utilized to
compare CPU and GPU implementations, indicating multi-
factor speedup with the GPU version (Nair et al., 2015). The
generalization may also be attributed to a subset of dense
neurons being activated, weights adapted, and sparse recoding
with a larger number of neurons in physiologically feasible
geometries (Diwakar et al., 2011).

Motor articulation control with the
cerebellum-inspired spiking neural
network model

Cerebellum-inspired SNN could also predict trajectories
by generating motor angles from end-effector coordinates
without explicit kinematic representations. The network

model represented the inverse kinematics transformations
and predicted trajectories. For a single data point, the sensory
consequence represented by the 3 end-effector coordinates
(such as X, Y, and Z) was used to predict the 6 theta values,
with the use of an encoder unit, 307 neurons, and a decoder for
motor values, which converted to a “motor command” for the
next point. For a short trajectory with four points (Figure 7),
1,228 neurons were needed for the robotic arm to trace the
path. It was observed that the motor values changed more
(Figure 7A) when compared with the end-effector coordinates,
with negligible errors (Figure 7B). Except for the first motor
value, all others were initially identical and had changed only in
the third and fourth points, so the dotted line appeared to be
superimposed (Figure 7A). The motor error and sensory error
calculation were based on the difference between predicted
and desired motor angle/end-effector coordinates. The motor
error was used to update the weights at PF-PC and PC-DCN
weights, and sensory error was used to update the weights
at the MF-GrC. After training the network, a trajectory was
plotted, and the change in features and output values showed
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FIGURE 5

Firing dynamics and quantification of stored input-output association in the Purkinje layer neurons. (A) Spike variability of the 6 Purkinje neurons
in the network, pre (red) and post (blue) learning. As learning adaptation improves, the firing frequency of the PC was also observed to increase.
(B) Superimposition of the average firing dynamics of PC (pre and post) showed an increase in the firing frequency after learning adaptation with
an increase in standard deviation (C). Storage capacity (αc) of PC with a firing frequency of 30–500 Hz was calculated and as mean firing output
spike time (routτ) increases, the storage capacity decreases gradually (D). Storage capacity (αc) of PC with stability constant (κ) representing the
storage of new patterns at the synapse. Purkinje neuron (red dot) with a membrane time constant (τm) of 64 ± 17 ms was used for the
reconstruction of the network.

minimal error suggesting the algorithm minimized both the
sensory and motor error (see Supplementary Figure 4).
With network configuration that matched the cerebellum’s
cytoarchitecture and connectivity, the outputs matched our
previous implementation (Vijayan et al., 2017). The model
mimicked the feedback controller functioning like the olivo-
cerebellar circuit where the PC provided negative feedback to
IO through the DCN, thereby reducing the network errors.

Discussion

The cerebellar spiking model was an abstraction of a
bio-inspired architecture and could reconstruct the cerebellar
network to predict and classify multimodal input. The
model reduced multidimensional data using spatiotemporal
characteristics of its spiking neurons and employed plasticity
rules of the neuronal circuit. The model also suggests that the
cerebellar microzone functions may have strong correlations

to data encoding properties and may show adaptations while
fine-tuning movement tasks. The current algorithm suggests
granular layer geometries may help concurrent and implicit
executions of large-scale pattern recoding problems, as shown
by the model’s feature classification.

Pattern classification depended on
granule neuron encoding of the
stimuli, purkinje cells temporal
dynamics, and induced plasticity

MF inputs allow pattern representation through an
abundance of the granule cells engaging the modalities of
sensory patterns by similar encoding mechanisms. The network
model used target representation to discriminate patterns from
inputs. Multimodal conveyance of sensory signals through MF
and the error signals by CF suggested by the Marr–Albus–Ito
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FIGURE 6

Comparison of the cerebellar model with machine learning algorithms on standard datasets (A). Training accuracy of machine learning
algorithms on different datasets showed that the cerebellar model could be used on a flexible dataset and rote learning was minimized.
(B) Computational time required by the cerebellar model during the training and testing phase on various datasets. (C) Dependency of network
size on training time.
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FIGURE 7

Variability on sensory and motor prediction for a 4-point trajectory by a low-cost arm. (A) Motor variability: Variability of the motor predictions
was carried out using the cerebellar model that predicts the motor consequences from sensory commands. Motor errors were calculated from
the actual values (dotted lines) and predicted (solid lines) for 6 motors. (B) Sensory variability: Sensory consequences of the predicted motor
values were calculated using forward kinematics and errors associated were calculated as the difference from the actual to the predicted
end-effector coordinates. Sensory error representations showed minimal variations and represented in the error bars some of which were
negligibly small and very insignificant to be displayed.

theory may be an efficient representation for the cerebellum-
inspired classifiers to discriminate specific patterns using the
feed-forward and feedback mechanisms of the granular layer.

