
ORIGINAL RESEARCH
published: 07 June 2022

doi: 10.3389/fnins.2022.907697

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 907697

Edited by:

Sophie Triantaphillidou,

University of Westminster,

United Kingdom

Reviewed by:

Javier Vazquez-Corral,

Universitat Autònoma de Barcelona,

Spain

Vien Cheung,

University of Leeds, United Kingdom

*Correspondence:

Hao Xie

hao.xie@mail.rit.edu

Specialty section:

This article was submitted to

Frontiers in Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 30 March 2022

Accepted: 18 May 2022

Published: 07 June 2022

Citation:

Xie H, Wanat R and Fairchild MD

(2022) Perceived Color Gamut in

Images: From Boundary to Difference.

Front. Neurosci. 16:907697.

doi: 10.3389/fnins.2022.907697

Perceived Color Gamut in Images:
From Boundary to Difference
Hao Xie 1*, Robert Wanat 2 and Mark D. Fairchild 1

1 Program of Color Science, Munsell Color Science Laboratory, Rochester Institute of Technology, Rochester, NY,

United States, 2 LG Electronics/Zenith R&D, San Jose, CA, United States

A larger display color gamut volume (CGV) is expected to produce higher perceived

brightness and colorfulness of the images displayed. However, display control algorithms

such as gamut mapping and color conversion need to be carefully controlled to fully take

advantage of the higher luminance and more saturated display primaries. Using RGBW

displays (RGB plus a white channel) as a special case in contrast to RGB displays, it

is demonstrated that a larger RGB display gamut enclosed by the boundary did not

guarantee a larger color gamut perceived in images. Five gamuts with different white

channel contributions were simulated, and seven different image contents were curated

and rendered on each display. Using a paired comparison experiment with 33 observers,

the perceived scales of color gamut as perceived brightness and colorfulness were

derived. The results show more correlation with the image-wise than display-wise CGV

and can be explained with image color differences. Our findings highlight the importance

of considering image contents when optimizing display gamut volume, which can be

guided by such image-wise analysis.

Keywords: color gamut volume, image quality, gamut boundary, image color difference, display primaries

1. INTRODUCTION

Quantifying the set of colors that is reproducible on a display, i.e., the display gamut, has been
useful when choosing display primaries to optimize color-related performance. Previous work
mostly focused on describing the boundaries of such set, represented as either a triangle for three-
primary displays on a 2D chromaticity diagram (Xie et al., 2017) or more preferably a color gamut
volume (CGV) in a 3D color space (Masaoka et al., 2020). A larger CGV is expected to bring more
brightness and colorfulness to the delivered images. For high dynamic range (HDR) imaging, the
increase in absolute peak luminance is another factor to consider for CGV calculation.

However, when determining the final visual experience that the display offers, the resulting
quality will also depend on the utilization of its rendering capability to accommodate various
types of visual content, similar to how a painter chooses colors from the palette to the canvas.
For example, when an image spans only a small range of colorimetric values within the gamut,
further expansion of the gamut would offer little benefit to colorimetric reproduction accuracy. In
general, for each image, there exist multiple ways in which any pixel color can be assigned to a
color within the display gamut. Gamut mapping, color conversion, and other related operations
are also critical when quantifying the perceived color gamut of images. Adopting the image
quality circle concept proposed by Engeldrum (2004), the display primaries and the conversion
algorithm can be considered as the physical parameters and technology variables (with a loosely
defined distinction) that together impact the CGV as well as the perceptual image quality.
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RGBW displays, which utilize an extra white (W) channel
for potential benefits in power consumption and observer
metamerism, have been an interesting topic for considering
display primaries and color conversion at the same time (Miller
and Murdoch, 2009; Kwon et al., 2015).

In addition to gamut mapping processing, another issue
regarding the relation between CGV optimization and image
content is the coverage of color statistics in natural objects, such
as the Pointer gamut (Pointer, 1980). It has been shown that
natural image statistics correlate with perceptual sensitivity and
preference (McDermott and Webster, 2012; Nascimento et al.,
2021). Using natural image datasets, the distribution of dynamic
range has been characterized (Grimaldi et al., 2019), however, the
generalization to the chromatic dimension has not been carried
out. Moreover, color reproduction does not only concern natural
objects, as synthetic scenes generated by computer graphics may
also benefit from a larger CGV, although the perceptual gain is
not easily quantifiable.

