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The cerebral cortex comprises a complex and exquisite network of neuronal

circuits that is formed during development. To explore the molecular

mechanisms involved in cortical circuit formation, the tactile somatosensory

pathway that connects the whiskers and cortex of rodents is a useful model.

Here, we analyzed the roles of Ras GTPase-activating proteins (RasGAPs) in

the circuit formation in the somatosensory cortex layer 4 (L4). We suppressed

the function of RasGAPs in L4 neurons using Supernova RNAi, a plasmid

vector-based sparse cell gene knockdown (KD) system. The results showed

disrupted dendritic pattern formation of L4 spiny stellate neurons on the barrel

edge by RasGAP KD. Furthermore, the number of presynaptic boutons on L4

neurons was reduced by RasGAP KD. These results demonstrate the essential

roles of RasGAPs in circuit formation in the cerebral cortex and imply that

developmental changes in dendrites and synapses in RasGAP KD neurons

may be related to cognitive disabilities in RasGAP-deficient individuals, such

as patients with neurofibromatosis type 1.

KEYWORDS

cerebral cortex, layer 4, sparse-cell labeling, RasGAP, neonates, thalamocortical
axons

Introduction

Higher brain functions like cognition rely on a complex network of neuronal
circuits. The tactile somatosensory pathway that connects the whiskers and cortex
of rodents is useful for understanding the molecular mechanisms of neural circuit
formation. The whiskers on the rodent’s snout receive tactile information such as the
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spatial orientation of its surroundings, target detection, and
tactile discriminatory ability (Petersen, 2007; Fox, 2008).
The rodent somatosensory barrel cortex layer 4 (L4) has
a distinctive “barrel map” linked to the facial whisker
pattern (Woolsey and Van der Loos, 1970). Thalamocortical
(TC) axon terminals are clustered in the barrel center and
excitatory neurons in L4 extend their dendrites toward the
barrel center to receive inputs from TC axon terminals.
These traits make the barrel cortex ideal for exploring the
mechanisms of neocortical circuit development (Rao and
Mizuno, 2021).

Previous studies have shown that Ras GTPase activating
proteins (RasGAPs) play a role in neuronal circuit formation
in the barrel cortex L4. For example, NF1flox/flox; hGFAP-Cre
mice in which neurofibromin 1 (NF1), a RasGAP involved
in neurofibromatosis type 1 disease, has been conditionally
deleted in the cerebral cortex, fail to form the barrel patterning
(Lush et al., 2008). Synaptic Ras GTPase activating protein
(SynGAP) also plays a key role in the barrel pattern development
(Barnett et al., 2006). However, the role of RasGAPs in
the morphological development of individual L4 neurons
remains unclear. Furthermore, because genes were knocked
out in many cells of the brain in previous studies, the cell-
autonomous functions of RasGAPs in the L4 circuit formation
are obscure.

In this study, we analyzed the roles of RasGAPs in L4
circuit development. SynGAP and NF1 were suppressed in a
sparse population of L4 neurons using in utero electroporation-
mediated transfection of the Supernova RNAi system (Mizuno
et al., 2014; Luo et al., 2016). In RasGAP knockdown (KD)
neurons, dendritic patterning toward the barrel center was
disrupted, and the presynaptic bouton number was reduced.
These results suggest that RasGAPs are required for the
development of L4 circuits in the developing somatosensory
cortex.

Materials and methods

Experimental animals

ICR pregnant wild-type mice were used for E14
electroporation and post electroporation, the pregnant
mice were kept on a heating pad at 37◦C for 1–2 days and kept
at room temperature in the animal cage. Further, the litter was
maintained in the same cage after delivery. At the postnatal
stage on P16, the mice pups of both genders were overdosed
with pentobarbital and perfused with saline after observing
the RFP-positive pups through a fluorescent binocular
microscope (Leica). All experiments were conducted under
the guidelines for animal experimentation of the Kumamoto
University and approved by the animal experimentation
committees.