The algorithm employed time windowing to recode
patterns, although in this current case study, only a small subset
of different unique patterns was sufficient for the datasets used.
In the cerebellum, GrC recoding uses the phenomena of time
windowing (D’Angelo and Zeeuw, 2008), and the activation
patterns in this one-to-many mapping parallel processing
capabilities. The simulations suggest that time windows allow
incorporating the parallel convolutional processing capability
into the encoding performed by the granule cells, suggesting
a specific convergence–divergence geometry could encode
multiple pattern abstractions. A similar subset of GrCs may
handle a different kind of task based on the same time window.
GoC-GrC inhibition was crucial for pattern discrimination
at the granule cell and supported the experimental data
related to the time window hypothesis (Solinas et al., 2010).
Inhibition-induced synchronicity could be relevant for pattern
identification in the PC.

Reversible learning attributed to bidirectional plasticity at
the MF-GrC and PF-PC synapses may be simplified as in the
implemented model for recurrent learning tasks. A key role of
such implementations would be a generalization task as reported
in recent studies, and the current implementation employs
the generalization to sparse and dense computations predicted
by local field potential reconstructions (Diwakar et al., 2011).
The model’s generalization ability depended on the overlap or
intersection of activated neurons in the granule layer. Like the
learning capacity of a biological organism in learning from one
experience to another, feature generalization looks at the stored
neural responses and uses the same responses to mimic similar
input patterns. A weight change is the main difference between
connections. In this current study, the SI was used to measure

the feature generalization capability at the granule layer as the
input data were encoded to MFs. Figure 4A shows that some
neurons respond to one type of input and some do not, but
most neurons follow a normal distribution representing the
generalization capability. The model network can be extended to
a large number of clusters of GrC (randomness can be replaced
with more biologically relevant jitter) to compare experimental
patterns and their ensemble manifestations.

The cerebellar network model
implicitly reconstructed inverse
kinematics of a 6-degree of freedom
robotic arm

A cluster of neurons may encode the position into a
matching transformation representing the force position
matrix. In the model, the kinematic transformation depends
on the granular layer circuit and the consequential PC
output by involving transformations of the network’s
spatiotemporal domain and space-force geometry. In the
CISNN representation, a single joint was characterized by a
collection of neurons attributing to the concept of different
body muscles being controlled by different lobules in the
cerebellar cortex (Bolk, 1906) and hence used the same to scale
up the models based on the trajectory for better performance.
By disabling certain GrCs during simulations, it was observed
that errors in trajectory tracking increased, and the robotic arm
could not complete the desired trajectory mapping. ANN-based
single-layered architecture with a feed-forward granular layer
(Bratby et al., 2016) or a feed-forward Purkinje layer (Clopath
and Brunel, 2013) have been previously used for pattern
separation or classification. Still, an SNN with multiple layers
would be better for mathematically independent tasks. The
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somatotopic organization of the cerebellum at a functional level
may involve similar representations by the clusters of granule
neurons at the input layer, and modeling-based information
processing relies on the connection geometries and the afferent
pathways that bring in the information. The CISNN employs
the coding aspects of the cerebellum’s input layer and the
discriminability of the Purkinje layer for performing sensory
guidance of movement.

Quantitative measure of the memory
representation

A subset of seven unique recoded MF patterns for each
input feature contributed to the distributed representation of
the granule neurons in the network. A random combination of
the different stimuli causes the average granule layer responses
to be uncorrelated and more identical or remain in a quiescent
state. But as the inhibitory neurons are introduced to the
granular layer, the sparseness increases, causing variability in
the neuronal connections. Changes in weight and membrane
time constant were some of the other factors that affect the
sparseness, which was not considered in the study. Storage
of random input-output associations in the Purkinje cell was
estimated using storage capacity. Compared with the granule
cells, the Purkinje neuron had a higher storage capacity which
could be attributed to the bistable nature of the cell and its large
dendritic arbor and that memory consolidation happened at
the dendritic synapses. Studies (Li et al., 2022) had shown that
higher information processing capacity led to lower neuronal
activity and faster responses, suggesting that during the learning
phase, neural engagement increased abruptly at the start of
learning and then gradually declined. For GrCs, the storage
capacity reduced steeply with firing frequency proposing the
role of associative mapping over the storage of input-output
associations and was associated with the Purkinje cells in real
circuits. As the mean firing rate increased, the storage capacity
decreased gradually, as observed in studies (Memmesheimer
et al., 2014) denoting an inverse relation between rout and
storage capacity.