There have been few studies considering gamut volume
design and content dependency simultaneously. In this work,
the relationship between computational and psychophysical
quantification of the perceived gamut is examined. The
importance of image content dependency is highlighted from the
results. The next section describes the experiment conducted to
investigate different parameters in five simulated RGBW displays
and the corresponding color gamut perceived in images with
33 observers. Then, both the computational and psychophysical
results, as well as the correlations are presented. The last two
sections discuss and conclude our findings and the implications
of considering image contents in display gamut optimization.

2. GAMUT CALCULATION AND
PERCEPTUAL EVALUATION

2.1. Simulated Gamut Settings
A set of five simulated display gamuts were included, including
one RGB and four RGBW displays which all shared the same
DCI-P3 RGB primaries. The white channel in the RGBW display
was CIE D65 at varying levels of luminance, with the same
total luminance of all RGB or RGBW channels as ∼1, 450 nits,
which corresponded to different ratios of white light output
over color light output (WLO/CLO) and led to different volume
sizes (Masaoka et al., 2020). WLO corresponds to the peak
luminance of the display where the white channel is activated
and CLO equals to the luminance of the RGB channels without
the white channel contribution. A higher WLO/CLO ratio
results in de-saturating the RGB primaries, thus leading to a
smaller CGV. For each RGBW gamut tested, a RGB to RGBW
color conversion algorithm was generated to simulate a similar
conversion happening in real-world devices and to incorporate
gamut mapping. The algorithm inputs were gamma-encoded
RGB values and the outputs were linear RGBW, which given
the RGBW primaries could be used to derive colorimetric values
such as CIEXYZ for the input color. One critical parameter of the
algorithm was the gamma-encoded threshold RGB value above
which the white channel was being activated, mirroring a similar

TABLE 1 | Gamut parameter settings and the corresponding CIELAB gamut

volume.

Simulated gamut #1 #2 #3 #4 #5

WLO/CLO 1 1.5 1.5 2 2

White activation level None Low High Low High

CGV (∗106) 3.72 1.23 1.76 0.75 1.01

solution commonly used in RGBWdisplays. The gamut mapping
primarily focused on maintaining the hue and compressing the
CIELAB lightness and chroma if needed.

Both the WLO/CLO variations and the activation threshold
parameter resulted in different shapes of calculated CGVs in
CIELAB color space despite all gamuts having the same range
of luminance and primaries. Table 1 lists the parameters and the
corresponding gamut volume sizes for the five simulated gamuts.
Note that the gamut #2 and #3 had identical WLO/CLO ratio
and similar CGVs of the enclosed volume with display boundary
colors, but because they had different settings for the white
channel activation threshold, they had different gamut slices at
different lightness levels, which can be observed in their gamut
ring visualizations in Figure 1. For each display the gamut rings
were calculated which convert the 3D volume into a 2D area
summation. Each ring contour corresponds to the cumulative
gamut volume summed to the given lightness level and the
outermost ring (L∗ of 100 that used the peak luminance D65 as
the white point) corresponds to the gamut boundary. Gamut #1,
which does not use a white channel, had the largest predicted
gamut volume. The difference between gamut #2 and #3 and
between gamut #4 and #5 caused by the white channel activation
level highlights the fact that the boundary descriptor summarized
by its volume size may not capture the internal geometry of
the gamut.

2.2. Psychophysical Experiment
To evaluate the perceptual impact of different gamut settings,
a psychophysical experiment using paired comparisons between
those gamuts was conducted. The experiment was done on an
Apple Pro XDR display, which could render a peak luminance of
1,500 nits with P3 RGB primaries. Figure 2 shows the stimulus
configuration, where the whole screen covered a field of view
(FOV) of 39 × 22 visual degrees at ∼1 m viewing distance. Two
images with the same content but different gamut parameters
were shown side by side with a one-degree separation. Each
image covered an FOV of 20 × 11◦. The background was a
uniform gray at 100 nits surrounded by thin white borders (500
nits, 0.5◦), which together serve as the adaptation background.
The white point at 500 nits D65 was also used in the following
CGV calculations for conversion into CIELAB. The image was
surrounded by thin black borders. On the top of the screen, there
was an instruction text box which is further described in the
following section.