Supernova vector system

We used the Supernova-RNAi vector system for conditional
gene suppression (Luo et al., 2016). This vector system
consists of TRE-nCre (vector 1; 5 ng/µl) (Mizuno et al.,
2014), CAG-loxP-stop-loxP-TurboRFP-ires-tTA-WPRE (vector
2; 1 µg/µl) (Mizuno et al., 2014) and CAG-loxP-stop-loxP-
mir30 (0.5 µg/µl) (Matsuda and Cepko, 2007).

For knockdown experiments, template oligonucleotides
containing shRNA sequences against the coding regions of
SynGAP and NF1 and those scramble controls (Table 1)
were ligated into the XhoI/EcoRI sites of pCAG-loxP-stop-
loxP-mir30 vector (Matsuda and Cepko, 2007; Luo et al.,
2016). Template oligonucleotides for knockdown vectors were
designed according to the previous reports (Matsuda and
Cepko, 2007; Parrinello et al., 2008) or using the RNAi designer
(Block-iT, Invitrogen, CA, United States). For control vectors,
oligonucleotides having low similarity with known mRNAs were
designed using the scrambled sequence designer (GenScript,
New Jersey, United States) and BLAST (NIH).

In utero electroporation

In utero electroporation was conducted to transfect
Supernova vector sets to L4 neurons as previously described
(Mizuno et al., 2007, 2010, 2018, 2021). Pregnant mice were
anesthetized at embryonic day (E) 14 with a combination of
sodium pentobarbital (50 mg/kg body weight) and isoflurane
gas (1.0–1.5% in air). A midline laparotomy was conducted
to expose the uterus, and a pulled glass capillary was used to
inject DNA into embryos. Square electric pulses (40 V, 50 ms,
1 Hz) were delivered to embryos three to five times using an
electroporator (GEB14, Bex) and forceps-type electrodes (Bex).
After electroporation, the abdominal wall and skin were sutured.
Mice were allowed to recover on a heater (37◦C).

Histology and confocal microscopy

For histological analyses, mouse brains were fixed with
4% paraformaldehyde in phosphate buffer overnight and then
transferred to 30% sucrose in PBS for 1 day. Tangential brain
sections (100 µm thick) were made with a freezing microtome
(Yamato Kohki, Saitama, Japan), then obtained sections were
permeabilized and blocked in 0.2% Triton X-100/5% normal
goat serum (Sigma, Missouri, United States) in PBS. Rabbit
anti-VGluT2 (1:1,000, Synaptic Systems) and Alexa Fluor 488-
conjugated goat anti-rabbit IgG (1:1,000, Invitrogen, CA, United
States) antibodies were used to visualize the barrel arrangement
in obtained sections. Fluorescent images were obtained using
a SP8LS confocal microscope (Leica). The obtained images
from confocal microscopy observation were assessed using LasX
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software (Leica), Image J software with Fiji (Schindelin et al.,
2012), Imaris software (Bitplane, Belfast, United Kingdom), and
Microsoft Excel.

Dendritic pattern analyses (Figure 2) were performed as
previously described (Mizuno et al., 2014). For the orientation
bias index (OBI) analysis (Figure 2), we selected only sparsely
labeled spiny stellate neurons with clear dendritic morphologies
on the barrel edge. The barrel edge was defined as the edge
of TC axon clusters labeled with vGluT2 immunostaining.
Neurons with cell bodies located at the edge of sections
were excluded from analyses. For spine and bouton analyses,
secondary dendritic branches located inside the barrels were
used considering barrel edge neurons and center neurons, and
only one branch from one neuron was used (the branch number
is equal to the neurons number). Spine and bouton numbers
were counted using 3D models created from sequential optical
sections by Imaris software. All spine types (stubby, thin, and
mushroom) with more than 1 µm in length were defined as
spines. For bouton analysis, vGluT2 signals with more than
1 µm in diameter and attached on spines were defined as
boutons.