Cerebellar network model as a deep
learning algorithm

Cerebellum input divergence and PF-PC mapping may
serve as the convolutive coding layers employed by other
DLN. A typical DLN involved multiple convolution layers,
which may be the function of classification-related microcircuits
in the cerebellum. In the CISNN, these convolution layers
were represented by MF-GrC, MF-GoC-GrC, and GrC-PC
transformations and their learning rules (Jörntell and Hansel,
2006) and match experimental data of the neurons performing

temporal and combinatorial operations (Mapelli et al., 2010;
Gilmer and Person, 2017). Taking advantage of these dynamics
in ANN may help concurrent and implicit discriminations
of large-scale patterns. From an algorithmic standpoint, the
cerebellum-inspired deep learning model is scalable based on
the input features and user-defined MFs and can accommodate
multimodal input patterns functioning as a high dimensional
coder for spatiotemporal data. Projected spatiotemporal coding
properties of the cerebellum allowed converting real-world
data into spike trains and were used to classify the dataset.
Comparing the cerebellar model with different datasets and
other standard ML algorithms suggests that the model functions
as a good classifier with considerable accuracy, which tends
to increase with epoch when the learning rate was reduced,
suggesting an efficient learning mechanism. Even though the
performance of other well-known algorithms, such as MLP,
Dl4jMlpClassifier, and RBF networks fractionally outperform
the cerebellar model in terms of accuracy, the model was
sufficient enough to do the task of classification as well
as trajectory prediction for a low-cost sensor-free robotic
articulator. The robotic arm was developed in the lab whose
total cost was < 5$ (Vijayan et al., 2013), and a network model
with fewer neurons was able to perform the specified tasks. The
cerebellum-inspired spiking neural network was optimized in
less than 50 epochs suggesting that employing a feed-forward
cerebellum-based model could be used as a supervised classifier
and predictor for big data.

Scaling up the spiking network model
and modeling cerebellar function

MF-GrC-GoC is an internal loop that monitors the
input by providing back-and forth-signals at the GrC-GoC
connection. Recurrent inhibitory loops play a significant role
in error minimization in the cerebellum. Some loops are
computationally costly and were avoided. This may need to be
reconsidered for big data operations. For computational efficacy,
the algorithm did not model silent or non-spiking granule cells
and the optimization of learning was based directly on the
abstractions of the non-silent cells. The burden on learning was
optimized by the granule cell’s silent/non-silent ratio, which
could be redefined using convergence–divergence.

The coordination of articulator joints may be understood
from the spiking reconstruction as in CISNN, and the scalability
of the cerebellar input layer clusters can be exploited to
understand the cerebellar functions in the context of robotics
computationally. The algorithm does not include any sensor
or visual-based inputs, thereby decoupling non-motor sensory
inputs from the cerebellum-based internal models. As a deep
learning algorithm, the CISNN poses many challenges, such as
overfitting a model to its training data.
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Prediction accuracy relied on the role of dual representation
of errors (such as sensory error and motor error) (Popa et al.,
2012), which may be approximated in the learning process
as the model generalized the prediction process. The model’s
inability to discriminate sensory or motor errors could be
attributed to the lack of CF-related error feedback in the
hardware we employed to generate the trajectories. Even after
the training phase, some of the weights remained unoptimized
due to the weight assignments, which can be resolved by
introducing heuristic initialization, such as Xavier’s or Kaiming’s
initialization that employed ReLu, leaky ReLu, or tanh functions.

Optimizing learning rates for the different neurons was
a big challenge, requiring tweaking the different parameters
without changing the neuronal dynamics. Larger models yield
better performance when compared with smaller models (Li
et al., 2013). For scaling up the model, a larger dataset or more
MFs have to be introduced, which in turn creates a need for
high computation power for running the simulations. Scaled-
up SNN are now used to learn spatiotemporal dynamic patterns
of biosignals and map neuronal connections created during the
learning process (Gholami Doborjeh et al., 2018).