The images used in the experiment are presented in Figure 3.
The original images were selected from the HdM HDR dataset
(Froehlich et al., 2014) which was curated for cinematic contents
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FIGURE 1 | Gamut rings (Smith et al., 2020) for each gamut (A–E for gamut #1–5, respectively). The area of the outermost boundary in the gamut rings correspond to

the CGV. The coordinates are on the CIELAB a∗ − b∗ plane, where the subscript RSS means the root sum square of the equivalent a∗/b∗ values (Masaoka et al.,

2020). The differences between consecutive equal-lightness contours depends on both the WLO/CLO ratio and the white channel activation position.

covering different semantic scenes/objects and different dynamic
ranges. The subset of six images we selected was also intended
to cover its representatives in these two aspects. In addition,
a Macbeth color-checker uniformly lit with a 1,400 nits CIE

D65 was supplemented. Color-checker has no meaningful object
identities; thus it might help separate the contribution of
attention to any specific image regions, and as will be shown
in the result section, its uniform color patches are easier to
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FIGURE 2 | Stimulus configuration where the observers saw two images side-by-side and was asked to select the one with higher brightness and colorfulness. The

background is a uniform gray at 100 nits surrounded by a thin white border of 500 nits. Source: image stimuli from the dataset in (Froehlich et al., 2014).

compare and might more simply correspond to what a wider
gamut entails. The seven images were modified according to the
gamut and color conversion settings described above, and their
colorimetric values were converted to the RGB encoding of the
Apple XDR. As we linearly scaled the peak luminance from 4,000
nits (the original dataset) to 1,500 nits (the XDR peak), the actual
appearance to the observers might not match the visualizations
in Figure 3, especially the dark regions were more likely to
be compressed thus lose details. However, these operations
are expected to have little impact on the image attributes of
our interest, i.e., brightness and colorfulness. Although the
colorimetric values of images might be impacted by some
spatial processing or artifacts native to the display, we believe
the symmetric configuration and left-right order randomization
would balance the potential impact.

Our experimental protocol has received IRB approval from
our institution. Thirty-three observers, aging from 17 to 55
(mean of ∼23), participated in the experiment. Most of them
were college students, and approximately one-third had a color
science background. All the observers had a normal color vision
as verified by the Ishihara test. After the observers entered the
room, they signed the consent form, adjusted the chair such that
their eye level aligned with the center of the screen, and went
through a 2 min dark adaptation before the experiment.

The task was to choose from a pair of images which one
had higher brightness and colorfulness, which are considered
to be the most relevant image quality attributes for the upper
boundary of the gamut we would like to probe. Gamut and its
utilization can affect image attributes in different dimensions.
Previous work from Jiang et al. (2020) asked observers to
select “which image is more colorful and detailed.” Since we

considered that detail level might be more related to quantization
level (color depth) and how colorists take advantage of the
gamut, brightness and colorfulness are preferred to gauge the
upper boundary of a gamut. The color shifts between the
displays simulated in this paper happened along both lightness
and chroma axes in a correlated way (which can be observed
from the symmetric relation shown in Figure 6). The perceived
gamut volume is thus expected to receive joint contributions
from the two dimensions, corresponding to perceived brightness
and colorfulness, respectively. Therefore, it suffices to combine
the two perceptual attributes to be judged together. Another
difference in our experimental design from Jiang et al. (2020)
is that we adopted a side-by-side comparison instead of
a temporally successive comparison. Their interest was the
peak luminance level (adaptation independence), whereas our
objective assumed a constant adaptation level. During the pilot
experiment, it was established that the temporal comparison
scheme was more difficult for the observers to detect the
difference, even with a shorter time interval. Our observers did
not have any time constraints in their decision-making, and there
was a 1 s interval between trials with only the background and
no images.

For each image content, paired comparisons between 5 pairs
of gamut parameters led to 10 trials. And for each compared
pair, the left-right order was repeated for both conditions. In
addition to those 140 trials (10 comparisons across 7 images
with 2 spatial arrangements of the images), we added a set of
14 trials where the #1 gamut and its 30% luminance off version
(the image luminance was adjusted with a scalar of 0.7), each
image left-right switch repeated, were also added to as a sanity
check and also an indicator of the task difficulty. On average,
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FIGURE 3 | Image contents including six images selected from the HdM

dataset (Froehlich et al., 2014) and one color-checker. The image index is

labeled in the bottom-right corner.

it took each observer 30 min to complete the 154 trials in
random order.