Statistical analysis

All results are presented as mean ± standard error.
The significance of the differences was analyzed using a
Mann–Whitney U test with Bonferroni correction for the
dendrite analysis (Figure 2) and a two-tailed Student’s t-test
with Bonferroni correction for the spine and puncta analysis
(Figure 3). All p-values < 0.05 were considered statistically
significant.

Results

Ras GTPase-activating proteins are
required for dendritic development of
layer 4 neurons

To study the function of RasGAPs in barrel circuit
formation, we transfected the Supernova vector system for
conditional gene KD (Supernova RNAi) (Luo et al., 2016) to L4
neurons using in utero electroporation. In this study, we focused
on NF1 and SynGAP for RasGAP KD, because previous studies
reported these two molecules were involved in the barrel pattern
formation (Barnett et al., 2006; Lush et al., 2008). Supernova
RNAi consists of TRE-Cre (vector 1; TRE: tetracycline response
element; Cre: site-specific recombinase), CAG-loxP-stop-loxP-
TurboRFP-ires-tTA-WPRE (vector 2; CAG: CAG promoter;
loxP: Cre recombinase target sequence; stop: transcriptional
stop sequence; TurboRFP: red fluorescent protein variant; ires:
internal ribosome entry site; tTA: tetracycline transactivator;
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FIGURE 1

(A) Schematic of the Ras GTPase-activating protein (RasGAP) knockdown experiments. (B) Example confocal images of VGluT2-immunostained
tangential sections obtained from Supernova-electroporated P16 mice.

and WPRE: woodchuck hepatitis virus posttranscriptional
regulatory element), and Cre-dependent KD vectors (Figure 1A
and Table 1). TurboRFP expression in a sparse population of
transfected neurons was enabled by the positive feedback of the
tTA-Cre cycle between vectors 1 and 2 (Mizuno et al., 2014;
Figure 1B). In this system, KD RNAs were expressed in RFP
expressing cells (Luo et al., 2016).

We analyzed the roles of RasGAPs in the dendritic pattern
formation of spiny stellate neurons on the barrel edge at
P16 when the dendritic branch pattern of these neurons
was essentially mature (Figure 2A). For KD of RasGAP,
we mixed four KD vectors with vectors 1–2 (Table 1).
We first compared wild-type (WT) and control (RasGAP
RNAi scrambled sequences) neurons, as the expression of
the four types of control RNAi could affect the normal
development of L4 neurons, although the control sequences
have low similarity with the known mRNAs. We found that
the total dendritic length, the 3D dendritic domain, and

dendritic lengths inside and outside the barrel did not differ
between WT and control neurons (Figures 2B–E). Furthermore,
the OBI, defined as the ratio of the inside length to the
total length, was similar between WT and control neurons
(Figure 2F). These results support that the control vectors do
not affect the dendritic pattern formation of L4 spiny stellate
neurons.

Next, we compared dendritic morphology between control
and RasGAP KD spiny stellate neurons. The total dendritic
length and the 3D dendritic domain did not differ between
control and RasGAP KD neurons (Figures 2B,C). However, the
dendritic length inside the barrel was shorter, and, the length
outside the barrel was longer in KD cells compared with control
cells (Figures 2D,E; inside: p = 0.003; outside: p = 0.030).
Consequently, the OBI in KD cells was smaller than that in
control cells (Figure 2F, p < 0.001). These results suggest that
RasGAPs are required for the dendritic pattern formation of L4
spiny stellate neurons on the barrel edge.
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FIGURE 2

(A) Dendritic orientation was impaired in RasGAP-suppressed
neurons Top images: confocal images obtained from P16 mice
(left: wild-type, middle: RNAi control; right RasGAP knockdown).
Bottom images: dendritic tracings of Supernova RFP-labeled L4
neurons. (B–F) Quantitative analysis of dendritic morphology
(WT, 7 cells from 5 mice; control, 12 cells from 8 mice; KD, 13
cells from 6 mice). The orientation bias index was calculated by
dividing the inside dendritic length by the total dendritic length.
*p < 0.05, ***p < 0.001.