Like DLN models, the CISNN architecture may require
scaling optimizations, reducing the time complexity for large
datasets (with the four Vs) to solve real-world problems. Scaling
the model for very large datasets required parallelization of
the input layer geometry, and faster learning in terms of time
complexity may be attained using GPU-based processing units.
The advantage of this framework is that the algorithm can be
reimplemented on GPGPUs and FPGA hardware. Although
we tested with smaller sizes and resolutions, these parallel
GPU implementations may allow scaling this cerebellum-
inspired spiking neural network for big data and streaming data
classifications.

The model may be relevant to reconstruct neurological
disorders mimicking programmed failure of robotic motor
joints during trajectory mapping by articulators. Although we
did not implement all the 16 known forms of plasticity (Gao
et al., 2012; D’Angelo et al., 2016a) and reinforcement learning
in the MF-GrC pathway (Wagner et al., 2017), this cerebellum-
inspired implementation currently serves as a reductionist
mapping between the convergence–divergence ratios of neurons
and connection geometries and could act as a testbed for
understanding dysfunctions. The model is relevant and can be
extended for the movement-related reconstruction of inverse
kinematics as well as modeling coordination-related changes.

Comparison with other cerebellar
models

The current model was reconstructed based on
known microcircuitry of the cerebellum (Eccles, 1967),

electrophysiological behavior (D’Angelo et al., 2001), and
significant plasticity rules (Mapelli et al., 2015). Even though
there are several models available that look at the different
aspects of the cerebellum (Casellato et al., 2012; Garrido et al.,
2013; Antonietti et al., 2015; D’Angelo et al., 2016b; Luque
et al., 2016; Yamaura et al., 2020; Kuriyama et al., 2021),
the present model covers certain aspects of the cerebellum
while some loops are skipped. Initial models looked at only
single-layered neurons (Marr, 1969; Albus, 1971) which
were extended with many other layers and plasticity rules.
Models such as EDLUT (Carrillo et al., 2008) are more
focused on the event-driven simulation scheme based on
lookup tables that would reduce the time involved with
the numerical calculation. In the current model, numerical
calculations are introduced to best capture the processed
information and filter the information that has to be sent. For
specific tasks, there are networks with cells arranged in 3D
structure geometry that can be simulated with supercomputers
giving it the dynamics of the cerebellum (Yamaura et al.,
2020). Compared with one of the closest earlier models
(Hausknecht et al., 2016) where multiple modular cerebellar
circuits have been considered to train different tasks, here
the current model has considered a single module of the
cerebellar architecture which could reduce the complexity of
the network.

The cerebellar model was made scalable based on input data
with fewer cells and loops, which has a crucial role in predicting
and classifying learning data. The uniqueness of the current
model is the incorporation of the recoding and associative
mapping properties of the cerebellar granular layer with
excitatory GrC and an inhibitory GoC, pattern discrimination
property at the Purkinje layer, and the interpretational
application of DCN along with an encoding and decoding
module which involves the transformation of real-world data to
spiking information and vice versa.

Conclusion

The functions of the cerebellum in terms of fast
computations and self-organizing the mapping of input
patterns are yet to be better understood. This algorithmic
model is a computational step in interpreting the complex
control behind pattern reorganization of the motor and
other signals while exploring the cerebellar architecture as a
deep learning model. While error analysis, data sparseness,
optimal adaptation of weights, and the relationships to
known plasticity rules remain to be implemented, this model
allows generalization within the context of spiking neural
architecture-based pattern classification.

This cerebellar network model would allow to explore
multimodal circuit-dependent pattern discrimination and
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sensorimotor transformations. The proposed algorithm
shows potential in exhibiting dynamical properties, such as
(1) improved accuracy and prediction with learning, (2)
autonomous update, (3) neuronal network scalability with
distributed plasticity. Given the theoretical goals of such an
implementation, this model will also be adapted and extended
to include recurrent loops and adaptive reinforcement learning
and can be employed on big datasets. The model can be
implemented on VLSI hardware and FPGA boards because of
the simpler and modular mathematical operations.

The proposed model could help understand movement-
related pattern recognition, such as playing a game of chess
and improve models for motor articulation control by storing
as well as predicting trajectories for path optimization, such
as moving a cup of water. It could be used as a prediction
mechanism for pathophysiological conditions and aid in BCI
and neuroprosthesis like an artificial limb can be used as a
deep learning model to understand the cerebellar function
and dysfunctions.

With the cerebellar information and cellular losses that
occur in neurological conditions, these models can be used
to fine-tune tasks involving various mathematical complexity
without significantly adapting the connectivity and circuit. With
that, we believe this model may have prominent usability roles
for experimental neuroscientists to hypothesize and explore
other functions.
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