3. RESULTS

3.1. Observer Screening and Image CGVs
By screening the correction rate of the 14 checking trials,
only 11 observers out of all 33 observers achieved a 100%
correct selection rate, with the lowest result being 10 correct
answers out of 14. Figure 4 shows the CGVs calculated for
each image with different gamuts. In particular, Gamut #0 is
the checking condition, which is the same as Gamut #1 at 30%
lower luminance. Interestingly, 30% reduction in luminance led
to 30% reduction in CIELAB volume after those non-linear
transformations. However, the good-observer ratio of 11/33
implies the difficulty of seeing the perceptual differences when
there was a global level of luminance changes. Also of note is that
across the five gamuts, the lines for each image approximately,
but not exactly, follow the trend of the CGVs in Table 1. More
quantitatively, the average image-wise CGVs are listed inTable 2.
Thus, a larger boundary CGV generally correlates with larger
image CGVs, but the exception cases also mean there is some
impact from the parameters that are relevant to the gamut
interiors, in our case, due to different white channel activation
levels. In particular, images #2, 3, &7, whose original CGV for

FIGURE 4 | Image CGVs across different gamut conditions. Each line

corresponds to one image content. Gamut #0 was the checking condition,

which was 30% luminance off from Gamut #1. The same image content with a

higher CGV was expected to have higher brightness and colorfulness.

TABLE 2 | CGV for both gamut boundary and all images averaged.

Simulated gamut #1 #2 #3 #4 #5

CGV (∗106) 3.72 1.23 1.76 0.75 1.01

Mean image-wise CGV (∗106) 0.62 0.59 0.57 0.50 0.48

The boundary CGVs are those in Table 1.

gamut #1 was relatively high, had more variations in CGV across
different gamuts. Those images either had more colorful neon
lights or, for the colorchecker case, were closer to the upper
gamut boundary. In contrast, the other images had more similar
hues. Thus, their pixels tended to be located in the interior and
lower region of the original source gamut, which were more
likely to be invariant to the parameter changes across the five
simulated gamuts.

3.2. Perceived CGV Scales
Based on the assumption of Thurstone Case V, the comparison
voting results of those 140 trials were converted into perceived
gamut scales. The scales as z-scores have a unit of one standard
deviation from the standard normal distribution, corresponding
to the probabilities of 0.159 (z-score of −1) or 0.841 (z-score of
1). Here higher values mean larger perceived CGV or brightness
and colorfulness specifically. Both results from all observers and
the 11 “good” observers are shown in Figure 5. The error bars
were calculated as a function of the number of gamuts (5) and the
number of observers times their repetitions (Montag, 2006). They
mostly align with each other, and the good-observer results show
more discrimination distances, e.g., Image Index #1 & 7, which
follow what the image-wise calculated CGVs predicted. For other
image contents, one observation is that Gamut #2 has higher
perceived scales than Gamut #5. The two gamuts have different
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FIGURE 5 | Perceived CGV scales, derived from all 33 observers (A) the subset of 11 observers (B), vs. different gamuts. Each panel corresponds to one image

content’s results.
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WLO/CLO’s, and the results follow what calculated CGVs predict
too. Regarding other gamut comparisons, we instead investigated
what happened with the manipulations of the color conversion
algorithm did by comparing the color differences between image
pairs, which is more directly connected to how observers reached
their selection decision in each trial. In the following, the 11-
observer results are primarily used.

3.3. Image Color Difference Analysis
An image-wise analysis can be useful to decouple the compound
effects between display color gamut and image content. And
if image-wise analysis can provide reasonable explanations for
a group of representative image contents covering the whole
gamut, it would be useful to generalize to predict any images (and
hopefully the average results across all images would converge
to the display color gamut). As the task involved comparing
brightness and colorfulness and the color conversion algorithm
considered minimal hue shifts, we calculated the image color
difference using lightness and chroma dimensions in CIELAB,
shown in Figure 6 below. In each sub-figure, the 5 × 5 image
matrix (the diagonal skipped) includes both lightness difference
(the upper-right triangle) and chroma difference (the lower-
left triangle), represented as heat-map style images where the
pseudo-colors correspond to the difference. For each difference
image at (i, j) for lightness and (j, i) for chroma, where i
and j correspond to two gamut indices, the difference was
always calculated as (i–j), thus the matrix is approximately
mirror-symmetric as lightness and chroma correlate (which was
prioritized in the color conversion algorithm).