Ras GTPase-activating proteins are
required for presynaptic bouton
formation

Ras GTPase-activating proteins may also be involved in
synapse formation in L4 neurons. We first analyzed the
effect of RasGAP KD on spine formation (Figure 3A). High
magnification confocal imaging revealed that spine density
on the secondary dendritic branches of control cells was not
different from that of WT and KD cells (Figure 3B). To examine
the role of RasGAPs in presynaptic structure formation, we
counted the number of presynaptic boutons which are mainly
originated from the thalamocortical axon terminals, which were
labeled with anti-VGluT2 immunostaining, on the secondary
dendritic branches of L4 neurons. Although the number of
presynaptic boutons did not differ between control and WT
cells, KD cells had a smaller bouton number than control cells

FIGURE 3

(A) Spine and presynaptic bouton analysis of
RasGAP-suppressed neurons at P16 by high magnification
confocal imaging (63× oil imaging). (B,C) Quantitative analysis
of spine (B) and presynaptic bouton (C) density in secondary
branches of L4 neuron dendrites located inside the barrels (WT,
28 branches from 8 mice; control, 22 branches from 13 mice;
KD, 31 branches from 16 mice). *p < 0.05.

(Figure 3C, p = 0.029). These results suggest that RasGAPs are
required for presynapse formation.

Discussion

In this study, we analyzed the functions of RasGAPs in the
developing barrel cortex L4 using the Supernova RNAi system.
We found that dendritic patterning toward the barrel center
was disrupted in RasGAP KD L4 neurons. Previous studies have
reported the genes involved in circuit formation in L4 (Wu et al.,
2011; Rao and Mizuno, 2021), and dendritic pattern disruption
in RasGAP KD neurons is similar to the phenotype in L4 cells
of several gene knockout animals. Among them, the N-methyl-
D-aspartate (NMDA) receptor is a candidate molecule involved
in RasGAP signaling. The cell-autonomous function of the
NMDA receptor is related to the dendritic pattern formation
of L4 neurons (Espinosa et al., 2009; Mizuno et al., 2014).
Furthermore, prior studies have shown that the barrel pattern is
disrupted in cortex-specific NMDA receptor-deficient, SynGAP
knockout, and cortex-specific NF1 knockout animals (Iwasato
et al., 2000; Barnett et al., 2006; Lush et al., 2008). In the
hippocampus, RasGAP activity is regulated by the NMDA
receptor (Komiyama et al., 2002), and NF1 and NMDA receptor
signaling is involved in spine structural plasticity (Oliveira and
Yasuda, 2014). These results indicate that NMDA receptor-
RasGAP signaling may also be involved in the dendritic pattern
formation of L4 neurons in the barrel cortex.
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The present study showed that the spine number of L4
neurons was not affected by the suppression of RasGAPs.
However, the number of vglut2-labeled presynaptic buttons,
which could be more reliable if confirmed with co-localization
of VGulT2-Synapsin, has decreased. These results suggest that
RasGAP in L4 cells retrogradely regulates presynapse formation
in TC axons. This signaling could be mediated by retrograde
molecules (Regehr et al., 2009). For example, semaphorin
derived from Purkinje cells regulates the formation of climbing
fiber synapses in the developing cerebellum (Uesaka et al.,
2014). Molecular interactions between RasGAPs and candidate
signaling molecules like the NMDA receptor could be assessed
through experiments using co-immunoprecipitation, rescue
experiments, and gene-trapping assays.

The findings of this study also provide novel insights for
the pathophysiology of brain disease due to dysfunction of
RasGAPs. NF1, one of the RasGAPs encoding neurofibromin,
is the causative gene of neurofibromatosis type I. Previous
studies have reported learning disabilities in 30–65% of children
with neurofibromatosis type I (North, 2000) and memory
impairment in neurofibromatosis type I model mice (Costa
et al., 2002). However, little is known about neuronal circuit level
changes in NF1 deficiency. Our findings suggest that changes in
dendritic and synaptic development in the cerebral cortex are
related to the cognitive disabilities commonly seen in patients
with neurofibromatosis type I.
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