If the image difference ideally follows the image-wise CGV
trends across the five gamuts, the color difference would be
mostly positive between (i–j) when i is smaller than j, and the
larger interval between i and j, the larger the color difference.
This is observed for the color-checker case (Figure 6C), which
combined with the largest color difference magnitudes explains
why the color-checker result followed the prediction above.
However, the position where the white channel starts to activate
apparently affects the gamut interiors. For example, Gamut #1
vs. #2 and #1/2/3 vs. #4 lead to both positive and negative color
differences for those pairs, which may make those comparison
trials ambiguous. Despite this, in most cases, the perceived scales
between a pair of gamut conditions can be related to their
corresponding image color differences.

4. DISCUSSION

In this work, the perceived color gamut of images was studied
from both computational and psychophysical perspectives. As
the determination of display gamut boundary ignores the image
content dependency, an image-wise analysis including both color
gamut volume per image and color difference across images
was conducted. The psychophysical results can be well predicted
and explained by such image-wise analysis which captures how
colors both on the gamut boundary and in the interior are
manipulated according to different gamut conditions, as well as
the spatial distribution of gamut mapping errors. As our selected
stimuli covered a group of representative image contents from

the whole gamut, it would be promising to generalize to predict
any image, with a colorimetrically explicit forward model, and
hopefully, the average results across all images would better
reflect the usefulness of a given display gamut design. A similar
framework has also been recently proposed (Lee et al., 2020).
While the simplistic and colorimetric comparison between two
images has been shown to be predictive, future work can explore
image color appearance modeling (Johnson et al., 2010) and
spatial gamut mapping (Bonnier et al., 2006; Vazquez-Corral and
Bertalmío, 2018), especially when there are more variations in
display parameters and image contents.

However, because this study considered only one display
gamut with no white channel contribution, these results apply
specifically to color gamut volume comparisons between RGBW
and RGB-only displays. As such, they cannot be extended to
comparison within the RGB-only class of displays, where the
color gamut volume calculation has proved to correlate well
with performance. Also, for the color conversion and gamut
mapping component, when considering other advanced options
(Morovič, 2008; Zamir et al., 2019), their impact on brightness
and colorfulness attributes needs further investigation.

The CGV was primarily calculated in the CIELAB space.
Although a Euclidean color space that is uniform across the
whole gamut might be hard to develop, a more uniform
color space is potentially more meaningful for calculating
the overall CGV size. Previous results between CIELAB and
CIECAM02 had not found a significant difference (Jiang et al.,
2020). Dimension independence, i.e., a lack of correlation
between individual chroma and luma dimensions, is useful for
determining the impact in each dimension. The CIELAB space
does not perform well in this regard because the lightness L*
dimension only considers partially perceptual lightness without
incorporating higher-order effects such as the Helmholtz–
Kohlrausch effect. Park and Murdoch (2020) studied the trade-
off between chromaticity gamut area and luminance for image
quality and found more chroma can equivalently compensate
for the deficiency in lightness. Recent efforts have been made to
address this problem by adding the compensation component
in gamut mapping (Zamir et al., 2019) and proposing more
independent color scales (Xie and Fairchild, 2021). Our future
work includes CGV re-calculations in such a new space.

5. CONCLUSION

Using RGBW displays (RGB plus a white channel) as a special
case, the results of the psychophysical study demonstrated that
a larger display gamut enclosed by the boundary does not
guarantee a larger color gamut perceived in images. Five gamuts
with different white channel contributions were simulated, and
seven different image contents were curated and rendered on
each display. Using a paired comparison experiment with 33
observers, the perceived scales of color gamut as perceived
brightness and colorfulness were derived. The results show more
correlations with the image-wise than display-wise CGV and
can be explained with image color differences. Our findings
highlight the importance of considering image contents when
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FIGURE 6 | Image color differences for both CIELAB lightness and chroma between different pairs of gamuts for image #2 (A), image #6 (B), and image #7 (C). The 5

× 5 image matrix (the diagonal skipped) include both lightness difference (the upper-right triangle) and chroma difference (the lower-left triangle) that are diagonally

symmetric.
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optimizing display gamut volume, which can be guided by such
image-wise analysis.
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